CN111987176A - 一种光电探测器及其制备方法和应用 - Google Patents

一种光电探测器及其制备方法和应用 Download PDF

Info

Publication number
CN111987176A
CN111987176A CN202010905359.9A CN202010905359A CN111987176A CN 111987176 A CN111987176 A CN 111987176A CN 202010905359 A CN202010905359 A CN 202010905359A CN 111987176 A CN111987176 A CN 111987176A
Authority
CN
China
Prior art keywords
lead sulfide
nanosheets
solution
photodetector
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010905359.9A
Other languages
English (en)
Inventor
张晗
高凌锋
陈华龙
张家宜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202010905359.9A priority Critical patent/CN111987176A/zh
Publication of CN111987176A publication Critical patent/CN111987176A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/21Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供了一种光电探测器,包括工作电极,所述工作电极包括基底以及设置于所述基底上的硫化铅纳米片;所述硫化铅纳米片的厚度为1~5nm,所述硫化铅纳米片的尺寸小于等于20nm。本发明光电探测器利用超小超薄的硫化铅纳米片的光电响应制备成探测器,该超小超薄的硫化铅纳米片具有稳定性能好、光电响应显著、制备过程简单等优点。本发明还提供了该光电探测器的制备方法和应用。

Description

一种光电探测器及其制备方法和应用
技术领域
本发明涉及半导体电子器件领域,具体涉及一种光电探测器,本发明还涉及该光电探测器的制备方法和应用。
背景技术
硫化铅由于其较窄的带隙和较大的波尔半径,被广泛应用于新型光学器件的制备。研究表明将材料的形貌从纳米晶体转变为纳米片后,其光谱性质会产生较大的变化,例如表现出较短的光致发光寿命,明显的斯托克斯位移以及受到抑制的俄歇复合。因此,硫化铅纳米片的制备受到广泛的关注。
目前常用的制备方法有定向附着、单分子前驱体法、阳离子交换法、两相法和化学外延法等,然而上述方法均属于自上而下策略,制备所得的硫化铅纳米片的尺寸较大(百纳米级)。此外,超薄(通常小于10nm)的硫化铅纳米片表现出强烈的Rashba自旋轨道耦合性质,这是高质量自旋电子器件的关键和难点所在。
发明内容
有鉴于此,本发明提供了一种光电探测器,本发明还提供了该光电探测器的制备方法和应用,通过提供一种超小超薄的硫化铅纳米片并将其应用于光电探测器,用以丰富现有光电探测器的种类,提升现有光电探测器的性能。
第一方面,本发明提供了一种光电探测器,包括工作电极,所述工作电极包括基底以及设置于所述基底上的硫化铅纳米片;
所述硫化铅纳米片的厚度为1~5nm,所述硫化铅纳米片的尺寸小于等于20nm。
本发明光电探测器利用超小超薄的硫化铅纳米片的光电响应制备成探测器,该超小超薄的硫化铅纳米片具有稳定性能好、光电响应显著、制备过程简单等优点。该光电探测器具有操作简单、重现性好、受环境影响小和稳定性高等优点,为实现基于硫化铅纳米片光电探测器的大规模实际应用提供了可能。
优选的,所述硫化铅纳米片的厚度为2~5nm,所述硫化铅纳米片的尺寸为6~17nm。
优选的,所述基底包括ITO透明导电玻璃或者FTO透明导电玻璃,所述硫化铅纳米片设置于表面镀有ITO或FTO导电层的玻璃一面。
优选的,所述基底包括ITO或FTO导电柔性薄膜。更有选的,所述柔性薄膜为聚对苯二甲酸二甲酯的柔性薄膜。由此,实现柔性光电探测器件的制备。
第二方面,本发明还提供了一种光电探测器的制备方法,包括以下步骤:
制备硫化铅纳米片:提供硫化铅预剥离液,采用水浴超声的方法对硫化铅预剥离液进行液相剥离,超声完后离心收集硫化铅纳米片并干燥,制得硫化铅纳米片;
制备工作电极:提供PVDF的DMF溶液,将硫化铅纳米片分散于PVDF的DMF溶液,制得硫化铅纳米片的分散液,将硫化铅纳米片的分散液通过滴加的方法均匀涂覆在工作电极的基底上、干燥,制得工作电极;
制备光电探测器:提供对电极、电解质溶液,配合所述工作电极组装成光电探测器;
所述水浴超声的温度不高于15℃,水浴超声的功率为280~400W,所述水浴超声的时间为48~72h。
本发明第二方面所述的光电探测器的制备方法具有步骤简单、成本低等优点,可用于大规模工业化生产。该制备方法能够有效制备出超小超薄的硫化铅纳米片,制得的硫化铅纳米片尺寸、厚度相对集中,稳定性好,光电响应显著。
优选的,在制备硫化铅纳米片步骤中,所述硫化铅预剥离液的制备过程如下:提供硫化铅块体并初步分散于氮甲基吡咯烷酮中,制得硫化铅预剥离液;
所述硫化铅预剥离液中硫化铅的浓度为5~10mg/mL。
优选的,在制备硫化铅纳米片步骤中,超声后的分散液先5000转/分钟离心30分钟,取上层液体,再将上层液体15000转/分钟离心30分钟,收集沉淀即为硫化铅纳米片。
优选的,在制备工作电极步骤中,所述PVDF的DMF溶液中,PVDF的质量分数为0.1%;
所述硫化铅纳米片的分散液中,硫化铅纳米片的浓度为0.5~5mg/mL。
优选的,在制备光电探测器步骤中,所述电解质溶液为0.01~0.1mol/L的KOH溶液或者0.01~0.1mol/L的Na2SO4溶液。
第三方面,本发明还提供了一种如本发明第一方面所述的光电探测器在光电探测领域的应用。
本发明光电探测器在光电探测领域的应用具有光电响应显著、稳定性好、可重复性佳等优点。
本发明的优点将会在下面的说明书中部分阐明,一部分根据说明书是显而易见的,或者可以通过本发明实施例的实施而获知。
附图说明
为更清楚地阐述本发明的内容,下面结合附图与具体实施例来对其进行详细说明。
图1为本发明实施例1提供的超小超薄硫化铅纳米片的制备流程图;
图2为本发明实施例1提供的超小超薄硫化铅纳米片的形貌表征图;
图3为本发明实施例1提供的基于超小超薄硫化铅纳米片的光电探测器件的结构示意图。
具体实施方式
以下所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
第一方面,本发明提供了一种光电探测器,包括工作电极,所述工作电极包括基底以及设置于所述基底上的硫化铅纳米片;
所述硫化铅纳米片的厚度为1~5nm,所述硫化铅纳米片的尺寸小于等于20nm。
优选的,所述硫化铅纳米片的厚度为2~5nm,所述硫化铅纳米片的尺寸为6~17nm。
优选的,所述基底包括ITO透明导电玻璃或者FTO透明导电玻璃,所述硫化铅纳米片设置于表面镀有ITO或FTO导电层的玻璃一面。
优选的,所述基底包括ITO或FTO导电柔性薄膜。更有选的,所述柔性薄膜为聚对苯二甲酸二甲酯的柔性薄膜。由此,实现柔性光电探测器件的制备。
第二方面,本发明还提供了一种光电探测器的制备方法,包括以下步骤:
制备硫化铅纳米片:提供硫化铅预剥离液,采用水浴超声的方法对硫化铅预剥离液进行液相剥离,超声完后离心收集硫化铅纳米片并干燥,制得硫化铅纳米片;
制备工作电极:提供PVDF的DMF溶液,将硫化铅纳米片分散于PVDF的DMF溶液,制得硫化铅纳米片的分散液,将硫化铅纳米片的分散液通过滴加的方法均匀涂覆在工作电极的基底上、干燥,制得工作电极;
制备光电探测器:提供对电极、电解质溶液,配合所述工作电极组装成光电探测器;
所述水浴超声的温度不高于15℃,水浴超声的功率为280~400W,所述水浴超声的时间为48~72h。
优选的,在制备硫化铅纳米片步骤中,所述硫化铅预剥离液的制备过程如下:提供硫化铅块体并初步分散于氮甲基吡咯烷酮中,制得硫化铅预剥离液;
所述硫化铅预剥离液中硫化铅的浓度为5~10mg/mL。
优选的,在制备硫化铅纳米片步骤中,超声后的分散液先5000转/分钟离心30分钟,取上层液体,再将上层液体15000转/分钟离心30分钟,收集沉淀即为硫化铅纳米片。
优选的,在制备工作电极步骤中,所述PVDF的DMF溶液中,PVDF的质量分数为0.1%;
所述硫化铅纳米片的分散液中,硫化铅纳米片的浓度为0.5~5mg/mL。
优选的,在制备光电探测器步骤中,所述电解质溶液为0.01~0.1mol/L的KOH溶液或者0.01~0.1mol/L的Na2SO4溶液。
第三方面,本发明还提供了一种如本发明第一方面所述的光电探测器在光电探测领域的应用。
以下通过具体的实施例详细介绍本发明光电探测器及其制备方法。
实施例1
一种光电探测器的制备方法,包括以下步骤:
制备硫化铅纳米片:请参照图1,将一定量硫化铅块体粉末分散在500mL氮甲基吡咯烷酮中,浓度约为5mg/mL,随后采用10℃恒温水浴超声进行液相剥离。理论上超声功率越大,所需要的超声时间就越短,但是功率太小可能得到的纳米片的量会比较少,功率太高的话,水浴温度上升比较快,可能会对剥离效果产生影响,因此在本实施例中,我们采用了350W的超声功率,超声时间为60小时。随后进行离心收集,采用5000转速离心30分钟,下层沉淀为未被剥离的大颗粒块体材料。取上层液体进行高速离心,采用15000转离心30分钟,所得沉淀即超小超薄硫化铅纳米片,收集并在真空烘箱中(50摄氏度)烘24小时。
制备工作电极:首先配置0.1wt%PVDF的DMF溶液作为分散液,其中PVDF作为粘结剂以增强硫化铅纳米片与ITO玻璃基底的粘合力(一般我们不采用低沸点溶剂,因为快速的挥发过程容易造成样品聚集)。随后将上述制备的硫化铅纳米片通过超声辅助分散在配置的PVDF的DMF溶液中,浓度控制在1mg/mL。最后将该溶液通过滴加的方法均匀涂覆在ITO玻璃表面,在真空烘箱中让DMF缓慢挥发,使硫化铅纳米片均匀分布在ITO玻璃表面,制得工作电极。
制备光电探测器:提供对电极、0.1mol/L的KOH的电解质溶液,配合前述制备的工作电极组装成光电探测器。
对制得的超小超薄硫化铅纳米片进行表征,结果如下:如图2a所示,为超小超薄硫化铅纳米片透射电子显微镜图,可以发现制备所得的纳米片尺寸较为均一,较浅的颜色说明纳米片具有超薄的特性,中间的插图显示的是样品的晶格条纹,其0.338纳米对应硫化铅的(111)晶面。如图2b所示,透射电子显微镜的尺寸统计图,结果显示,样品的尺寸分布较窄,平均值为11.2纳米,表明制备所得的硫化铅纳米片具有超小的特征。如图2c所示,为硫化铅纳米片的元素分布图,从图2c中可以明显观察到纳米片上均匀分布的硫元素和铅元素,表明制备所得的纳米片为硫化铅。如图2d所示,为原子力显微镜图,图中硫化铅纳米片的颜色较为统一,表明其高度相对均匀。如图2e所示,为高度轮廓图,通过测量发现纳米片的厚度为均匀,大部分样品的厚度在2-5纳米之间。如图2f所示,高度统计图,通过统计其高度数值,可以发现纳米片的厚度平均值为3.7纳米,表明制备所得的样品具有超薄的特征。这些结果表明了采用液相剥离的方法能够成功制备超小超薄的硫化铅纳米片。
如图3所示,对制备的光探测器进行性能测试。测试所用光源为混合波长的氙灯(波长从350~800nm),通过增加滤波片获得单一波长的光源,本实施例中主要采用了以下五个波长:350、400、475、550、650nm(理论上可以通过其他滤波片获得特定波长的单色光)。测试光强可以通过调节氙灯的不同档位得以实现,本实验所用的档位从I档到V档共计五个档位;测试所用电解质主要为KOH和Na2SO4两种。本实施例中所用浓度分别为0.01mol/L,0.05mol/L和0.1mol/L的KOH和0.05mol/L的Na2SO4溶液。测试时可以人为调节施加的电压值,电压范围是根据材料的稳定性来选择的,硫化铅的材料在0-0.4V之间没有明确的氧化还原峰,在该范围下表现出良好的稳定性,因此本实施例中采用了0V,0.2V和0.4V三个电压值。如图3所示,E1为工作电极(涂有硫化铅纳米片的ITO玻璃),E2为参比电极(饱和甘共电极),E3为对电极(金属铂)。在测试过程中,通过将制备所得的硫化铅纳米片均匀涂覆在E1电极上,对其进行光照和避光测试,可以发现在光照下其电流明显增强,展现出显著的光电响应性能。表明通过实例1制备的超小超薄硫化铅纳米片在光电探测领域具有显著的光电响应,能够应用于光电探测领域。
实施例2
一种光电探测器的制备方法,包括以下步骤:
制备硫化铅纳米片:请参照图1,将一定量硫化铅块体粉末分散在500mL氮甲基吡咯烷酮中,浓度约为10mg/mL,随后采用15℃恒温水浴超声进行液相剥离。理论上超声功率越大,所需要的超声时间就越短,但是功率太小可能得到的纳米片的量会比较少,功率太高的话,水浴温度上升比较快,可能会对剥离效果产生影响,因此在本实施例中,我们采用了280W的超声功率,超声时间为72小时。随后进行离心收集,采用5000转速离心30分钟,下层沉淀为未被剥离的大颗粒块体材料。取上层液体进行高速离心,采用15000转离心30分钟,所得沉淀即超小超薄硫化铅纳米片,收集并在真空烘箱中(50摄氏度)烘24小时。
制备工作电极:首先配置0.1wt%PVDF的DMF溶液作为分散液,其中PVDF作为粘结剂以增强硫化铅纳米片与ITO玻璃基底的粘合力。随后将上述制备的硫化铅纳米片通过超声辅助分散在配置的PVDF的DMF溶液中,浓度控制在3.5mg/mL。最后将该溶液通过滴加的方法均匀涂覆在ITO玻璃表面,在真空烘箱中让DMF缓慢挥发,使硫化铅纳米片均匀分布在ITO玻璃表面,制得工作电极。
制备光电探测器:提供对电极、0.05mol/L的Na2SO4的电解质溶液,配合前述制备的工作电极组装成光电探测器。
实施例3
实施例3与实施例1的区别在于:将表面涂有ITO的玻璃换成涂有ITO的聚对苯二甲酸二甲酯的柔性薄膜,从而实现柔性光电探测器件的制备。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种光电探测器,其特征在于,包括工作电极,所述工作电极包括基底以及设置于所述基底上的硫化铅纳米片;
所述硫化铅纳米片的厚度为1~5nm,所述硫化铅纳米片的尺寸小于等于20nm。
2.如权利要求1所述的光电探测器,其特征在于,所述硫化铅纳米片的厚度为2~5nm,所述硫化铅纳米片的尺寸为6~17nm。
3.如权利要求1所述的光电探测器,其特征在于,所述基底包括ITO透明导电玻璃或者FTO透明导电玻璃,所述硫化铅纳米片设置于表面镀有ITO或FTO导电层的玻璃一面。
4.如权利要求1所述的光电探测器,其特征在于,所述基底包括ITO或FTO导电柔性薄膜。
5.一种光电探测器的制备方法,其特征在于,包括以下步骤:
制备硫化铅纳米片:提供硫化铅预剥离液,采用水浴超声的方法对硫化铅预剥离液进行液相剥离,超声完后离心收集硫化铅纳米片并干燥,制得硫化铅纳米片;
制备工作电极:提供PVDF的DMF溶液,将硫化铅纳米片分散于PVDF的DMF溶液,制得硫化铅纳米片的分散液,将硫化铅纳米片的分散液通过滴加的方法均匀涂覆在工作电极的基底上、干燥,制得工作电极;
制备光电探测器:提供对电极、电解质溶液,配合所述工作电极组装成光电探测器;
所述水浴超声的温度不高于15℃,水浴超声的功率为280~400W,所述水浴超声的时间为48~72h。
6.如权利要求5所述的光电探测器的制备方法,其特征在于,在制备硫化铅纳米片步骤中,所述硫化铅预剥离液的制备过程如下:提供硫化铅块体并初步分散于氮甲基吡咯烷酮中,制得硫化铅预剥离液;
所述硫化铅预剥离液中硫化铅的浓度为5~10mg/mL。
7.如权利要求5所述的光电探测器的制备方法,其特征在于,在制备硫化铅纳米片步骤中,超声后的分散液先5000转/分钟离心30分钟,取上层液体,再将上层液体15000转/分钟离心30分钟,收集沉淀即为硫化铅纳米片。
8.如权利要求5所述的光电探测器的制备方法,其特征在于,在制备工作电极步骤中,所述PVDF的DMF溶液中,PVDF的质量分数为0.1%;
所述硫化铅纳米片的分散液中,硫化铅纳米片的浓度为0.5~5mg/mL。
9.如权利要求5所述的光电探测器的制备方法,其特征在于,在制备光电探测器步骤中,所述电解质溶液为0.01~0.1mol/L的KOH溶液或者0.01~0.1mol/L的Na2SO4溶液。
10.如权利要求1-4任一项所述的光电探测器在光电探测领域的应用。
CN202010905359.9A 2020-09-01 2020-09-01 一种光电探测器及其制备方法和应用 Pending CN111987176A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010905359.9A CN111987176A (zh) 2020-09-01 2020-09-01 一种光电探测器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010905359.9A CN111987176A (zh) 2020-09-01 2020-09-01 一种光电探测器及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111987176A true CN111987176A (zh) 2020-11-24

Family

ID=73448368

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010905359.9A Pending CN111987176A (zh) 2020-09-01 2020-09-01 一种光电探测器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111987176A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755174A (zh) * 2021-09-26 2021-12-07 杭州师范大学 一种碲化铅量子点及其制备方法和应用
CN114551621A (zh) * 2022-04-25 2022-05-27 深圳大学 一种光电探测器及其制备方法
CN115020518A (zh) * 2022-06-10 2022-09-06 哈尔滨工业大学 一种基于铋氧硫微米花阵列或铋氧硫纳米花的红外光电探测器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805015A (zh) * 2009-02-17 2010-08-18 国家纳米科学中心 多孔PbS纳米片的制备方法
CN106495209A (zh) * 2016-10-17 2017-03-15 国家纳米科学中心 一种利用自组装制备PbS纳米片的方法
CN109439323A (zh) * 2018-09-28 2019-03-08 深圳大学 β-氧化亚铅量子点及其制备方法、光电探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805015A (zh) * 2009-02-17 2010-08-18 国家纳米科学中心 多孔PbS纳米片的制备方法
CN106495209A (zh) * 2016-10-17 2017-03-15 国家纳米科学中心 一种利用自组装制备PbS纳米片的方法
CN109439323A (zh) * 2018-09-28 2019-03-08 深圳大学 β-氧化亚铅量子点及其制备方法、光电探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANE NORTON ET AL: "Synthetic 2-D lead tin sulfide nanosheets with tuneable optoelectronic properties from a potentially scalable reaction pathway", 《CHEM. SCI.》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755174A (zh) * 2021-09-26 2021-12-07 杭州师范大学 一种碲化铅量子点及其制备方法和应用
CN113755174B (zh) * 2021-09-26 2023-10-20 杭州师范大学 一种碲化铅量子点及其制备方法和应用
CN114551621A (zh) * 2022-04-25 2022-05-27 深圳大学 一种光电探测器及其制备方法
CN114551621B (zh) * 2022-04-25 2022-07-22 深圳大学 一种光电探测器及其制备方法
CN115020518A (zh) * 2022-06-10 2022-09-06 哈尔滨工业大学 一种基于铋氧硫微米花阵列或铋氧硫纳米花的红外光电探测器及其制备方法
CN115020518B (zh) * 2022-06-10 2023-07-11 哈尔滨工业大学 一种基于铋氧硫微米花阵列或铋氧硫纳米花的红外光电探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN111987176A (zh) 一种光电探测器及其制备方法和应用
Li et al. High-performance perovskite photodetectors based on solution-processed all-inorganic CsPbBr 3 thin films
Nayeri et al. Synthesis and characterization of ZnO nanowires grown on different seed layers: the application for dye-sensitized solar cells
Yamaguchi et al. (Cd, Zn) S thin films prepared by chemical bath deposition for photovoltaic devices
JP5964744B2 (ja) 半導体膜の製造方法
Toyoda et al. Photoacoustic and photoelectrochemical current spectra of combined CdS/CdSe quantum dots adsorbed on nanostructured TiO2 electrodes, together with photovoltaic characteristics
KR101591240B1 (ko) 전이금속 디칼코게나이드 박리 방법, 전이금속 디칼코게나이드 박막 제조 방법, 상기 박막 제조를 위한 전이금속 디칼코게나이드 용액 및 상기 박막을 이용한 광 검출기
Jakubowicz et al. WSe 2: Optical and electrical properties as related to surface passivation of recombination centers
CN113804294B (zh) 一种铋氧硒纳米片自供能光电探测器的制备方法
García-Aboal et al. Single crystal growth of hybrid lead bromide perovskites using a spin-coating method
Prabukanthan et al. Influence of various complexing agents on structural, morphological, optical and electrical properties of electrochemically deposited ZnSe thin films
Mistewicz et al. A simple route for manufacture of photovoltaic devices based on chalcohalide nanowires
Pang et al. Arrays of ordered Pb nanowires and their optical properties for laminated polarizers
CN112577598A (zh) 基于铋烯纳米片的光电探测器及其制备方法
Pyper et al. In situ Raman spectroscopy of the electrochemical reduction of WO3 thin films in various electrolytes
Li et al. Template-confined growth of copper halides micro-wire arrays for highly polarization-sensitive deep-ultraviolet photodetectors with a polarization sensitivity of 4.45
Mohammadigharehbagh et al. Surface, optical and electrochemical performance of indium-doped ZnO/WO 3 nano-composite thin films
JP6086721B2 (ja) 半導体膜、半導体膜の製造方法、太陽電池、発光ダイオード、薄膜トランジスタ、および、電子デバイス
CN111987174B (zh) 基于锗纳米片的工作电极及其制备方法和生物光电探测器
Thomas et al. Strong room-temperature visible photoluminescence of amorphous Si nanowires prepared by electrodeposition in ionic liquids
CN114685555A (zh) 一种二维(PEA)2PbX4纳米片、制备方法及其在紫外光探测器中的应用
Liu et al. Fabrication of CdS nanorods on Si pyramid surface for photosensitive application
Severiano et al. Electroluminescent devices based on junctions of indium doped zinc oxide and porous silicon
CN109378407B (zh) 一种钙钛矿平面异质结的制备方法及应用
Cai et al. Controllable crystallization by way of solvent engineering for perovskite solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201124

RJ01 Rejection of invention patent application after publication