CN111979238A - 一种在生物基因组上创制基因突变的系统及方法 - Google Patents

一种在生物基因组上创制基因突变的系统及方法 Download PDF

Info

Publication number
CN111979238A
CN111979238A CN202010436149.XA CN202010436149A CN111979238A CN 111979238 A CN111979238 A CN 111979238A CN 202010436149 A CN202010436149 A CN 202010436149A CN 111979238 A CN111979238 A CN 111979238A
Authority
CN
China
Prior art keywords
leu
lys
glu
ala
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010436149.XA
Other languages
English (en)
Inventor
莫苏东
姜临建
李桐
陈文涛
李华荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Kingagroot Chemical Compound Co Ltd
Original Assignee
Qingdao Kingagroot Chemical Compound Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Kingagroot Chemical Compound Co Ltd filed Critical Qingdao Kingagroot Chemical Compound Co Ltd
Publication of CN111979238A publication Critical patent/CN111979238A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明属于生物技术领域,具体涉及一种在生物基因组上创制基因突变的系统及方法。所述系统包括两个技术组分,一是能够在基因组的特定位置上产生断裂的编辑元件,另一个是能够在DNA断口处无模板添加碱基的元件。本发明将能够在DNA断口处无模板地添加碱基的酶与能够产生DNA断裂的靶向核酸酶组合在一起,从而实现了在基因组特定位置上产生多样化的插入和替换型的基因突变。这一技术路线创制了现有基因编辑工具无法产生的突变类型,为基因编辑提供了全新的底层工具,具有巨大的科研和应用价值。

Description

一种在生物基因组上创制基因突变的系统及方法
技术领域
本发明属于生物技术领域,具体涉及一种在生物基因组上创制基因突变的系统及方法。
背景技术
基因编辑技术,特别是CRISPR/Cas技术,在生物细胞中实现了精准的基因编辑。其技术原理是:通过引导RNA(sgRNA或gRNA)与DNA内切酶(如Cas9、Cpf1等)结合形成RNA和蛋白(核酸酶)的复合物(简称RNP),该复合物可以在基因组上搜索与引导RNA互补的目标序列,从而使得DNA内切酶精准地在该区域对结合的DNA进行剪切。根据不同的DNA内切酶特性,剪切的结果多种多样,可以是平末端或粘性末端的双链DNA断裂(DSB),也可以是单链DNA断裂(Nick)。生物体的细胞自身对DSB或Nick的修复会导致碱基的插入或删除(Indel),大概率地造成移码突变,致使基因功能丧失,从而实现了对目的基因的精准编辑。此外,如果提供DNA修复模板,该DNA片段就可能被修复整合入DSB或Nick区域,从而实现精准的DNA片段插入或替换。
不同的Cas内切酶会造成不同类型的DSB,生物体中在无模板条件下的修复结果也不相同。例如,Cas9通常会造成平末端的DSB,而对其的修复结果常常表现为插入(Insertions)或删除(Deletions),简称Indels。近期深入系统的研究表明针对Cas9造成的DSB的修复结果并非随机(van Overbeek,M.et al.DNA repair profiling revealsnonrandom outcomes at Cas9-mediated breaks.Mol.Cell 63,633–646(2016).),大部分的修复结果是小片段的删除和插入,其中插入的类型以插入一个碱基为主(Lemos,B.R.etal.CRISPR/Cas9 cleavages in budding yeast reveal templated insertions andstrand-specific insertion/deletion profiles.Proc.Natl.Acad.Sci.USA 115,E2040–E2047(2018).)。由于修复的结果可以通过模型来预测(Allen,Felicity,et al."JACKS:joint analysis of CRISPR/Cas9 knockout screens."Genome research 29.3(2019):464-471;Shou,Jia,et al."Precise and predictable CRISPR chromosomalrearrangements reveal principles of Cas9-mediated nucleotide insertion."Molecular cell 71.4(2018):498-509;Shen,Max W.,et al."Predictable and precisetemplate-free CRISPR editing of pathogenic variants."Nature 563.7733(2018):646.;Chakrabarti,Anob M.,et al."Target-specific precision of CRISPR-mediatedgenome editing."Molecular cell 73.4(2019):699-713.Iyer S,Suresh S,Guo D,etal.Precise therapeutic gene correction by a simple nuclease-induced double-stranded break[J].Nature,2019:1.)在特定的位点上通过无模板的Cas9修复大概率地实现了精准的修复。另外一种广泛使用用于基因敲除的Cpf1(又称Cas12a),和Cas9不同的是,Cpf1在DNA上切割产生了粘性末端的DSB,其修复结果大多是更长片段的删除(Wang,Mugui,Yanfei Mao,Yuming Lu,Xiaoping Tao,and Jian-kang Zhu."Multiplex gene editingin rice using the CRISPR-Cpf1 system."Molecular plant 10,no.7(2017):1011-1013.;Xu,Rongfang,Ruiying Qin,Hao Li,Dongdong Li,Li Li,Pengcheng Wei,andJianbo Yang."Generation of targeted mutant rice using a CRISPR-Cpf1 system."Plant biotechnology journal 15,no.6(2017):713-717.)。
鉴于Cas9及Cpf1介导的无模板修复基本无法产生碱基替换式的修复,单碱基编辑的技术体系为此提供了一条有效的解决方案。通过将Cas9n(D10A)上融合胞嘧啶脱氨酶,几个不同的课题组先后独立实现了C到T的单碱基替换(Nishida K,Arazoe T,Yachie N,etal.Targeted nucleotide editing using hybrid prokaryotic and vertebrateadaptive immune systems[J].Science,2016,353(6305):aaf8729.;Komor,A.C.,Kim,Y.B.,Packer,M.S.,Zuris,J.A.,&Liu,D.R.(2016).Programmable editing of a targetbase in genomic DNA without double-stranded DNA cleavage.Nature,533(7603),420;Hess,G.T.,Frésard,L.,Han,K.,Lee,C.H.,Li,A.,Cimprich,K.A.,...&Bassik,M.C.(2016).Directed evolution using dCas9-targeted somatic hypermutation inmammalian cells.Nature methods,13(12),1036.;Ma Y,Zhang J,Yin W,et al.TargetedAID-mediated mutagenesis(TAM)enables efficient genomic diversification inmammalian cells[J].Nature methods,2016,13(12):1029.)。文献(Gaudelli,N.M.,Komor,A.C.,Rees,H.A.,Packer,M.S.,Badran,A.H.,Bryson,D.I.,&Liu,D.R.(2017).Programmable base editing of A·T to G·C in genomic DNA without DNAcleavage.Nature,551(7681),464.)将腺嘌呤脱氨酶和Cas9n(D10A)融合,实现了精准的A到G的单碱基编辑。但是这两种单碱基编辑技术的局限是只能实现A到G或C到T的突变,很少产生A到T/C或C到G/A等情形的突变。
发明内容
本发明首次将末端脱氧核苷酸转移酶(terminal deoxynucleotidyltransferase,Tdt)与Cas9等结合在一起,Tdt在Cas9切割产生的DSB末端无模板地添加碱基。鉴于Cas9等敲除修复结果大多是碱基的删除,Tdt的作用正好与之相反,从而形成了大概率的替换和插入类型的修复事件。
本发明采用的技术方案如下:
本发明提供了一种在生物基因组上创制基因突变的系统,其包括两个技术组分,一是能够在基因组的特定位置上产生断裂的编辑元件,另一个是能够在DNA断口处无模板添加碱基的元件。其中,后者与细胞内的修复机制共同作用,相互竞争,从而产生了多元化的基因突变类型,尤其是插入型和替换型基因突变。
上述系统中,所述的“能够在基因组的特定位置上产生断裂的编辑元件”是蛋白介导靶向的编辑元件或RNA介导靶向的编辑元件;所述蛋白介导靶向的编辑元件优选ZFN或TALEN等,所述RNA介导靶向的编辑元件优选CRISPR/Cas系统等。
上述系统中,所述的“能够在DNA断口处无模板添加碱基的元件”是末端脱氧核苷酸转移酶Tdt;优选地,所述末端脱氧核苷酸转移酶Tdt来自于各种脊椎动物,如鼠、猪、北极熊、人等哺乳动物,鸡等鸟类,斑马鱼等鱼类。
上述系统中,所述末端脱氧核苷酸转移酶Tdt具有在DNA断口处富集的靶向性。
上述系统中,所述的“Tdt具有在DNA断口处富集的靶向性”是通过将Tdt融合到Cas基因上获得,或通过与靶向蛋白融合来结合引导RNA上的特定序列实现;优选地,通过与MS2或PP7等靶向蛋白融合来结合引导RNA上的特定序列实现,例如MS2和sgRNA2.0的配合使用。
上述系统中,所述的生物不仅限于上述动物,还包括其他真核生物[如植物、真菌(如酵母等)],原核生物(如细菌等)或具有DNA的非细胞生物(如病毒等)。
上述系统中,所述的基因突变类型包括插入型和替换型基因突变。
上述系统中,所述的插入型和替换型基因突变是指在基因的编码区产生功能缺失(loss-of-function)或功能获得型(gain-of-function)突变,或者在基因的调控区产生功能缺失或功能获得型突变。
本发明还提供了所述系统在生物基因组上创制基因突变的用途。
本发明进一步还提供了一种应用所述系统在生物基因组上创制基因突变的方法。
在一个实施方案中,所述系统在酵母基因组的ILV2基因上创制了的功能获得型(抗甲嘧磺隆)基因突变包括K251F、M354L、L589F、F590S、F590V和F590L中的一个或多个突变,优选地,包括K251F、M354L、F590S、F590V和L589F/F590L。
对于说明书中所用的有关氨基酸取代的术语,第一个字母代表特定序列某一位置上天然存在的氨基酸,后面的数字代表相对于野生型氨基酸序列的位置,第二个字母代表取代该天然氨基酸变成了不同的氨基酸。如图3所示,譬如K251F表示相对于野生型酵母的氨基酸序列而言,第251位的赖氨酸被苯丙氨酸取代。对于双重或多重突变,各突变之间以“/”隔开。例如,L589F/F590L表示相对于野生型酵母的氨基酸序列而言,第589位的亮氨酸被苯丙氨酸取代,第590位的苯丙氨酸被亮氨酸取代,全部两个突变均同时存在于所述具体的突变型蛋白内。
在本发明中,“植物”应理解为能够进行光合作用的任何分化的多细胞生物,特别是单子叶或双子叶植物,例如CN110616203A中提到的粮食作物、豆类作物、油料作物、纤维作物、水果类作物、根茎类作物、蔬菜类作物、花卉作物、药用作物、原料作物、牧草作物、糖料作物、饮料作物、草坪植物、树木作物、坚果作物等。
本发明的优异效果在于:本发明将能够在DNA断口处无模板地添加碱基的酶与能够产生DNA断裂的靶向核酸酶组合在一起,从而实现了在基因组特定位置上产生多样化的插入和替换型的基因突变。这一技术路线创制了现有基因编辑工具无法产生的突变类型,为基因编辑提供了全新的底层工具,具有巨大的科研和应用价值。
附图说明
图1代表pML104-2.0-Cas9-Tdt载体敲除ADE2产生丰富的插入/替换型基因突变。其中,AGG为PAM,-表示删除的碱基,插入的碱基加粗表示。
图2代表四个靶点相应的PAM区在SEQ ID NO.2中的位置,以加粗及下划线表示。
图3代表pML104-2.0-Cas9-Tdt载体在四个靶点产生了替换型的抗甲嘧磺隆突变。其中,WT为野生型,突变的碱基以斜体表示,靶点X/Y/Z/P下列的第一行碱基分别代表包含相应靶点的部分SEQ ID NO.2序列,其余各行代表碱基发生突变后的对应序列。
图4代表不同物种Tdt基因的序列比对。其中,小鼠Tdt(UniProtKB序列号:P09838),小鼠Tdt-L(UniProtKB序列号:P09838-1),北极熊Tdt(UniProtKB序列号:A0A384CWZ3),猪Tdt(UniProtKB序列号:F1SBG2),人类Tdt(UniProtKB序列号:P04053),鸡Tdt(UniProtKB序列号:F1P317),斑马鱼Tdt(UniProtKB序列号:Q5J2Q9)。
图5代表Cas9及Cas9+Tdt在水稻PDS基因上同一位点打靶修复结果。结果可以看出Cas9+Tdt出现了更多插入类型的突变。
图6代表Cas9及Cas9+Tdt在水稻HPPD基因上同一位点打靶修复结果。结果可以看出Cas9+Tdt出现了更多插入类型的突变。
具体实施方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂、仪器等,如无特殊说明,均可从商业途径得到。
实施例1Tdt-Cas9融合载体的构建
将序列>Cas9-NLS-T2A-MS2-linker-NLS-linker-Tdt(其氨基酸序列如SEQ IDNO.1所示)中T2A-MS2-linker-NLS-linker-Tdt所对应的氨基酸序列用水稻密码子优化后,由金斯瑞公司合成,其中,Tdt是指小鼠Tdt(UniProtKB序列号:P09838)。以pML104载体(Addgene plasmid#67638;http://n2t.net/addgene:67638;RRID:Addgene_67638)为骨架进行改造,该载体中Cas9基因表达框的启动子为pTDH3,终止子为tADH1,sgRNA表达框启动子为pSNR52,终止子tSUP4。首先将其中的sgRNA元件替换成sgRNA2.0元件,命名为pML104-2.0-Cas9。将pML104-2.0-Cas9载体用BamHI酶切后,把合成的T2A-MS2-linker-NLS-linker-Tdt基因元件通过in-fusion方法克隆到Cas9基因的3’端,形成完整的Cas9-NLS-T2A-MS2-linker-NLS-linker-Tdt基因(其氨基酸序列如SEQ ID NO.1所示)表达框,该载体命名为pML104-2.0-Cas9-Tdt。以pML104-2.0为骨架,将NLS-linker-Tdt基因直接融合到Cas9基因3’端,命名为pML104-2.0-Cas9-Tdt-fusion。以pML104-2.0为骨架,将其中Cas9基因替换成MS2-linker-NLS-linker-Tdt基因,命名为pML104-2.0-Tdt。
选取酵母ADE2基因上的靶点序列,将其分别克隆到载体中pML104-2.0-Cas9-Tdt,pML104-2.0-Cas9-Tdt-fusion,pML104-2.0-Tdt,pML104-2.0-Cas9中。其中pML104-2.0-Tdt,pML104-2.0-Cas9为对照组,pML104-2.0-Cas9-Tdt和pML104-2.0-Cas9-Tdt-fusion为实验组。
实施例2酵母的转化
以二倍体酵母菌株INVSC1(MATa his3Δ1 leu2 trp1-289 ura3-52/MATα his3Δ1 leu2 trp1-289 ura3-52;上海维地生物科技公司购买)为转化材料,制备酵母感受态。将含有ADE2靶点序列的三种质粒(pML104-2.0-Cas9-Tdt,pML104-2.0-Tdt,pML104-2.0-Cas9),通过化学介导的方法转化酵母感受态细胞。制备酵母感受态和转化方法参见Laughery,M.F.,Hunter,T.,Brown,A.,Hoopes,J.,Ostbye,T.,&Shumaker,T.,et al.(2015).New vectors for simple and streamlined crispr-cas9 genome editing inSaccharomyces cerevisiae.Yeast,32(12),711-720.。转化后的感受态铺在尿嘧啶缺失YNB培养基(含有0.01mg/L腺嘌呤)上筛选。筛选到的单克隆,转到尿嘧啶缺失YNB培养基(不含腺嘌呤)上生长。其中pML104-2.0-Tdt载体,未出现红色克隆,而pML104-2.0-Cas9-Tdt,pML104-2.0-Cas9,pML104-2.0-Cas9-Tdt-fusion载体出现了红色克隆。提取红色克隆的DNA,扩增含有靶点区域的ADE2基因片段,产物进行一代测序。
实施例3酵母突变体基因型的鉴定
图1中一代测序结果表明,pML104-2.0-Cas9,pML104-2.0-Cas9-Tdt,pML104-2.0-Cas9-Tdt-fusion载体均成功敲除了ADE2基因。但是,pML104-2.0-Cas9载体敲除ADE2后产生的基因型非常单调,只有+1和-1两种类型。而pML104-2.0-Cas9-Tdt载体敲除ADE2后产生的基因型非常丰富,多数是删除和插入同时发生的修复类型。特别是,有两个克隆出现了+3/-3的基因型,导致了非移码替换型的基因突变。虽然pML104-2.0-Cas9-Tdt-fusion产生的红色克隆数目最少,但是测序结果表明产生了替换型突变。这些结果表明,Tdt的存在,尤其是以MS2系统赋予Tdt靶向性,高效率地改变了Cas9介导的NHEJ修复结果,导致了大概率的插入和替换型基因突变的产生。
实施例4在酵母中创制新的抗甲嘧磺隆的ILV2突变基因
按照实施例1的方法将ILV2基因(其DNA及氨基酸序列分别如SEQ ID NO.2和SEQID NO.3所示;NCBI accession number:NC_001145)上的四个靶点序列(分别为靶点X,Y,Z,P;各个靶点相应的PAM区在SEQ ID NO.2中以粗体下划线的形式标注,如图2所示)克隆到pML104-2.0-Cas9-Tdt,pML104-2.0-Tdt,pML104-2.0-Cas9中。将每个靶点对应的三个载体分别转化以二倍体酵母菌株INVSC1及单倍体酵母BY4741制备的感受态细胞。转化后的感受态,涂布在含有3mg/L甲嘧磺隆的培养基上,28℃培养。6天后,pML104-2.0-Cas9-Tdt-fusion载体转化的酵母在含有甲嘧磺隆的平板上出现了大量抗性克隆。提取酵母单克隆的DNA,对相应的扩增子进行测序。结果表明pML104-2.0-Cas9-Tdt载体在四个靶点位置均产生了大量替换型抗甲嘧磺隆的突变(如图3所示)。需要特别指出的是,除包括已经报道过的抗性突变G116S,A117V,K251T,M354K,M354V,F590C等(MAZUR,BARBARA J.,AND S.CARLFALCO."THE DEVELOPMENT OF HERBICIDE RESISTANT CROPS."Annual Review of PlantBiology40.1(1989):441-470.),还包括新突变K251F,M354L,F590S,F590V,L589F/F590L等。这一结果表明Tdt与Cas9相结合是创制大量替换型突变的高效工具。
实施例5 Tdt在水稻细胞中能够改变NHEJ修复结果,出现了更高比例的插入类型修复结果。
1、设计并构建打靶载体
(1)选择OsPDS、OsHPPD等合适靶点,以下为靶点序列:
Figure BDA0002502353900000061
(2)根据靶点序列和载体pHUE411及pHUE411-TDT载体序列,设计了以下载体构建及检测所需引物:
Figure BDA0002502353900000062
Figure BDA0002502353900000071
(3)构建pHUE411-TDT载体
首先,使用上述载体构建引物扩增TDT片段,反应条件为:
Figure BDA0002502353900000072
建立PCR反应,一般反应条件是:
Figure BDA0002502353900000073
琼脂糖凝胶电泳检测,并切胶回收片段。
随后,使用NEB Sac1-HF内切酶酶切pHUE411载体,条件如下:
Figure BDA0002502353900000074
对上述产物切胶回收。
接下来IN-fusion无缝克隆片段与载体:
Figure BDA0002502353900000075
(4)上述反应后产物进行转化。转化方法为:
将-80℃保存的E.coli感受态细胞置于冰中融化;待感受态细胞刚解冻时,加入10μL的连接产物,轻弹混匀后放于冰上,冰浴30min。42℃热激90s,立即置于冰上,放置2min。加入800μL的LB液体培养基,200rpm,37℃振荡培养1h后,8,000rpm离心1min收集菌体。去上清,留100μL重悬菌体,将全部菌液涂布在含相应抗生素的LB平板上,37℃倒置培养过夜,菌落PCR并测序鉴定阳性克隆。
(5)pHUE411-TDT载体构建完成后,与pHUE411载体一起插入上述靶点。
靶点退火形成双链后,建立边切边连反应,条件如下:
Figure BDA0002502353900000081
对上述产物进行如下反应:2min 37℃,5min 16℃,共计20个循环。
(6)上述反应后产物进行转化。转化方法为:
将-80℃保存的E.coli感受态细胞置于冰中融化;待感受态细胞刚解冻时,加入10μL的连接产物,轻弹混匀后放于冰上,冰浴30min。42℃热激90s,立即置于冰上,放置2min。加入800μL的LB液体培养基,200rpm,37℃振荡培养1h后,8,000rpm离心1min收集菌体。去上清,留100μL重悬菌体,将全部菌液涂布在含相应抗生素的LB平板上,37℃倒置培养过夜,菌落PCR并测序鉴定阳性克隆。
载体标注:
Figure BDA0002502353900000082
2、制备高纯度、高浓度质粒
本实验,使用的是Promega的质粒提取试剂盒(Midipreps DNA PurificationSystem,Promega,A7640)。具体步骤为:
(1)向含有相应抗生素的300mL液体LB培养基中加5mL大肠杆菌,200rpm,37℃摇菌12-16h。
(2)将上述菌液置于500mL离心管中,5,000g离心菌液10min,弃上清。
(3)加3mL CRS重悬细胞沉淀,涡旋混匀。
(4)加3mL CLS,缓慢颠倒混匀,时间不宜超过5min。
(5)加3mL中和液(Neutralization Solution),颠倒混匀,至颜色变清澈透明。
(6)14,000g离心15min,如未形成紧实沉淀可再次离心15min。
(7)转移上清液至新的50mL离心管中,避免吸入白色沉淀。
(8)加10mL DNA净化树脂(Purification Resin,用前剧烈摇匀),混匀。
(9)将Resin/DNA混合液倒入过滤柱中,真空泵负压法(0.05MPa)。
(10)加15mL洗柱液(Column Wash Solution,CWS)到过滤柱中,抽真空。
(11)加15mL CWS,重复抽真空一次;溶液全部通过滤柱后延长抽30s。
(12)切断过滤柱,将其转移至1.5mL离心管中,12,000g离心2min,移除残留液体,将过滤柱转移至新的1.5mL离心管中。
(13)加200μL预热至70℃灭菌水,静置2min。
(14)12,000g,离心2min,洗脱质粒DNA;浓度一般在1μg/μL左右。
3、原生质体的制备
首先准备原生质体用的水稻幼苗,品种为日本晴(Nipponbare)。水稻种子首先去壳,去壳的种子用75%乙醇漂洗1min,用5%(v/v)的次氯酸钠处理20min,然后用无菌水洗涤5次以上,放在超净台中吹干后放在盛有1/2MS的培养基的组培瓶中,每瓶可放20粒种子。26℃,12h光照培养10d左右,就可以进行原生质体的制备。
水稻原生质体制备以及PEG介导的转化在已经发表的方法(Bart et al.,2006)基础上进行了部分修改,所使用的试剂见下表。具体的步骤如下:
(1)选取幼苗叶鞘部分,用锋利的吉利剃须刀片切成约1mm的碎片,放在0.6M甘露醇和MES培养液中备用。将全部材料切好后转入20mL酶解液中,用锡箔纸包好置于28℃摇床(脱色摇床,速度10rpm)中,50rpm避光酶解约4个小时,最后2分钟将转速提高至100rpm;
(2)酶解结束后,加入等体积的W5,水平摇动10s,释放原生质体。酶解后的细胞经300目的筛子过滤后,150g离心5分钟收集原生质体;
(3)利用W5溶液漂洗细胞两次,150g离心5分钟收集原生质体;
(4)用适量的MMG溶液重悬原生质体,原生质体浓度约为2×106/mL。
4、原生质体的转化
(1)取上述200μL MMG重悬的原生质体加入无内毒素的高质量质粒DNA(10-20μg),轻弹混匀。所转质粒如下:
Figure BDA0002502353900000101
(2)加入等体积的40%(w/v)PEG溶液,轻弹混匀,28℃避光静置15分钟;
(3)诱导转化结束后缓慢加1.5mL W5溶液,轻弹混匀细胞,150g离心3分钟收集细胞,重复此步骤一次;
(4)加入1.5mL W5溶液重悬细胞,置于28℃培养箱中避光培养12-16小时,若用于提取原生质体基因组DNA,需培养48-60h。
5、基因组打靶情况检测
(1)首先需要提取原生质体DNA。使用CTAB法并进行部分修改,具体的方法如下:原生质体离心后弃上清,加入500μL DNA提取液,振荡混匀,置于65℃水浴锅中孵育1小时;水浴后的样品冷却后加入等体积的氯仿,颠倒混匀后10,000rpm离心10分钟;取400μL上清转移到一个新的1.5mL离心管中,加入1mL 70%(v/v)的乙醇放入-20℃沉淀20分钟;用12,000rpm离心15分钟沉淀DNA,待沉淀晾干后加入50μL超纯水溶解,保存于-20℃备用。
(2)利用上述检测引物,扩增含有靶位点的片段,长度为300-1000bp之间。
Figure BDA0002502353900000102
(3)建立PCR反应,一般反应条件是:
Figure BDA0002502353900000103
Figure BDA0002502353900000111
(4)琼脂糖凝胶电泳检测并送测序进一步验证。
6、检测结果汇总
对获得Sanger测序结果进行分析,得到如图5-6所示结果。
如图5所示,在水稻PDS位点,可以看出,Cas9切割后的修复类型在三个样品中,均没有出现+2bp及以上的结果,主要以+1bp和短片段的删除为主。而在Cas9+Tdt处理下,虽然+1bp也是主要的修复结果,但是却出现了+2,+3甚至+4bp的修复类型。这表明Tdt在水稻细胞中Cas9引起的DNA断口处能够随机添加碱基。在水稻HPPD位点同样如此,如图6所示。
同时经过很多测试发现,采用其他不同来源的末端脱氧核苷酸转移酶Tdt(如图4所示)与Cas9相结合同样能创制大量的替换型突变,因此具有良好的产业价值。
说明书中提及的所有出版物和专利申请均通过引用并入本文,如同每篇出版物或专利申请被单独、特别地通过引用并入本文一样。
尽管为清楚理解起见,前述发明已通过举例说明和实施例的方式较为详细地进行了描述,但显而易见的是,可以在所附权利要求书的范围内实施某些改变和修改,这样的改变和修改均在本发明的范围之内。
序列表
<110> 青岛清原化合物有限公司
<120> 一种在生物基因组上创制基因突变的系统及方法
<130> 20200521
<150> 2019104303843
<151> 2019-05-22
<160> 3
<170> SIPOSequenceListing 1.0
<210> 1
<211> 2096
<212> PRT
<213> Cas9(1-1368AA-NLS1372-1378AA-T2A1384-1401AA-MS21402-1531AA-linker1532-1549AA-NLS1550-1556AA-linker1557-1586AA-Tdt1587-2096AA氨基酸序列-NLS-T2A-MS2-linker-NLS-linker-Tdt)
<400> 1
Met Asp Lys Lys Tyr Ser Ile Gly Leu Asp Ile Gly Thr Asn Ser Val
1 5 10 15
Gly Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe
20 25 30
Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile
35 40 45
Gly Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu
50 55 60
Lys Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys
65 70 75 80
Tyr Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser
85 90 95
Phe Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys
100 105 110
His Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr
115 120 125
His Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp
130 135 140
Ser Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His
145 150 155 160
Met Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro
165 170 175
Asp Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr
180 185 190
Asn Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala
195 200 205
Lys Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn
210 215 220
Leu Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn
225 230 235 240
Leu Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe
245 250 255
Asp Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp
260 265 270
Asp Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp
275 280 285
Leu Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp
290 295 300
Ile Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser
305 310 315 320
Met Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys
325 330 335
Ala Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe
340 345 350
Asp Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser
355 360 365
Gln Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp
370 375 380
Gly Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg
385 390 395 400
Lys Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu
405 410 415
Gly Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe
420 425 430
Leu Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile
435 440 445
Pro Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp
450 455 460
Met Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu
465 470 475 480
Val Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met Thr
485 490 495
Asn Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser
500 505 510
Leu Leu Tyr Glu Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val Lys
515 520 525
Tyr Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu Gln
530 535 540
Lys Lys Ala Ile Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr
545 550 555 560
Val Lys Gln Leu Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe Asp
565 570 575
Ser Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly
580 585 590
Thr Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp
595 600 605
Asn Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr
610 615 620
Leu Phe Glu Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala
625 630 635 640
His Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr
645 650 655
Thr Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp
660 665 670
Lys Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe
675 680 685
Ala Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe
690 695 700
Lys Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu
705 710 715 720
His Glu His Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly
725 730 735
Ile Leu Gln Thr Val Lys Val Val Asp Glu Leu Val Lys Val Met Gly
740 745 750
Arg His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln
755 760 765
Thr Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile
770 775 780
Glu Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro
785 790 795 800
Val Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu
805 810 815
Gln Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg
820 825 830
Leu Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser Phe Leu Lys
835 840 845
Asp Asp Ser Ile Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg
850 855 860
Gly Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val Lys Lys Met Lys
865 870 875 880
Asn Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys
885 890 895
Phe Asp Asn Leu Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp
900 905 910
Lys Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile Thr
915 920 925
Lys His Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp
930 935 940
Glu Asn Asp Lys Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys Ser
945 950 955 960
Lys Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg
965 970 975
Glu Ile Asn Asn Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val
980 985 990
Val Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu Phe
995 1000 1005
Val Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala Lys
1010 1015 1020
Ser Glu Gln Glu Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe Tyr Ser
1025 1030 1035 1040
Asn Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu Ala Asn Gly Glu
1045 1050 1055
Ile Arg Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu Thr Gly Glu Ile
1060 1065 1070
Val Trp Asp Lys Gly Arg Asp Phe Ala Thr Val Arg Lys Val Leu Ser
1075 1080 1085
Met Pro Gln Val Asn Ile Val Lys Lys Thr Glu Val Gln Thr Gly Gly
1090 1095 1100
Phe Ser Lys Glu Ser Ile Leu Pro Lys Arg Asn Ser Asp Lys Leu Ile
1105 1110 1115 1120
Ala Arg Lys Lys Asp Trp Asp Pro Lys Lys Tyr Gly Gly Phe Asp Ser
1125 1130 1135
Pro Thr Val Ala Tyr Ser Val Leu Val Val Ala Lys Val Glu Lys Gly
1140 1145 1150
Lys Ser Lys Lys Leu Lys Ser Val Lys Glu Leu Leu Gly Ile Thr Ile
1155 1160 1165
Met Glu Arg Ser Ser Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala
1170 1175 1180
Lys Gly Tyr Lys Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro Lys
1185 1190 1195 1200
Tyr Ser Leu Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser
1205 1210 1215
Ala Gly Glu Leu Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys Tyr
1220 1225 1230
Val Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly Ser
1235 1240 1245
Pro Glu Asp Asn Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys His
1250 1255 1260
Tyr Leu Asp Glu Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys Arg Val
1265 1270 1275 1280
Ile Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala Tyr Asn Lys
1285 1290 1295
His Arg Asp Lys Pro Ile Arg Glu Gln Ala Glu Asn Ile Ile His Leu
1300 1305 1310
Phe Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala Phe Lys Tyr Phe Asp
1315 1320 1325
Thr Thr Ile Asp Arg Lys Arg Tyr Thr Ser Thr Lys Glu Val Leu Asp
1330 1335 1340
Ala Thr Leu Ile His Gln Ser Ile Thr Gly Leu Tyr Glu Thr Arg Ile
1345 1350 1355 1360
Asp Leu Ser Gln Leu Gly Gly Asp Glu Gly Ala Pro Lys Lys Lys Arg
1365 1370 1375
Lys Val Gly Ser Ser Gly Ser Glu Gly Arg Gly Ser Leu Leu Thr Cys
1380 1385 1390
Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala Ser Asn Phe Thr Gln
1395 1400 1405
Phe Val Leu Val Asp Asn Gly Gly Thr Gly Asp Val Thr Val Ala Pro
1410 1415 1420
Ser Asn Phe Ala Asn Gly Val Ala Glu Trp Ile Ser Ser Asn Ser Arg
1425 1430 1435 1440
Ser Gln Ala Tyr Lys Val Thr Cys Ser Val Arg Gln Ser Ser Ala Gln
1445 1450 1455
Lys Arg Lys Tyr Thr Ile Lys Val Glu Val Pro Lys Val Ala Thr Gln
1460 1465 1470
Thr Val Gly Gly Val Glu Leu Pro Val Ala Ala Trp Arg Ser Tyr Leu
1475 1480 1485
Asn Met Glu Leu Thr Ile Pro Ile Phe Ala Thr Asn Ser Asp Cys Glu
1490 1495 1500
Leu Ile Val Lys Ala Met Gln Gly Leu Leu Lys Asp Gly Asn Pro Ile
1505 1510 1515 1520
Pro Ser Ala Ile Ala Ala Asn Ser Gly Ile Tyr Ser Ala Gly Gly Gly
1525 1530 1535
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Pro Lys Lys
1540 1545 1550
Lys Arg Lys Val Ala Ala Ala Ser Gly Gly Ser Ser Gly Gly Ser Ser
1555 1560 1565
Gly Ser Thr Gly Thr Ser Ser Ala Thr Ser Ser Gly Gly Ser Ser Gly
1570 1575 1580
Gly Ser Met Asp Pro Leu Gln Ala Val His Leu Gly Pro Arg Lys Lys
1585 1590 1595 1600
Arg Pro Arg Gln Leu Gly Thr Pro Val Ala Ser Thr Pro Tyr Asp Ile
1605 1610 1615
Arg Phe Arg Asp Leu Val Leu Phe Ile Leu Glu Lys Lys Met Gly Thr
1620 1625 1630
Thr Arg Arg Ala Phe Leu Met Glu Leu Ala Arg Arg Lys Gly Phe Arg
1635 1640 1645
Val Glu Asn Glu Leu Ser Asp Ser Val Thr His Ile Val Ala Glu Asn
1650 1655 1660
Asn Ser Gly Ser Asp Val Leu Glu Trp Leu Gln Leu Gln Asn Ile Lys
1665 1670 1675 1680
Ala Ser Ser Glu Leu Glu Leu Leu Asp Ile Ser Trp Leu Ile Glu Cys
1685 1690 1695
Met Gly Ala Gly Lys Pro Val Glu Met Met Gly Arg His Gln Leu Val
1700 1705 1710
Val Asn Arg Asn Ser Ser Pro Ser Pro Val Pro Gly Ser Gln Asn Val
1715 1720 1725
Pro Ala Pro Ala Val Lys Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg
1730 1735 1740
Thr Thr Leu Asn Asn Tyr Asn Gln Leu Phe Thr Asp Ala Leu Asp Ile
1745 1750 1755 1760
Leu Ala Glu Asn Asp Glu Leu Arg Glu Asn Glu Gly Ser Cys Leu Ala
1765 1770 1775
Phe Met Arg Ala Ser Ser Val Leu Lys Ser Leu Pro Phe Pro Ile Thr
1780 1785 1790
Ser Met Lys Asp Thr Glu Gly Ile Pro Cys Leu Gly Asp Lys Val Lys
1795 1800 1805
Ser Ile Ile Glu Gly Ile Ile Glu Asp Gly Glu Ser Ser Glu Ala Lys
1810 1815 1820
Ala Val Leu Asn Asp Glu Arg Tyr Lys Ser Phe Lys Leu Phe Thr Ser
1825 1830 1835 1840
Val Phe Gly Val Gly Leu Lys Thr Ala Glu Lys Trp Phe Arg Met Gly
1845 1850 1855
Phe Arg Thr Leu Ser Lys Ile Gln Ser Asp Lys Ser Leu Arg Phe Thr
1860 1865 1870
Gln Met Gln Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys
1875 1880 1885
Val Asn Arg Pro Glu Ala Glu Ala Val Ser Met Leu Val Lys Glu Ala
1890 1895 1900
Val Val Thr Phe Leu Pro Asp Ala Leu Val Thr Met Thr Gly Gly Phe
1905 1910 1915 1920
Arg Arg Gly Lys Met Thr Gly His Asp Val Asp Phe Leu Ile Thr Ser
1925 1930 1935
Pro Glu Ala Thr Glu Asp Glu Glu Gln Gln Leu Leu His Lys Val Thr
1940 1945 1950
Asp Phe Trp Lys Gln Gln Gly Leu Leu Leu Tyr Cys Asp Ile Leu Glu
1955 1960 1965
Ser Thr Phe Glu Lys Phe Lys Gln Pro Ser Arg Lys Val Asp Ala Leu
1970 1975 1980
Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu Asp His Gly Arg
1985 1990 1995 2000
Val His Ser Glu Lys Ser Gly Gln Gln Glu Gly Lys Gly Trp Lys Ala
2005 2010 2015
Ile Arg Val Asp Leu Val Met Cys Pro Tyr Asp Arg Arg Ala Phe Ala
2020 2025 2030
Leu Leu Gly Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg
2035 2040 2045
Tyr Ala Thr His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr
2050 2055 2060
Asp Arg Thr Lys Arg Val Phe Leu Glu Ala Glu Ser Glu Glu Glu Ile
2065 2070 2075 2080
Phe Ala His Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala
2085 2090 2095
<210> 2
<211> 2064
<212> DNA
<213> ILV2基因DNA序列(ILV2)
<400> 2
atgatcagac aatctacgct aaaaaacttc gctattaagc gttgctttca acatatagca 60
taccgcaaca cacctgccat gagatcagta gctctcgcgc agcgctttta tagttcgtct 120
tcccgttatt acagtgcgtc tccattacca gcctctaaaa ggccagagcc tgctccaagt 180
ttcaatgttg atccattaga acagcccgct gaaccttcaa aattggctaa gaaactacgc 240
gctgagcctg acatggatac ctctttcgtc ggtttaactg gtggtcaaat atttaacgaa 300
atgatgtcca gacaaaacgt tgatactgta tttggttatc caggtggtgc tatcctacct 360
gtttacgatg ccattcataa cagtgataaa ttcaacttcg ttcttccaaa acacgaacaa 420
ggtgccggtc acatggcaga aggctacgcc agagcttctg gtaaaccagg tgttgtcttg 480
gttacttctg ggccaggtgc caccaatgtc gttactccaa tggcagatgc ctttgcagac 540
gggattccaa tggttgtctt tacagggcaa gtcccaacta gtgctatcgg tactgatgct 600
ttccaagagg ctgacgtcgt tggtatttct agatcttgta cgaaatggaa tgtcatggtc 660
aagtccgtgg aagaattgcc attgcgtatt aacgaggctt ttgaaattgc cacgagcggt 720
agaccgggac cagtcttggt cgatttacca aaggatgtta cagcagctat cttaagaaat 780
ccaattccaa caaaaacaac tcttccatca aacgcactaa accaattaac cagtcgcgca 840
caagatgaat ttgtcatgca aagtatcaat aaagcagcag atttgatcaa cttggcaaag 900
aaacctgtct tatacgtcgg tgctggtatt ttaaaccatg cagatggtcc aagattacta 960
aaagaattaa gtgaccgtgc tcaaatacct gtcaccacta ctttacaagg tttaggttca 1020
ttcgaccaag aagatccaaa atcattggat atgcttggta tgcacggttg tgctactgcc 1080
aacctggcag tgcaaaatgc cgacttgata attgcagttg gtgctagatt cgacgaccgt 1140
gtcactggta atatttctaa attcgctcca gaagctcgtc gtgcagctgc cgagggtaga 1200
ggtggtatta ttcatttcga ggttagtcca aaaaacataa acaaggttgt tcaaactcaa 1260
atagcagtgg aaggtgatgc tacgaccaat ctgggcaaaa tgatgtcaaa gattttccca 1320
gttaaggaga ggtctgaatg gtttgctcaa ataaataaat ggaagaagga atacccatac 1380
gcttatatgg aggagactcc aggatctaaa attaaaccac agacggttat aaagaaacta 1440
tccaaggttg ccaacgacac aggaagacat gtcattgtta caacgggtgt ggggcaacat 1500
caaatgtggg ctgctcaaca ctggacatgg agaaatccac atactttcat cacatcaggt 1560
ggtttaggta cgatgggtta cggtctccct gccgccatcg gtgctcaagt tgcaaagcca 1620
gaatctttgg ttattgacat tgatggtgac gcatccttta acatgactct aacggaattg 1680
agttctgccg ttcaagctgg tactccagtg aagattttga ttttgaacaa tgaagagcaa 1740
ggtatggtta ctcaatggca atccctgttc tacgaacatc gttattccca cacacatcaa 1800
ttgaaccctg atttcataaa actagcggag gctatgggtt taaaaggttt aagagtcaag 1860
aagcaagagg aattggacgc taagttgaaa gaattcgttt ctaccaaggg cccagttttg 1920
cttgaagtgg aagttgataa aaaagttcct gttttgccaa tggtggcagg tggtagcggt 1980
ctagacgagt tcataaattt tgacccagaa gttgaaagac aacagactga attacgtcat 2040
aagcgtacag gcggtaagca ctga 2064
<210> 3
<211> 687
<212> PRT
<213> ILV2基因氨基酸序列(ILV2)
<400> 3
Met Ile Arg Gln Ser Thr Leu Lys Asn Phe Ala Ile Lys Arg Cys Phe
1 5 10 15
Gln His Ile Ala Tyr Arg Asn Thr Pro Ala Met Arg Ser Val Ala Leu
20 25 30
Ala Gln Arg Phe Tyr Ser Ser Ser Ser Arg Tyr Tyr Ser Ala Ser Pro
35 40 45
Leu Pro Ala Ser Lys Arg Pro Glu Pro Ala Pro Ser Phe Asn Val Asp
50 55 60
Pro Leu Glu Gln Pro Ala Glu Pro Ser Lys Leu Ala Lys Lys Leu Arg
65 70 75 80
Ala Glu Pro Asp Met Asp Thr Ser Phe Val Gly Leu Thr Gly Gly Gln
85 90 95
Ile Phe Asn Glu Met Met Ser Arg Gln Asn Val Asp Thr Val Phe Gly
100 105 110
Tyr Pro Gly Gly Ala Ile Leu Pro Val Tyr Asp Ala Ile His Asn Ser
115 120 125
Asp Lys Phe Asn Phe Val Leu Pro Lys His Glu Gln Gly Ala Gly His
130 135 140
Met Ala Glu Gly Tyr Ala Arg Ala Ser Gly Lys Pro Gly Val Val Leu
145 150 155 160
Val Thr Ser Gly Pro Gly Ala Thr Asn Val Val Thr Pro Met Ala Asp
165 170 175
Ala Phe Ala Asp Gly Ile Pro Met Val Val Phe Thr Gly Gln Val Pro
180 185 190
Thr Ser Ala Ile Gly Thr Asp Ala Phe Gln Glu Ala Asp Val Val Gly
195 200 205
Ile Ser Arg Ser Cys Thr Lys Trp Asn Val Met Val Lys Ser Val Glu
210 215 220
Glu Leu Pro Leu Arg Ile Asn Glu Ala Phe Glu Ile Ala Thr Ser Gly
225 230 235 240
Arg Pro Gly Pro Val Leu Val Asp Leu Pro Lys Asp Val Thr Ala Ala
245 250 255
Ile Leu Arg Asn Pro Ile Pro Thr Lys Thr Thr Leu Pro Ser Asn Ala
260 265 270
Leu Asn Gln Leu Thr Ser Arg Ala Gln Asp Glu Phe Val Met Gln Ser
275 280 285
Ile Asn Lys Ala Ala Asp Leu Ile Asn Leu Ala Lys Lys Pro Val Leu
290 295 300
Tyr Val Gly Ala Gly Ile Leu Asn His Ala Asp Gly Pro Arg Leu Leu
305 310 315 320
Lys Glu Leu Ser Asp Arg Ala Gln Ile Pro Val Thr Thr Thr Leu Gln
325 330 335
Gly Leu Gly Ser Phe Asp Gln Glu Asp Pro Lys Ser Leu Asp Met Leu
340 345 350
Gly Met His Gly Cys Ala Thr Ala Asn Leu Ala Val Gln Asn Ala Asp
355 360 365
Leu Ile Ile Ala Val Gly Ala Arg Phe Asp Asp Arg Val Thr Gly Asn
370 375 380
Ile Ser Lys Phe Ala Pro Glu Ala Arg Arg Ala Ala Ala Glu Gly Arg
385 390 395 400
Gly Gly Ile Ile His Phe Glu Val Ser Pro Lys Asn Ile Asn Lys Val
405 410 415
Val Gln Thr Gln Ile Ala Val Glu Gly Asp Ala Thr Thr Asn Leu Gly
420 425 430
Lys Met Met Ser Lys Ile Phe Pro Val Lys Glu Arg Ser Glu Trp Phe
435 440 445
Ala Gln Ile Asn Lys Trp Lys Lys Glu Tyr Pro Tyr Ala Tyr Met Glu
450 455 460
Glu Thr Pro Gly Ser Lys Ile Lys Pro Gln Thr Val Ile Lys Lys Leu
465 470 475 480
Ser Lys Val Ala Asn Asp Thr Gly Arg His Val Ile Val Thr Thr Gly
485 490 495
Val Gly Gln His Gln Met Trp Ala Ala Gln His Trp Thr Trp Arg Asn
500 505 510
Pro His Thr Phe Ile Thr Ser Gly Gly Leu Gly Thr Met Gly Tyr Gly
515 520 525
Leu Pro Ala Ala Ile Gly Ala Gln Val Ala Lys Pro Glu Ser Leu Val
530 535 540
Ile Asp Ile Asp Gly Asp Ala Ser Phe Asn Met Thr Leu Thr Glu Leu
545 550 555 560
Ser Ser Ala Val Gln Ala Gly Thr Pro Val Lys Ile Leu Ile Leu Asn
565 570 575
Asn Glu Glu Gln Gly Met Val Thr Gln Trp Gln Ser Leu Phe Tyr Glu
580 585 590
His Arg Tyr Ser His Thr His Gln Leu Asn Pro Asp Phe Ile Lys Leu
595 600 605
Ala Glu Ala Met Gly Leu Lys Gly Leu Arg Val Lys Lys Gln Glu Glu
610 615 620
Leu Asp Ala Lys Leu Lys Glu Phe Val Ser Thr Lys Gly Pro Val Leu
625 630 635 640
Leu Glu Val Glu Val Asp Lys Lys Val Pro Val Leu Pro Met Val Ala
645 650 655
Gly Gly Ser Gly Leu Asp Glu Phe Ile Asn Phe Asp Pro Glu Val Glu
660 665 670
Arg Gln Gln Thr Glu Leu Arg His Lys Arg Thr Gly Gly Lys His
675 680 685

Claims (10)

1.一种在生物基因组上创制基因突变的系统,其特征在于,包括两个技术组分,一是能够在基因组的特定位置上产生断裂的编辑元件,另一个是能够在DNA断口处无模板添加碱基的元件。
2.根据权利要求1所述的系统,其特征在于,所述的“能够在基因组的特定位置上产生断裂的编辑元件”是蛋白介导靶向的编辑元件或RNA介导靶向的编辑元件;所述蛋白介导靶向的编辑元件优选ZFN或TALEN,所述RNA介导靶向的编辑元件优选CRISPR/Cas系统。
3.根据权利要求1或2所述的系统,其特征在于,所述的“能够在DNA断口处无模板添加碱基的元件”是末端脱氧核苷酸转移酶Tdt;优选地,所述末端脱氧核苷酸转移酶Tdt来自于脊椎动物。
4.根据权利要求3所述的系统,其特征在于,所述末端脱氧核苷酸转移酶Tdt具有在DNA断口处富集的靶向性。
5.根据权利要求4所述的系统,其特征在于,所述的“Tdt具有在DNA断口处富集的靶向性”是通过将Tdt融合到Cas基因上获得,或通过与靶向蛋白融合来结合引导RNA上的特定序列实现;优选地,通过与MS2或PP7靶向蛋白融合来结合引导RNA上的特定序列实现,例如MS2和sgRNA2.0的配合使用。
6.根据权利要求1-5任意一项所述的系统,其特征在于,所述的生物为真核生物、原核生物或具有DNA的非细胞生物。
7.根据权利要求1-6任意一项所述的系统,其特征在于,所述的基因突变类型包括插入型和替换型基因突变。
8.根据权利要求7所述的系统,其特征在于,所述的插入型和替换型基因突变是指在基因的编码区产生功能缺失或功能获得型突变,或者在基因的调控区产生功能缺失或功能获得型突变。
9.一种应用权利要求1-8任意一项所述系统在生物基因组上创制基因突变的方法。
10.根据权利要求1-8任意一项所述系统或权利要求9所述方法,其特征在于,所述系统在酵母基因组的ILV2基因上创制了的功能获得型基因突变包括K251F、M354L、L589F、F590S、F590V和F590L中的一个或多个突变,优选地,包括K251F、M354L、F590S、F590V和L589F/F590L。
CN202010436149.XA 2019-05-22 2020-05-21 一种在生物基因组上创制基因突变的系统及方法 Pending CN111979238A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2019104303843 2019-05-22
CN201910430384 2019-05-22

Publications (1)

Publication Number Publication Date
CN111979238A true CN111979238A (zh) 2020-11-24

Family

ID=73442208

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010436149.XA Pending CN111979238A (zh) 2019-05-22 2020-05-21 一种在生物基因组上创制基因突变的系统及方法

Country Status (2)

Country Link
CN (1) CN111979238A (zh)
WO (1) WO2020233670A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921436A (zh) * 2022-03-03 2022-08-19 翌圣生物科技(上海)股份有限公司 末端脱氧核苷酸转移酶突变体、其编码基因、重组表达质粒和基因工程菌

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017165826A1 (en) * 2016-03-25 2017-09-28 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
US20170298450A1 (en) * 2014-09-10 2017-10-19 The Regents Of The University Of California Reconstruction of ancestral cells by enzymatic recording
US20190055543A1 (en) * 2016-03-01 2019-02-21 University Of Florida Research Foundation, Incorporated Molecular Cell Diary System

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140349400A1 (en) * 2013-03-15 2014-11-27 Massachusetts Institute Of Technology Programmable Modification of DNA
CN109312331B (zh) * 2016-04-01 2022-08-02 贝勒医学院 全转录组扩增的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170298450A1 (en) * 2014-09-10 2017-10-19 The Regents Of The University Of California Reconstruction of ancestral cells by enzymatic recording
US20190055543A1 (en) * 2016-03-01 2019-02-21 University Of Florida Research Foundation, Incorporated Molecular Cell Diary System
WO2017165826A1 (en) * 2016-03-25 2017-09-28 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BARBARA J. MAZUR ET AL.: "THE DEVELOPMENT OF HERBICIDE RESISTANT CROPS", 《ANNU. REV. PLANT PHYSIOL. PLANT MOL. BIOL.》, 31 December 1989 (1989-12-31) *
MOSTAFA ABDELRAHMAN ET AL.: "Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses", 《PLANT PHYSIOLOGY AND BIOCHEMISTRY》 *
MOSTAFA ABDELRAHMAN ET AL.: "Genome editing using CRISPR/Cas9–targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses", 《PLANT PHYSIOLOGY AND BIOCHEMISTRY》, 31 December 2018 (2018-12-31), pages 31 - 36 *
SIYUAN WANG ET AL.: "An RNA-aptamer-based two-color CRISPR labeling system", 《SCIENTIFIC REPORTS》 *
SIYUAN WANG ET AL.: "An RNA-aptamer-based two-color CRISPR labeling system", 《SCIENTIFIC REPORTS》, 27 May 2016 (2016-05-27), pages 1 - 2 *
陈易雨等: "CRISPR/Cas9单碱基编辑技术创制抗除草剂拟南芥种质", 《中国科学: 生命科学》 *
陈易雨等: "CRISPR/Cas9单碱基编辑技术创制抗除草剂拟南芥种质", 《中国科学: 生命科学》, 31 December 2017 (2017-12-31), pages 1196 - 1199 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921436A (zh) * 2022-03-03 2022-08-19 翌圣生物科技(上海)股份有限公司 末端脱氧核苷酸转移酶突变体、其编码基因、重组表达质粒和基因工程菌
CN114921436B (zh) * 2022-03-03 2023-08-04 翌圣生物科技(上海)股份有限公司 末端脱氧核苷酸转移酶突变体、其编码基因、重组表达质粒和基因工程菌

Also Published As

Publication number Publication date
WO2020233670A1 (zh) 2020-11-26

Similar Documents

Publication Publication Date Title
US11447785B2 (en) Method for base editing in plants
JP2023018066A (ja) 植物ゲノムの部位特異的改変の実施に非遺伝物質を適用する方法
CN110892074A (zh) 用于增加香蕉的保质期的组成物及方法
CN109371040A (zh) 水稻OsARF6基因在调控水稻种子粒型中的应用
CN111118045B (zh) 基于脊尾白虾胞苷脱氨酶的单碱基基因编辑系统及其构建和应用
CN113265422A (zh) 靶向敲除水稻粒型调控基因slg7的方法、水稻粒型调控基因slg7突变体及其应用
CN107338265B (zh) 一种基因编辑系统及应用其对植物基因组进行编辑的方法
CN111979238A (zh) 一种在生物基因组上创制基因突变的系统及方法
EP3752622A1 (en) Methods and compositions for increasing harvestable yield via editing ga20 oxidase genes to generate short stature plants
US9732352B2 (en) Mutations in Solanaceae plants that modulate shoot architecture and enhance yield-related phenotypes
KR20190122595A (ko) 식물의 염기 교정용 유전자 구조체, 이를 포함하는 벡터 및 이를 이용한 염기 교정 방법
CN102702331B (zh) 一对转录激活子样效应因子核酸酶及其编码基因与应用
CN112852865B (zh) OaAn-1蛋白、编码基因及其相关生物材料的应用
CN114686456A (zh) 基于双分子脱氨酶互补的碱基编辑系统及其应用
KR20180128864A (ko) 매칭된 5&#39; 뉴클레오타이드를 포함하는 가이드 rna를 포함하는 유전자 교정용 조성물 및 이를 이용한 유전자 교정 방법
CN115216488A (zh) 创制水稻大长粒型新种质或大长粒型矮杆新种质的方法及其应用
JP2023526035A (ja) 標的突然変異生成によって変異体植物を得るための方法
Mishra et al. Chapter-9 Genome Editing in Plants using CRISPR for Crop Improvement
CN116445463B (zh) 新型植物碱基编辑器pAYBEs
CN111850029B (zh) 一种获得非转基因多年生黑麦草突变体的方法
CN114644692B (zh) 一种定点突变创制旱敏感玉米种质的方法及其应用
US20230227835A1 (en) Method for base editing in plants
US20200377909A1 (en) Directed genome engineering using enhanced targeted editing technologies
CN118127073A (zh) 水稻烷基嘌呤糖基化酶及其突变体在植物A-to-K单碱基编辑中的应用
CN112760339A (zh) 一种快速驯化四倍体野生稻落粒性的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination