CN111850029B - 一种获得非转基因多年生黑麦草突变体的方法 - Google Patents

一种获得非转基因多年生黑麦草突变体的方法 Download PDF

Info

Publication number
CN111850029B
CN111850029B CN201910275840.1A CN201910275840A CN111850029B CN 111850029 B CN111850029 B CN 111850029B CN 201910275840 A CN201910275840 A CN 201910275840A CN 111850029 B CN111850029 B CN 111850029B
Authority
CN
China
Prior art keywords
ryegrass
leu
plant
lys
glu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910275840.1A
Other languages
English (en)
Other versions
CN111850029A (zh
Inventor
冉毅东
高崑
张康
张韫玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Qiheshengke Biotechnology Co ltd
Original Assignee
Tianjin Genovo Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Genovo Biotechnology Co ltd filed Critical Tianjin Genovo Biotechnology Co ltd
Priority to CN201910275840.1A priority Critical patent/CN111850029B/zh
Publication of CN111850029A publication Critical patent/CN111850029A/zh
Application granted granted Critical
Publication of CN111850029B publication Critical patent/CN111850029B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/10Vectors comprising a non-peptidic targeting moiety

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Botany (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种获得非转基因多年生黑麦草突变体的方法。本发明提供了一种培育目标非转基因黑麦草突变体的方法,包括如下步骤:1)通过CRISPR/Cas9系统抑制多年生黑麦草中黑麦草减数分裂蛋白编码基因LpDMC1的表达,得到转化后黑麦草植株;2)将所述转化后黑麦草植株进行PCR/RE实验,选取酶切过程中未切开条带且测序为有效突变的单株为突变后黑麦草植株;3)选取所述突变后黑麦草植株中不含有Cas9基因的单株,为目标非转基因黑麦草突变体;本发明CRISPR/Cas核酸酶技术得到DMC1的敲除突变体,同源染色体之间不能正常配对组装形成二价体,这样就能够获得不育的植株的单价体,子代杂交就能形成单倍体,能够快速的缩短育种年限,在作物育种改良上起到显著的作用。

Description

一种获得非转基因多年生黑麦草突变体的方法
技术领域
本发明涉及生物工程领域,尤其涉及获得非转基因多年生黑麦草突变体的方法。
背景技术
多年生黑麦草(Loliumperenne L.)是世界上最重要的牧草和草坪草,对黑麦草基因组的改造有利于黑麦草基因组的研究,对提高其生物、非生物胁迫和畜牧业的发展有重要意义。目前国内国际对黑麦草突变体的创制主要以EMS诱变为主,但这些方法费时费力,盲目性较大。当前的植物基因组工程(Genome engineering)技术中,主要通过锌指核酸酶(ZFNs)和转录激活子样效应因子核酸酶(TALENs)来做基因改造,但是这些技术操作过程复杂,成本高,技术难度较大。因此,亟待开发更加高效、廉价并且简单的黑麦草基因改造新技术。
DMC1基因是减数分裂过程中特异表达的基因,仅在减数分裂前期I表达,是减数分裂过程中重组和联会复合体形成的关键基因。
发明内容
为了培育目标非转基因黑麦草突变体,本发明提供了如下技术方案:
本发明提供了一种培育目标非转基因黑麦草突变体的方法,包括如下步骤:
1)通过CRISPR/Cas9系统抑制多年生黑麦草中黑麦草减数分裂蛋白编码基因LpDMC1的表达,得到转化后黑麦草植株;
2)将所述转化后黑麦草植株进行聚合酶链反应-限制性内切酶分析(PCR/RE)实验,选取酶切过程中未切开条带且测序为有效突变的单株为突变后黑麦草植株;
有效突变为测序后缺失或者添加非3的倍数个碱基(即发生移码突变);
3)选取所述突变后黑麦草植株中不含有Cas9基因的单株,为目标非转基因黑麦草突变体;
所述黑麦草减数分裂蛋白为如下(a1)或(a2)或(a3):
(a1)SEQ ID NO:4所示;
(a2)将(a1)经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;
(a3)与(a1)具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性且具有相同功能的蛋白质;
所述CRISPR/Cas9系统包括Cas9蛋白和特异sgRNA;
所述特异sgRNA的靶序列为如下(b1)或(b2):
(b1)SEQ ID NO:1所示;
(b2)与(b1)具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性的核酸分子。
上述方法中,所述特异sgRNA为如下(c1)或(c2):
(c1)SEQ ID NO:1编码的RNA;
(c2)与(c1)具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性的核酸分子。
上述方法中,所述通过CRISPR/Cas9系统抑制黑麦草中黑麦草减数分裂蛋白编码基因LpDMC1的表达为向目的植物中导入所述Cas9蛋白的编码基因和所述特异sgRNA的编码DNA分子,得到转化后黑麦草植株。
上述方法中,所述向目的植物中导入所述Cas9蛋白的编码基因和所述特异sgRNA的编码DNA分子是向所述目的植物中导入表达Cas9蛋白的基因的质粒和表达特异sgRNA的质粒。
所述表达Cas9蛋白的基因的质粒为pJIT163-2NLS-rCas9质粒;
所述表达特异sgRNA的质粒为将含有sgRNA编码基因的质粒,实施例中为pTaU6-gRNA。
上述方法中,所述PCR/RE实验的PCR扩增引物对由引物1和引物2组成;
所述引物1如下(d1)或(d2):
(d1)SEQ ID NO:2所示;
(d2)与(d1)具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性的核酸分子;
所述引物2如下(e1)或(e2):
(e1)SEQ ID NO:3所示;
(e2)与(e1)具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性的核酸分子。
上述方法中,所述选取所述突变后黑麦草植株中不含有Cas9基因的单株为用Cas9基因扩增引物进行PCR扩增,选取未得到目的片段的单株;
所述Cas9基因扩增引物由引物3和引物4组成;
所述引物3如下(f1)或(f2):
(f1)SEQ ID NO:8所示;
(f2)与(f1)具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性的核酸分子;
所述引物4如下(g1)或(g2):
(g1)SEQ ID NO:9所示;
(g2)与(g1)具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性的核酸分子。
本发明还提供了一种sgRNA或表达其的质粒,所述sgRNA的靶序列为如下(b1)或(b2):
(b1)SEQ ID NO:1所示;
(b2)与(b1)具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性的核酸分子;
本发明还提供了一种蛋白,为如下(a1)或(a2)或(a3):
(a1)SEQ ID NO:4所示;
(a2)将(a1)经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;
(a3)与(a1)具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性且具有相同功能的蛋白质。
上述特异sgRNA为如下(c1)或(c2):
(c1)SEQ ID NO:1编码RNA;
(c2)与(c1)具有99%以上、95%以上、90%以上、85%以上或者80%以上同一性的核酸分子。
上述sgRNA或上述蛋白在制备黑麦草突变体中的应用也是本发明保护的范围。
上述方法或上述蛋白在黑麦草育种中的应用也是本发明保护的范围。
上述方法或上述蛋白在黑麦草育种中的应用也是本发明保护的范围;
本发明还提供了一种培育黑麦草突变体的方法,为上述方法的步骤1);
本发明还提供了一种培育黑麦草突变体的方法,为上述方法的步骤1)和2)。
CRISPR/Cas核酸酶技术是近年来发展起来的对基因组进行精准定点编辑的技术,具有操作简单、周期短、效率高等优点,利用该技术可以对基因组中的目的基因进行定向敲除、插入或定点突变,从而精确引入目标性状。相较于传统育种及转基因育种技术,CRISPR/Cas核酸酶技术能够明显缩短育种周期,仅需2-3年;针对性强,该方法在其他遗传物质不改变的前提下,只对目标基因进行编辑;更好地突破政策壁垒,该方法能够挑选出不引入任何外源基因的目标突变体,与自然变异无异。得到的DMC1的敲除突变体同源染色体之间不能正常配对组装形成二价体,这样就能够获得不育的植株的单价体,子代杂交就能形成单倍体,能够快速的缩短育种年限,在作物育种改良上起到显著的作用。
附图说明
图1为质粒pTaU6的物理图谱。
图2为质粒pJIT163-2NLS-rCas9的物理图谱。
图3为再生黑麦草的PCR/RE检测结果。
图4为Cas9引物鉴定结果。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、非转基因多年生黑麦草突变体的方法
一、黑麦草LpDMC1基因靶点的选择和sgRNA以及重组质粒的制备
选取黑麦草LpDMC1基因,进行靶点设计,如下表1所示。设计检测该位点引物序列F和R,经过引物退火程序形成有粘性末端的双链DNA。
表1、sgRNA设计的位点序列和酶切位点
Figure GDA0003540864970000041
再将有粘性末端的双链DNA插入到pTaU6质粒(表达载体pTaU6在文献“Wang,Y.etal.Simultaneous editing of three homoeoalleles in hexaploid bread wheatconfers heritable resistance to powdery mildew.Nature Biotechnology.32,947-951(2014).”中公开过。图1)的两个BbsI酶切位点之间,即得含有sgRNA的pTaU6-gRNA质粒,质粒经测序验证阳性质粒。该质粒中含有SEQ ID NO:1所示的核苷酸,且表达SEQ ID NO:1编码的sgRNA。
黑麦草减数分裂基因LpDMC1编码的蛋白的氨基酸序列为SEQ ID NO:4,其基因的基因组核苷酸序列为SEQ ID NO:5;其cDNA的核苷酸序列为SEQ ID NO:6。
二、转化黑麦草Gepetto和3711的胚性愈伤组织
将pJIT163-2NLS-rCas9质粒(Wang,Y.et al.Simultaneous editing of threehomoeoalleles in hexaploid bread wheat confers heritable resistance topowdery mildew.Nature Biotechnology.32,947-951(2014).”中公开过,表达SEQ ID NO:7所示的Cas9蛋白;图2)和上述一构建的pTaU6-gRNA质粒转化至黑麦草Gepetto和3711中(黑麦草所用品种为Gepetto和3711,可从吉诺沃获得;以下也称为野生型黑麦草),得到转化后黑麦草植株;具体方法如下:
1)取黑麦草Gepetto或3711的胚性愈伤组织放置于高渗培养基(MS+4.0mg/L2,4-D+90g/L甘露醇)上,高渗处理4小时。
2)在1.5ml灭菌离心管中依次加入:步骤1)的金粉溶液(40mg/ml,溶剂为水)50μl、质粒pJIT163-2NLS-rCas9溶液(1μg/μl,溶剂为水)5μl、pTaU6-gRNA溶液(1μg/μl,溶剂为水)5μl、CaCl2溶液(2.5M,溶剂为水)50μl、亚精胺溶液(0.1M,溶剂为水)20μl;轻柔地涡旋3min,混匀后于冰上静置15min-1h,3000g离心10s吸除上清液,加入灭菌无水乙醇清洗2次,3000g离心1min吸除上清液后加入200μl无水乙醇,轻柔涡旋2min,混匀后均匀涂布于10个载体膜中央2cm的区域内(即每个载体膜涂布200μg金粉和1μg待转化DNA)。
3)用Bio-Rad PDS-1000/He基因枪进行轰击,轰击压力1100psi,轰击距离6cm,真空度26-28inHg,每皿材料轰击一次。
4)轰击后的愈伤组织放置到25℃光黑暗培养1天,然后接种在诱导培养基(MS+4.0mg/L 2,4-D)上,25℃黑暗培养2-4周,每两周继代一次。
5)将诱导出的愈伤组织继代至分化培养基(MS+0.1mg/L NAA+0.5mg/L 6-BA)上,诱导成苗。
6)将2cm以上的小苗继代至生根培养基(MS+0.2mg/L NAA+0.01mg/L 6-BA)上。14-28天后,获得转化后黑麦草植株。
三、采用PCR/RE实验分析从转化后黑麦草植株里筛选出突变体
提取转化后黑麦草植株的基因组DNA,以该DNA为模板,进行PCR/RE(PolymeraseChain Reaction/Restriction digestion)实验分析。PCR/RE分析方法参考了文献Shan,Q.etal.Rapid and efficient gene modification in rice and Brachypodium usingTALENs.Molecular Plant(2013),其中,PCR扩增所用引物为表1所示F和R。酶切采用的酶为XceI。以野生型黑麦草植株为对照。
因为靶点sgRNA选择在了XceI酶切位点处,故如果跑胶条带为两条,显示PCR扩增条带被切开,暗示植物基因组在该靶点处没有发生变异,植物就不是敲除突变体;如果跑胶条带为一条,显示PCR扩增条带没有被切开,暗示植物基因组植物基因组在该靶点处发生变异,植物为纯合突变体;如果跑胶条带为三条,显示PCR扩增条带一条被切开,一条没被切开,暗示植物基因组在该靶点处一条链发生变异,一条链没有发生变异,植物是杂合突变体。
与野生型相比,对酶切过程中出现未切开条带的单株进行PCR产物测序,测序结果如图3所示,可以看出,其均出现了indel,且为有效突变,与酶切结果一致。
上述结果表明,酶切过程中出现未切开条带的单株且测序后缺失或者添加非3的倍数个碱基(即发生移码突变)的单株为突变后黑麦草植株。
获得的72株转化黑麦草植株中鉴定出56株突变后黑麦草植株,突变效率为78%。
四、采用PCR鉴定从突变体中筛选出目标非转基因黑麦草突变体
提取上述三得到突变后黑麦草植株的基因组DNA作为模板,用Cas9的鉴定引物进行PCR扩增。
Cas9的鉴定引物如下:引物Ⅰ的核苷酸序列是:5′AGAACGGCTTGTTCGGGAAT3′(SEQID NO:8);引物Ⅱ的核苷酸序列是:5′GTGGTAAGTCCCCAGTGACG 3′(SEQ ID NO:9)。
Cas9基因扩增片段大小为1085bp。
扩增产物进行电泳检测,结果如图4所示,可以看出,未扩增出1085bp条带的植株为目标非转基因黑麦草突变体(阴性)。
将获得的56株突变后黑麦草植株进行Cas9的PCR鉴定,发现其中有18株为阴性,为目标非转基因黑麦草突变体。
序列表
<110> 天津吉诺沃生物科技有限公司
<120> 一种获得非转基因多年生黑麦草突变体的方法
<160> 9
<170> SIPOSequenceListing 1.0
<210> 1
<211> 22
<212> DNA
<213> Artificial sequence
<400> 1
agcttccact ccacatgcat gg 22
<210> 2
<211> 22
<212> DNA
<213> Artificial sequence
<400> 2
gtggaacagt tgtaatgctg ac 22
<210> 3
<211> 19
<212> DNA
<213> Artificial sequence
<400> 3
gcagcaaggt tatgcctac 19
<210> 4
<211> 252
<212> PRT
<213> Artificial sequence
<400> 4
Met Thr Gly Ser Asp Leu Leu Ile Lys Arg Lys Ser Val Val Arg Ile
1 5 10 15
Thr Thr Gly Ser Gln Ala Leu Asp Glu Leu Leu Gly Gly Gly Ile Glu
20 25 30
Thr Leu Cys Ile Thr Glu Ala Phe Gly Glu Phe Arg Ser Gly Lys Thr
35 40 45
Gln Leu Ala His Thr Leu Cys Val Ser Thr Gln Leu Pro Leu His Met
50 55 60
His Gly Gly Asn Gly Lys Val Ala Tyr Ile Asp Thr Glu Gly Thr Phe
65 70 75 80
Arg Pro Glu Arg Ile Val Pro Ile Ala Glu Arg Phe Gly Met Asp Ala
85 90 95
Asn Ala Val Leu Asp Asn Ile Ile Tyr Ala Arg Ala Tyr Thr Tyr Glu
100 105 110
His Gln Tyr Asn Leu Leu Leu Gly Leu Ala Ala Lys Met Ala Glu Glu
115 120 125
Pro Phe Arg Leu Leu Ile Val Asp Ser Val Ile Ala Leu Phe Arg Val
130 135 140
Asp Phe Ser Gly Arg Gly Glu Leu Ala Glu Arg Gln Gln Lys Leu Ala
145 150 155 160
Gln Met Leu Ser Arg Leu Thr Lys Ile Ala Glu Glu Phe Asn Val Ala
165 170 175
Val Tyr Ile Thr Asn Gln Val Ile Ala Asp Pro Gly Gly Gly Met Phe
180 185 190
Ile Thr Asp Pro Lys Lys Pro Ala Gly Gly His Val Leu Ala His Ala
195 200 205
Ala Thr Ile Arg Leu Met Leu Arg Lys Gly Lys Gly Glu Gln Arg Val
210 215 220
Cys Lys Ile Phe Asp Ala Pro Asn Leu Pro Glu Gly Glu Ala Val Phe
225 230 235 240
Gln Ile Thr Thr Gly Gly Leu Met Asp Val Lys Asp
245 250
<210> 5
<211> 3535
<212> DNA
<213> Artificial sequence
<400> 5
agcgcgtggt tgtgctgcgt taggttcccc cccccaattt cgtgcgctcc ggggctaaac 60
tagcgcgctg cggtagccta attttgcgct gtttttctga cctcctgaat ttgtttctct 120
gcatcggcta gttggcagta gtaatcggtg gatggcgccg ttttttcaca tcgggttcgt 180
cagaatgtag ccccatttcg ggctactatg cgtttaatcc gacttactgg tcactgatct 240
gtggaaccct ttcgaatttc gtaactatga ctagttcaat cgcgtgtgtt cttcgtggat 300
atttgaacta attatggatg tgttttcgtg cacttcgagc tggcgtatga tttatgcctg 360
tgttcctcat ctgttccaca attactgatg tcttgtctac cgcgagtttt agtaactttc 420
agcgctggtt taggtgtaat ccgtgcctct ccttcgcttc cgtgatccag ttggcccttc 480
gtgcactttg ttcactgcca tgagttttga atcctgagag accttccttg taaggctgca 540
actaatcgct cgtccaaaca gtgatcacgc agggaataaa cgcaggagac gtgaagaagc 600
tgcaggatgc ggggatctac acttgcaatg gcctgatgat gcataccaag aaggtcacaa 660
tctcgacagc ctaaaatctg ccttctccct agatattttg gttgcatact gaagttgatt 720
cctggtgcat gacacatgtt ttgctttcgg ttgttccatc tcttcagcac atggctgata 780
ttgtctctac atatgtattc atctcgcaga gccttacagg gatcaagggc ctgtctgaag 840
caaaggttga taagatctgt gaggctgctg aaaaacttct ggtatgattc agttattccg 900
tttgcattgg attctggttc tgaaacttct gtgccatcag ttctgtgtga tacagtcttc 960
tgaaatctgt atgcaatttg gtttccagac tcagggtttc atgacaggaa gtgatctcct 1020
tatcaaggta aggaagtatg agctaagcta ctcatgacgg atgagcatac agtttagggc 1080
tgtttttcag tagtgctact atgctatgct aaactgactt tgcataatag tttgtttcgt 1140
gaatgtgctt gagtgctttc attactggac gtgtagatgt gctttaggct gtttgattta 1200
cttttgctta ttttgaagcg gaagtctgtt gttcggatta ccactgggag ccaagcgctt 1260
gatgagctgc ttggaggtaa catatgtcgt ccttggttct gttctgctta ttttgatgtt 1320
cttctctaac ctgttcatat atttccataa tttgaaggag ggattgaaac actctgtatc 1380
acagaggcat ttggagagtt ccggtgagtg aatgttccag ttaccatttt ttcctgaatt 1440
ttttgtgcgg agcacatatt agttgtatca ttgaaatgta tgatgtgtgg ccatagtctg 1500
caatagatgt atctagtcct agcagttttc tcagtacata ttggtaatag tctgacaagc 1560
ttctagcggt atttacatca attcctaagc atgcttcatg tgcttttaac attgtatacg 1620
tgtcacttgt tacatgccaa aattcaaaca tatcacatca ataatattat cactattttc 1680
gcgatgcaag actaatatca tgcaatacac acatgctctt attactaatg tggaacagtt 1740
gtaatgctga cttcagagcc catttgttac tcaatttctc aattcagtcc caactttctg 1800
acattgatct ccatatatta tttacttggt cttgcaggtc aggaaagacc cagttggctc 1860
atactctttg tgtctccact caggtaaatt tcctgcattg gagtatgtca atggaacctt 1920
actagtatta caataggagc gatttctaac ttccactgtt taacaaatga accacagctt 1980
ccactccaca tgcatggtgg gaatgggaag gttgcctaca ttgacactga gggaacattg 2040
tatcctttaa atttcctgag caataactct agctgatttg ttcagtgaat ttacttacat 2100
tcctgtattt ctccaagctg tttcccttaa ttgagttttc agccgccctg agcgcatcgt 2160
gccaattgct gagagatttg ggatggatgc caatgctgtt cttgacaatg tatggctcgt 2220
gttatctctt ttaatccatt taagaacgag tagatcaaga cctttgtttg atcctggttg 2280
tttctggtac agatcatata tgctcgcgca tacacctatg agcaccagta caacttgctc 2340
ctgggccttg ctgccaagat ggctgaagag cctttcaggc ttctggtagg cataaccttg 2400
ctgcaaattt tataagttga tacatctgaa ctgtgcttat gtgtttttat tttacctgga 2460
aatgatagat tgtggattct gtgattgcgc tattccgtgt tgatttcagt ggtaggggtg 2520
aacttgcaga gcgtcaggta ttctactgta actagctaac tatgtcaaaa gataaagcaa 2580
ctcatgaaat aatcgatagc ttccagttta tatacttgct taactgtatg tgctctggaa 2640
ctgcagcaaa aactggctca gatgctgtcc cgccttacaa agattgctga ggagttcaat 2700
gttgcagtgt acatcaccaa ccaaggtgtg ctttctattc taatcttgtc tgttacaaga 2760
aagagttcct tagattcatg gatctcaaac aataagttct gttcttgttc cagtgatcgc 2820
ggatccaggt ggtggtatgt tcataactga ccccaaaaag ccggcgggag gccacgtgct 2880
ggcgcatgca gccaccatcc ggttgatgct gcggaaaggc aaaggcgagc agcgcgtctg 2940
caagatcttt gatgccccta accttcccga gggagaagca atatccttta ctctaagcat 3000
gtttactgct tgtgctattc attgctttaa ctattactcc atatatatag ttgttaagct 3060
cttgataaaa aatgctttgc tcagacttgc acatcatata tatagtttaa ttctagccgc 3120
taacctccat gactgaaagg ttcacataag ttggcaatga tcagatgtcg agaagttgtt 3180
tcccttgacc accaacacgt tttccagatc acaacaggcg ggctgatgga tgtgaaagac 3240
tgaatgttca tccaggcgct tctctgtctt atctgttgat atgtctgtta gcaaaatcca 3300
cagcatgtgt aggctttgac aaaagctact gcacagttac tctgttcttg ccactgcgga 3360
gaaattagga aaaactatgt tgtttatata ccttctgttg gttattctgt aagctcgcaa 3420
ggtcaagcaa ttgtagcgag gacaaagttt tctcctgttc tttgcttctc taaacaaagg 3480
atatgaaaat gaaataggtt ctgtcttata tgaaaatgaa ataggttctg tctta 3535
<210> 6
<211> 759
<212> DNA
<213> Artificial sequence
<400> 6
atgacaggaa gtgatctcct tatcaagcgg aagtctgttg ttcggattac cactgggagc 60
caagcgcttg atgagctgct tggaggaggg attgaaacac tctgtatcac agaggcattt 120
ggagagttcc ggtcaggaaa gacccagttg gctcatactc tttgtgtctc cactcagctt 180
ccactccaca tgcatggtgg gaatgggaag gttgcctaca ttgacactga gggaacattc 240
cgccctgagc gcatcgtgcc aattgctgag agatttggga tggatgccaa tgctgttctt 300
gacaatatca tatatgctcg cgcatacacc tatgagcacc agtacaactt gctcctgggc 360
cttgctgcca agatggctga agagcctttc aggcttctga ttgtggattc tgtgattgcg 420
ctattccgtg ttgatttcag tggtaggggt gaacttgcag agcgtcagca aaaactggct 480
cagatgctgt cccgccttac aaagattgct gaggagttca atgttgcagt gtacatcacc 540
aaccaagtga tcgcggatcc aggtggtggt atgttcataa ctgaccccaa aaagccggcg 600
ggaggccacg tgctggcgca tgcagccacc atccggttga tgctgcggaa aggcaaaggc 660
gagcagcgcg tctgcaagat ctttgatgcc cctaaccttc ccgagggaga agcagttttc 720
cagatcacaa caggcgggct gatggatgtg aaagactga 759
<210> 7
<211> 1368
<212> PRT
<213> Artificial sequence
<400> 7
Met Asp Lys Lys Tyr Ser Ile Gly Leu Asp Ile Gly Thr Asn Ser Val
1 5 10 15
Gly Trp Ala Val Ile Thr Asp Glu Tyr Lys Val Pro Ser Lys Lys Phe
20 25 30
Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile
35 40 45
Gly Ala Leu Leu Phe Asp Ser Gly Glu Thr Ala Glu Ala Thr Arg Leu
50 55 60
Lys Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys
65 70 75 80
Tyr Leu Gln Glu Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser
85 90 95
Phe Phe His Arg Leu Glu Glu Ser Phe Leu Val Glu Glu Asp Lys Lys
100 105 110
His Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr
115 120 125
His Glu Lys Tyr Pro Thr Ile Tyr His Leu Arg Lys Lys Leu Val Asp
130 135 140
Ser Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala His
145 150 155 160
Met Ile Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro
165 170 175
Asp Asn Ser Asp Val Asp Lys Leu Phe Ile Gln Leu Val Gln Thr Tyr
180 185 190
Asn Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val Asp Ala
195 200 205
Lys Ala Ile Leu Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn
210 215 220
Leu Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly Leu Phe Gly Asn
225 230 235 240
Leu Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe
245 250 255
Asp Leu Ala Glu Asp Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp
260 265 270
Asp Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp Gln Tyr Ala Asp
275 280 285
Leu Phe Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp
290 295 300
Ile Leu Arg Val Asn Thr Glu Ile Thr Lys Ala Pro Leu Ser Ala Ser
305 310 315 320
Met Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys
325 330 335
Ala Leu Val Arg Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe
340 345 350
Asp Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile Asp Gly Gly Ala Ser
355 360 365
Gln Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp
370 375 380
Gly Thr Glu Glu Leu Leu Val Lys Leu Asn Arg Glu Asp Leu Leu Arg
385 390 395 400
Lys Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His Leu
405 410 415
Gly Glu Leu His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe
420 425 430
Leu Lys Asp Asn Arg Glu Lys Ile Glu Lys Ile Leu Thr Phe Arg Ile
435 440 445
Pro Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp
450 455 460
Met Thr Arg Lys Ser Glu Glu Thr Ile Thr Pro Trp Asn Phe Glu Glu
465 470 475 480
Val Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile Glu Arg Met Thr
485 490 495
Asn Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser
500 505 510
Leu Leu Tyr Glu Tyr Phe Thr Val Tyr Asn Glu Leu Thr Lys Val Lys
515 520 525
Tyr Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly Glu Gln
530 535 540
Lys Lys Ala Ile Val Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr
545 550 555 560
Val Lys Gln Leu Lys Glu Asp Tyr Phe Lys Lys Ile Glu Cys Phe Asp
565 570 575
Ser Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly
580 585 590
Thr Tyr His Asp Leu Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp
595 600 605
Asn Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val Leu Thr Leu Thr
610 615 620
Leu Phe Glu Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala
625 630 635 640
His Leu Phe Asp Asp Lys Val Met Lys Gln Leu Lys Arg Arg Arg Tyr
645 650 655
Thr Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn Gly Ile Arg Asp
660 665 670
Lys Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe
675 680 685
Ala Asn Arg Asn Phe Met Gln Leu Ile His Asp Asp Ser Leu Thr Phe
690 695 700
Lys Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu
705 710 715 720
His Glu His Ile Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly
725 730 735
Ile Leu Gln Thr Val Lys Val Val Asp Glu Leu Val Lys Val Met Gly
740 745 750
Arg His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln
755 760 765
Thr Thr Gln Lys Gly Gln Lys Asn Ser Arg Glu Arg Met Lys Arg Ile
770 775 780
Glu Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His Pro
785 790 795 800
Val Glu Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu
805 810 815
Gln Asn Gly Arg Asp Met Tyr Val Asp Gln Glu Leu Asp Ile Asn Arg
820 825 830
Leu Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser Phe Leu Lys
835 840 845
Asp Asp Ser Ile Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg
850 855 860
Gly Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val Lys Lys Met Lys
865 870 875 880
Asn Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys
885 890 895
Phe Asp Asn Leu Thr Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp
900 905 910
Lys Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr Arg Gln Ile Thr
915 920 925
Lys His Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp
930 935 940
Glu Asn Asp Lys Leu Ile Arg Glu Val Lys Val Ile Thr Leu Lys Ser
945 950 955 960
Lys Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg
965 970 975
Glu Ile Asn Asn Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val
980 985 990
Val Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys Leu Glu Ser Glu Phe
995 1000 1005
Val Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala Lys
1010 1015 1020
Ser Glu Gln Glu Ile Gly Lys Ala Thr Ala Lys Tyr Phe Phe Tyr Ser
1025 1030 1035 1040
Asn Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu Ala Asn Gly Glu
1045 1050 1055
Ile Arg Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu Thr Gly Glu Ile
1060 1065 1070
Val Trp Asp Lys Gly Arg Asp Phe Ala Thr Val Arg Lys Val Leu Ser
1075 1080 1085
Met Pro Gln Val Asn Ile Val Lys Lys Thr Glu Val Gln Thr Gly Gly
1090 1095 1100
Phe Ser Lys Glu Ser Ile Leu Pro Lys Arg Asn Ser Asp Lys Leu Ile
1105 1110 1115 1120
Ala Arg Lys Lys Asp Trp Asp Pro Lys Lys Tyr Gly Gly Phe Asp Ser
1125 1130 1135
Pro Thr Val Ala Tyr Ser Val Leu Val Val Ala Lys Val Glu Lys Gly
1140 1145 1150
Lys Ser Lys Lys Leu Lys Ser Val Lys Glu Leu Leu Gly Ile Thr Ile
1155 1160 1165
Met Glu Arg Ser Ser Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala
1170 1175 1180
Lys Gly Tyr Lys Glu Val Lys Lys Asp Leu Ile Ile Lys Leu Pro Lys
1185 1190 1195 1200
Tyr Ser Leu Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser
1205 1210 1215
Ala Gly Glu Leu Gln Lys Gly Asn Glu Leu Ala Leu Pro Ser Lys Tyr
1220 1225 1230
Val Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys Gly Ser
1235 1240 1245
Pro Glu Asp Asn Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys His
1250 1255 1260
Tyr Leu Asp Glu Ile Ile Glu Gln Ile Ser Glu Phe Ser Lys Arg Val
1265 1270 1275 1280
Ile Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala Tyr Asn Lys
1285 1290 1295
His Arg Asp Lys Pro Ile Arg Glu Gln Ala Glu Asn Ile Ile His Leu
1300 1305 1310
Phe Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala Phe Lys Tyr Phe Asp
1315 1320 1325
Thr Thr Ile Asp Arg Lys Arg Tyr Thr Ser Thr Lys Glu Val Leu Asp
1330 1335 1340
Ala Thr Leu Ile His Gln Ser Ile Thr Gly Leu Tyr Glu Thr Arg Ile
1345 1350 1355 1360
Asp Leu Ser Gln Leu Gly Gly Asp
1365
<210> 8
<211> 20
<212> DNA
<213> Artificial sequence
<400> 8
agaacggctt gttcgggaat 20
<210> 9
<211> 20
<212> DNA
<213> Artificial sequence
<400> 9
gtggtaagtc cccagtgacg 20

Claims (6)

1.一种培育目标非转基因黑麦草突变体的方法,包括如下步骤:
1)通过CRISPR/Cas9系统抑制多年生黑麦草中黑麦草减数分裂蛋白编码基因LpDMC1的表达,得到转化后黑麦草植株;
2)将所述转化后黑麦草植株进行聚合酶链反应-限制性内切酶分析实验,选取酶切过程中未切开条带且测序为有效突变的单株为突变后黑麦草植株;
3)选取所述突变后黑麦草植株中不含有Cas9基因的单株,为目标非转基因黑麦草突变体;
所述黑麦草减数分裂蛋白的氨基酸序列如SEQ ID NO:4所示;
步骤1)所述CRISPR/Cas9系统包括Cas9蛋白和特异sgRNA;
所述特异sgRNA的靶序列的核苷酸序列如SEQ ID NO:1所示;
步骤2)所述聚合酶链反应-限制性内切酶分析实验的PCR扩增引物对由引物1和引物2组成;
所述引物1的核苷酸序列如SEQ ID NO:2所示;
所述引物2的核苷酸序列如SEQ ID NO:3所示;
步骤3)所述选取所述突变后黑麦草植株中不含有Cas9基因的单株为用Cas9基因扩增引物进行PCR扩增,选取未得到目的片段的单株;
所述Cas9基因扩增引物由引物3和引物4组成;
所述引物3的核苷酸序列如SEQ ID NO:8所示;
所述引物4的核苷酸序列如SEQ ID NO:9所示。
2.根据权利要求1所述的方法,其特征在于:
所述通过CRISPR/Cas9系统抑制黑麦草中黑麦草减数分裂蛋白编码基因LpDMC1的表达为向目的植物中导入所述Cas9蛋白的编码基因和所述特异sgRNA的编码DNA分子,得到转化后黑麦草植株。
3.根据权利要求2所述的方法,其特征在于:
所述向目的植物中导入所述Cas9蛋白的编码基因和所述特异sgRNA的编码DNA分子是向所述目的植物中导入表达Cas9蛋白的基因的质粒和表达特异sgRNA的质粒。
4.一种sgRNA或表达其的质粒,所述sgRNA的靶序列的核苷酸序列如SEQ ID NO: 1所示。
5.权利要求4所述sgRNA在制备黑麦草突变体中的应用。
6.权利要求1-3所述方法在黑麦草育种中的应用。
CN201910275840.1A 2019-04-08 2019-04-08 一种获得非转基因多年生黑麦草突变体的方法 Active CN111850029B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910275840.1A CN111850029B (zh) 2019-04-08 2019-04-08 一种获得非转基因多年生黑麦草突变体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910275840.1A CN111850029B (zh) 2019-04-08 2019-04-08 一种获得非转基因多年生黑麦草突变体的方法

Publications (2)

Publication Number Publication Date
CN111850029A CN111850029A (zh) 2020-10-30
CN111850029B true CN111850029B (zh) 2022-04-26

Family

ID=72951862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910275840.1A Active CN111850029B (zh) 2019-04-08 2019-04-08 一种获得非转基因多年生黑麦草突变体的方法

Country Status (1)

Country Link
CN (1) CN111850029B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105219799A (zh) * 2015-10-22 2016-01-06 天津吉诺沃生物科技有限公司 一种基于CRISPR/Cas系统的多年生黑麦草的育种方法
CN105802991A (zh) * 2015-01-19 2016-07-27 中国科学院遗传与发育生物学研究所 一种通过基因瞬时表达对植物定点改造的方法
CN108866093A (zh) * 2018-07-04 2018-11-23 广东三杰牧草生物科技有限公司 一种利用CRISPR/Cas9系统对紫花苜蓿基因定点突变的方法
CN109423498A (zh) * 2017-08-30 2019-03-05 中国科学院遗传与发育生物学研究所 一种通过基因编辑创制高花青素紫黑果番茄材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150067922A1 (en) * 2013-05-30 2015-03-05 The Penn State Research Foundation Gene targeting and genetic modification of plants via rna-guided genome editing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105802991A (zh) * 2015-01-19 2016-07-27 中国科学院遗传与发育生物学研究所 一种通过基因瞬时表达对植物定点改造的方法
CN105219799A (zh) * 2015-10-22 2016-01-06 天津吉诺沃生物科技有限公司 一种基于CRISPR/Cas系统的多年生黑麦草的育种方法
CN109423498A (zh) * 2017-08-30 2019-03-05 中国科学院遗传与发育生物学研究所 一种通过基因编辑创制高花青素紫黑果番茄材料的方法
CN108866093A (zh) * 2018-07-04 2018-11-23 广东三杰牧草生物科技有限公司 一种利用CRISPR/Cas9系统对紫花苜蓿基因定点突变的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Accession number:XP_010239525.2,meiotic recombination protein DMC1 homolog isoform X1 [Brachypodium distachyon];无;《GeneBank》;20180527;FEATURES, ORIGIN *
CRISPR/Cas9基因组编辑技术及其在草类植物中的应用;王丹等;《草业科学》;20170615;第34卷(第6期);第1204-1214页 *
Evaluation of Methods to Assess in vivo Activity of Engineered Genome-Editing Nucleases in Protoplasts;Nadakuduti等;《frontiers in plant science》;20190208;第10卷(第110期);第1-13页 *

Also Published As

Publication number Publication date
CN111850029A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
US11447785B2 (en) Method for base editing in plants
CN106164272B (zh) 修饰的植物
AU2019297209B2 (en) Method of obtaining multi-leaf alfalfa material by means of MsPALM1 artificial site-directed mutant
CN109705198B (zh) OsCKX7蛋白质及其编码基因在调控植物纹枯病抗性中的应用
CN112961231A (zh) 雄性不育基因ZmbHLH122及其在创制玉米雄性不育系中的应用
CN112899247B (zh) 雄性不育基因ZmTKPR1及其在创制玉米雄性不育系中的应用
CN113265418B (zh) 一种CRISPR/Cas9特异性敲除大豆SOC1基因的方法及其应用
CN107338265B (zh) 一种基因编辑系统及应用其对植物基因组进行编辑的方法
CN114369147B (zh) Bfne基因在番茄株型改良和生物产量提高中的应用
CN113637060B (zh) 大豆GmSPA3a/3b蛋白及其相关生物材料在调控植物开花和株高中的应用
CN113583099B (zh) 培育苜蓿雄性不育系及相应保持系的方法及其相关生物材料
CN112680459B (zh) 雄性不育基因ZmTGA10及其在创制玉米雄性不育系中的应用
US11365423B2 (en) Method of obtaining multileaflet Medicago sativa materials by means of MsPALM1 artificial site-directed mutants
CN101747420B (zh) 一种水稻显性矮秆相关蛋白及其编码基因与应用
CN111850029B (zh) 一种获得非转基因多年生黑麦草突变体的方法
CN114213515B (zh) 基因OsR498G0917707800.01及其编码的蛋白在调控水稻垩白中的应用
CN110407922B (zh) 水稻耐冷基因qSCT11及其应用
CN112980876A (zh) GhGPAT12蛋白和GhGPAT25蛋白在调控棉花雄性生殖发育中的应用
KR102551064B1 (ko) 포도에서 분리된 신규 u6 프로모터 및 이의 용도
CN113999871B (zh) 创制矮杆直立株型的水稻种质的方法及其应用
CN114644692B (zh) 一种定点突变创制旱敏感玉米种质的方法及其应用
CN112680458B (zh) 雄性不育基因ZmMYB33及其在创制玉米雄性不育系中的应用
US20230227835A1 (en) Method for base editing in plants
CN115340994A (zh) 创制水稻大长粒型新种质的方法
CN116590270A (zh) 一种控制水稻谷粒大小的基因及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220707

Address after: 102206 B401, 4th floor, block B, building 1, No. 27, shengshengyuan Road, Life Science Park, Changping District, Beijing

Patentee after: Beijing qiheshengke Biotechnology Co.,Ltd.

Address before: 301700 first floor on the east side of building C10, venture headquarters base on the north of Fuyuan Road, Wuqing Development Zone, Wuqing District, Tianjin

Patentee before: TIANJIN GENOVO BIOTECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right