CN111974419A - 一种制备二硫化钼/三氧化钨复合光催化剂的新方法 - Google Patents

一种制备二硫化钼/三氧化钨复合光催化剂的新方法 Download PDF

Info

Publication number
CN111974419A
CN111974419A CN202010668615.7A CN202010668615A CN111974419A CN 111974419 A CN111974419 A CN 111974419A CN 202010668615 A CN202010668615 A CN 202010668615A CN 111974419 A CN111974419 A CN 111974419A
Authority
CN
China
Prior art keywords
tungsten trioxide
composite photocatalyst
molybdenum disulfide
mos
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010668615.7A
Other languages
English (en)
Inventor
徐龙君
芦媛
刘成伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202010668615.7A priority Critical patent/CN111974419A/zh
Publication of CN111974419A publication Critical patent/CN111974419A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

一种制备二硫化钼/三氧化钨复合光催化剂的新方法,属于无机纳米光催化材料领域。本发明先采用水热‑焙烧法制备了三氧化钨,再采用一步水热法制备了二硫化钼/三氧化钨复合光催化剂。制备的MoS2/WO3复合光催化材料,比表面积较大,为30.0m2/g。在模拟太阳光氙灯的照射下,50mg制备的复合光催化剂,降解100mL浓度为10mg/L的罗丹明B溶液,60min光催化降解率达到94.5%,且经过三次循环再利用,在相同条件下复合样品对目标染料罗丹明B的降解率为91.4%。本发明方法制备工艺简单,易于控制,生产成本低,能耗少,可广泛应用于催化降解有机污染物的领域中。

Description

一种制备二硫化钼/三氧化钨复合光催化剂的新方法
技术领域
本发明涉及一种二硫化钼/三氧化钨复合光催化剂的制备方法,属于无机纳米光催化材料技术领域。
背景技术
三氧化钨作为一种窄带隙半导体材料,是过渡金属氧化物的典型代表。由于它具有耐酸腐蚀性,即在酸性溶液中也具有高稳定性,仅微溶于氢氟酸,无毒害且电导率良好,因此被广泛应用在光电催化分解水、气敏、湿敏、电致变色等领域,成为目前最具潜力的材料之一。此外,WO3的禁带宽度约为2.6eV,能吸收部分可见光,吸收带边主要位于450nm左右处,作为光催化剂具有一定的优势。
虽然三氧化钨的价带的电位较高具有空穴强氧化能力,但导带电位相对较正,这意味着导带边缘的还原能力较弱,光生电子很难被消耗,电子的积聚容易与空穴重组影响光催化活性。因此,需要对其进行改性或与其他能带结构的半导体耦合来促进电荷转移和分离,从而增大量子效率。如“Applied Surface Science”2018年第451卷306-314页中的“Synergistic effect of Cu-ion and WO3 nanofibers on the enhancedphotocatalytic degradation of Rhodamine B and aniline solution”一文(对比文件1),该文先采用静电纺丝法制备了WO3,再采用浸渍法得到了WO3/Cu(II)纳米纤维光催化剂。该方法存在的主要问题是:(1)反应条件复杂、苛刻,需要静电纺丝平台或静电纺丝机,同时需要施加24kV的高压制备WO3前驱体,且单体和复合产品均需经过高温焙烧,温度高达600℃-650℃,能耗较大且不易操作;(2)制备的WO3和复合物的光催化活性不高,50mg的催化剂,光催化降解100mL浓度为10mg/L的罗丹明B时,3h对罗丹明B的降解率,单体WO3为48.87%,复合物WO3/Cu(II)的降解率为85%。
又如发明专利“一种三氧化钨-二硫化钼型复合光催化剂及其制备方法和应用”(公开号:CN110975889A)(对比文件2),主要利用锂插层法将块状MoS2先剥离成薄片状MoS2,插层反应时间为48h且需要在保护性(氩气)气氛条件下进行,随后通过微波辅助进行氧化反应,将MoS2分散液和钨盐溶液进行混合生成复合物WO3-MoS2,应用于光催化分解水产氢。该方法存在的问题是:(1)制备MoS2的条件要求较高,反应时间较长,能耗大,超声分散剥离MoS2片层时不易控制;(2)所用分散溶剂均为有机溶剂乙二醇,制备过程中涉及氩气,需要在微波辅助下发生氧化反应,成本较高,不适宜推广。
发明内容
本发明解决的技术问题是提供了一种制备二硫化钼/三氧化钨复合光催化剂的新方法,其核心在于合成光催化性能优异且稳定的复合材料,通过一步水热法将类花球状MoS2成功包覆在以焙烧法制备的WO3纳米微球骨架结构上,具有制备方法简单、反应条件温和、能耗小的特点,所制得的光催化剂吸收可见光的能力较强,光生电子与空穴的复合率低,且催化剂的稳定性高,能保持较好的循环使用性,对有机染料废水的处理具有突出的优势。
本发明制备二硫化钼/三氧化钨复合光催化剂的新方法如下:
(1)三氧化钨的制备
按照摩尔比n(Na2WO4·2H2O):n(C6H8O7·H2O)=1:1.9,称取一定量的Na2WO4·2H2O和柠檬酸C6H8O7·H2O试剂,溶解于60mL的去离子水中,超声10min得到混合溶液A;在磁力搅拌下缓慢地滴加2mol/L的稀盐酸至混合溶液A中,调节反应pH值为1,持续搅拌30min,得到WO3的前驱体B;将前驱体B转移至100mL聚四氟乙烯内衬的不锈钢水热反应釜中,120℃下反应24h,冷却至室温后用去离子水洗涤,置于80℃烘箱中干燥12h,将烘干样研磨后装入50mL的陶瓷坩埚中,置于马弗炉中,400℃焙烧4h,得到三氧化钨WO3
(2)二硫化钼/三氧化钨复合光催化剂的制备
分别称取0.4319g MoO3和0.8746g KSCN试剂,加入到60mL去离子水中,超声15min并机械搅拌30min,得到溶液C;按照理论生成WO3在复合物中的质量百分数40wt%~60wt%,称取已制备好的WO3粉末加入到溶液C中,并持续搅拌1h至反应完全,得到前驱体D;将前驱体D装入100mL的水热釜中,200℃下反应24h取出,待冷却至室温,用去离子水和无水乙醇交替洗涤,置于80℃烘箱中干燥12h,研磨后,即得到二硫化钼/三氧化钨复合光催化剂MoS2/WO3
本发明采用上述技术方案,主要有以下效果:
(1)本发明方法制备的二硫化钼/三氧化钨复合光催化剂具有较高的光催化活性,在模拟太阳光氙灯的照射下,50mg制备的复合光催化剂,降解100mL浓度为10mg/L的罗丹明B溶液,60min时的光催化降解率为94.5%(优于对比文件1中制备的复合材料)。
(2)本发明方法制备的二硫化钼/三氧化钨复合光催化剂,3次重复使用后对罗丹明B的光催化降解率仍能保持在91.4%。
(3)本发明方法制备的二硫化钼/三氧化钨复合光催化剂,比表面积达到30.0m2/g,为光催化反应提供了便捷的传输途径,其制备方法简便,成本低,易于控制,绿色环保。
附图说明
图1为WO3、MoS2和MoS2/WO3的X射线衍射图谱;
图2为WO3、MoS2和MoS2/WO3的N2吸附-解吸等温线;
图3为WO3、MoS2和MoS2/WO3的红外光谱图。
具体实施方式
下面结合具体实施方式,进一步说明本发明。
实施例1
一种制备二硫化钼/三氧化钨复合光催化剂的新方法,具体步骤如下:
(1)三氧化钨的制备
按照摩尔比n(Na2WO4·2H2O):n(C6H8O7·H2O)=1:1.9,称取一定量的Na2WO4·2H2O和C6H8O7·H2O试剂,溶解于60mL的去离子水中,超声10min得到混合溶液A;在磁力搅拌下缓慢地滴加2mol/L的稀盐酸至混合溶液A中,调节反应pH值为1,持续搅拌30min,得到WO3的前驱体B;将前驱体B转移至100mL聚四氟乙烯内衬的不锈钢水热反应釜中,120℃下反应24h,冷却至室温后用去离子水洗涤,置于80℃烘箱中干燥12h,将烘干样研磨后装入50mL的陶瓷坩埚中,置于马弗炉中,400℃焙烧4h,得到三氧化钨WO3
(2)二硫化钼/三氧化钨复合光催化剂的制备
分别称取0.4319g MoO3和0.8746g KSCN试剂,加入到60mL去离子水中,超声15min并机械搅拌30min,得到溶液C;按照理论生成WO3在复合物中的质量百分数40wt%,称取已制备好的WO3粉末加入到溶液C中,并持续搅拌1h至反应完全,得到前驱体D;将前驱体D装入100mL的水热釜中,200℃下反应24h取出,待冷却至室温,用去离子水和无水乙醇交替洗涤,置于80℃烘箱中干燥12h,研磨后,即得到二硫化钼/三氧化钨复合光催化剂MoS2/WO3
实施例2
一种制备二硫化钼/三氧化钨复合光催化剂的新方法,具体步骤如下:
(1)同实施例1的步骤(1)。
(2)二硫化钼/三氧化钨复合光催化剂的制备
分别称取0.4319g MoO3和0.8746g KSCN试剂,加入到60mL去离子水中,超声15min并机械搅拌30min,得到溶液C;按照理论生成WO3在复合物中的质量百分数50wt%,称取已制备好的WO3粉末加入到溶液C中,并持续搅拌1h至反应完全,得到前驱体D;将前驱体D装入100mL的水热釜中,200℃下反应24h取出,待冷却至室温,用去离子水和无水乙醇交替洗涤,置于80℃烘箱中干燥12h,研磨后,即得到二硫化钼/三氧化钨复合光催化剂MoS2/WO3
实施例3
一种制备二硫化钼/三氧化钨复合光催化剂的新方法,具体步骤如下:
(1)同实施例1的步骤(1)。
(2)二硫化钼/三氧化钨复合光催化剂的制备
分别称取0.4319g MoO3和0.8746g KSCN试剂,加入到60mL去离子水中,超声15min并机械搅拌30min,得到溶液C;按照理论生成WO3在复合物中的质量百分数60wt%,称取已制备好的WO3粉末加入到溶液C中,并持续搅拌1h至反应完全,得到前驱体D;将前驱体D装入100mL的水热釜中,200℃下反应24h取出,待冷却至室温,用去离子水和无水乙醇交替洗涤,置于80℃烘箱中干燥12h,研磨后,即得到二硫化钼/三氧化钨复合光催化剂MoS2/WO3
实验结果
实施例2制备的二硫化钼/三氧化钨复合光催化剂的催化降解活性最佳。为了方便对比,制备了二硫化钼样品。二硫化钼的制备方法为实施例2步骤(2)中不加入三氧化钨。
图1(a)为WO3的X射线衍射图,2-Theta位于23.11°、23.58°、24.34°和34.12°处的衍射峰,分别对应标准卡片中单斜相WO3(JCPDS卡片No.43-1035)的(002)、(020)、(200)和(202)晶面;图1(c)为MoS2的X射线衍射图,2-Theta位于14.37°、29.02°、32.67°和58.33°处的衍射峰,分别对应标准卡片中2H型硫化钼MoS2(JCPDS卡片No.37-1492)的(002)、(004)、(100)和(110)晶面。
图1(b)是采用本发明方法所制备的二硫化钼/三氧化钨复合光催化剂的X射线衍射图,其特征衍射峰与上述WO3和MoS2的特征峰一一对应,且未观察到其他晶相结构的WO3或WxOy存在。此外,在2θ=14.12°处能够观察到2H型MoS2的典型特征衍射峰,该峰对应于JCPDS卡片No.37-1492的(002)晶面,这表明MoS2-WO3复合光催化剂的成功合成。同时,由于复合物在2θ=33.34°处的特征衍射峰同时对应与MoS2的(100)晶面和WO3的(022)晶面,衍射峰的重合使得图中标识处的峰强发生了变化。综合而言,复合光催化材料MoS2/WO3的X射线衍射图显示其整体峰形和峰位均保持了各纯相的标准特征,重要的是表征结果显示无杂峰,说明复合后晶体结构未受到破坏。
本发明所制备的MoS2/WO3、WO3和MoS2的N2吸附-解吸等温线如图2所示,根据IUPAC分类,3种样品均为带有H3型迟滞回线IV型等温线。复合物MoS2/WO3在相对压力(P/P0)处于0.4-0.99区间内具有超出单体WO3和MoS2的吸附量,此区间又可分为中压段(P/P0:0.4-0.8)和高压段(P/P0:0.8-0.99)。相比各单体物质,MoS2/WO3在中压段随着相对压力P/P0的增加吸附量也呈现一定程度的增长,该区间多为N2在材料孔道内的冷凝积聚,说明复合物中存在有较多的中孔。特别是,吸附量在高压段内增幅明显,表示MoS2/WO3中大孔数量较多且存在复合后的粒子堆积孔;采用BET法得到MoS2/WO3的比表面积约为30.0m2/g,而MoS2和WO3的比表面积分别为6.1m2/g和10.1m2/g,说明复合后MoS2/WO3的比表面积显著增加,较大的比表面能够为水溶性染料罗丹明B分子提供更多的吸附位点,扩增了与染料分子的有效接触,有利于光催化活性的提升。
本发明方法所制备的MoS2、MoS2/WO3和WO3其红外光谱表征结果如图3所示,在特征区中,波数为3438.5cm-1和1625.2cm-1的明显吸收峰分别对应样品的结构水分子和表面复合氧化物的吸附水分子的变形振动,即归属于O-H伸缩振动和弯曲振动所形成的吸收带;1395.2cm-1左右处的吸收峰为-NO2基团的伸缩振动所引起的,2348.9cm-1处微弱的吸收峰归因于大气中的CO2吸附;其中,指纹区所显示的特征吸收峰中位于951.2cm-1左右处的吸收带,归属于单斜相WO3其W=O键的终端振动,说明复合样品表面存在微小的水合作用;此外,范围在600cm-1-1000cm-1区间的吸收峰为O-W-O的伸缩振动,610.8cm-1处的特征吸收峰为MoS2代表的Mo-S键;通过对比可得,复合材料MoS2/WO3拥有MoS2和WO3明显的特征峰,且上述表征结果与文献相符并与XRD结论相对应,证明本发明二硫化钼/三氧化钨复合光催化剂的制备方法切实有效。
光催化实验显示,本发明方法制备的一种二硫化钼/三氧化钨复合光催化剂,其二硫化钼的质量百分数为50wt%时,在模拟太阳光氙灯的照射下,50mg制备的复合光催化剂,降解100mL浓度为10mg/L的罗丹明B溶液,60min时的光催化降解率达到94.5%,且经过3次循环再利用,在相同条件下复合样品对罗丹明B的降解率为91.4%。本发明方法制备工艺简单,易于控制,生产成本低,能耗少,可广泛应用于催化降解有机污染物的领域中。
以上实施例描述了本发明的制备方法、主要特征及优点。本发明不受上述实施例的限制,在不脱离本发明原理、方法的范围下,本发明将持续改进,这些均落入本发明保护的范围内。

Claims (2)

1.一种制备二硫化钼/三氧化钨复合光催化剂的新方法,其特征包括以下步骤:
(1)三氧化钨的制备
按照摩尔比1:1.9分别称取一定量的钨酸钠Na2WO4·2H2O和柠檬酸C6H8O7·H2O,溶解于60mL的去离子水中,超声10min得到混合溶液A;在磁力搅拌下缓慢地滴加2mol/L的稀盐酸至混合溶液A中,调节反应pH值为1,持续搅拌30min,得到WO3的前驱体B;将前驱体B转移至100mL聚四氟乙烯内衬的不锈钢水热反应釜中,120℃下反应24h,冷却至室温后用去离子水洗涤,置于80℃烘箱中干燥12h,将烘干样研磨后装入50mL的陶瓷坩埚,置于马弗炉中,400℃焙烧4h,得到三氧化钨WO3
(2)二硫化钼/三氧化钨复合光催化剂的制备
分别称取0.4319g MoO3和0.8746g KSCN试剂,加入到60mL去离子水中,超声15min并机械搅拌30min,得到溶液C;按照理论生成WO3在复合物中的质量百分数40wt%~60wt%,称取已制备好的WO3粉末加入到溶液C中,并持续搅拌1h至反应完全,得到前驱体D;将前驱体D装入100mL的水热釜中,200℃下反应24h取出,待冷却至室温,用去离子水和无水乙醇交替洗涤,置于80℃烘箱中干燥12h,研磨后,得到二硫化钼/三氧化钨复合光催化剂MoS2/WO3
2.根据权利要求1所述的MoS2/WO3复合光催化剂的制备方法,其特征在于以水热法制备,复合光催化剂的光催化活性高。
CN202010668615.7A 2020-07-13 2020-07-13 一种制备二硫化钼/三氧化钨复合光催化剂的新方法 Pending CN111974419A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010668615.7A CN111974419A (zh) 2020-07-13 2020-07-13 一种制备二硫化钼/三氧化钨复合光催化剂的新方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010668615.7A CN111974419A (zh) 2020-07-13 2020-07-13 一种制备二硫化钼/三氧化钨复合光催化剂的新方法

Publications (1)

Publication Number Publication Date
CN111974419A true CN111974419A (zh) 2020-11-24

Family

ID=73439153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010668615.7A Pending CN111974419A (zh) 2020-07-13 2020-07-13 一种制备二硫化钼/三氧化钨复合光催化剂的新方法

Country Status (1)

Country Link
CN (1) CN111974419A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804868A (zh) * 2022-04-29 2022-07-29 吉林电力股份有限公司长春热电分公司 一种三氧化钨陶瓷骨架坩埚的制备方法
CN114950497A (zh) * 2022-05-31 2022-08-30 安徽大学 一种用于光电催化杀灭耐药菌的三氧化钨/硒化钨复合纳米光阳极材料及其制备方法
CN115722234A (zh) * 2022-11-15 2023-03-03 陕西科技大学 一种具有光动力-类酶活性的Ce-MoS2/WO3纳米复合抗菌材料的制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142882A (ja) * 2014-01-31 2015-08-06 博 久保田 水素生成触媒
CN105036195A (zh) * 2015-07-16 2015-11-11 合肥学院 一种二硫化钨/二硫化钼复合物及其制备方法
CN106830087A (zh) * 2017-02-28 2017-06-13 河北工业大学 一种单斜系三氧化钨的制备方法
CN109201084A (zh) * 2018-11-06 2019-01-15 中国科学院东北地理与农业生态研究所 一种三氧化钨@二硫化钼中空管复合催化剂的制备方法及其应用
CN110975889A (zh) * 2019-09-23 2020-04-10 太原理工大学 一种三氧化钨-二硫化钼型复合光催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015142882A (ja) * 2014-01-31 2015-08-06 博 久保田 水素生成触媒
CN105036195A (zh) * 2015-07-16 2015-11-11 合肥学院 一种二硫化钨/二硫化钼复合物及其制备方法
CN106830087A (zh) * 2017-02-28 2017-06-13 河北工业大学 一种单斜系三氧化钨的制备方法
CN109201084A (zh) * 2018-11-06 2019-01-15 中国科学院东北地理与农业生态研究所 一种三氧化钨@二硫化钼中空管复合催化剂的制备方法及其应用
CN110975889A (zh) * 2019-09-23 2020-04-10 太原理工大学 一种三氧化钨-二硫化钼型复合光催化剂及其制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804868A (zh) * 2022-04-29 2022-07-29 吉林电力股份有限公司长春热电分公司 一种三氧化钨陶瓷骨架坩埚的制备方法
CN114804868B (zh) * 2022-04-29 2023-06-09 吉林电力股份有限公司长春热电分公司 一种三氧化钨陶瓷骨架坩埚的制备方法
CN114950497A (zh) * 2022-05-31 2022-08-30 安徽大学 一种用于光电催化杀灭耐药菌的三氧化钨/硒化钨复合纳米光阳极材料及其制备方法
CN114950497B (zh) * 2022-05-31 2023-10-17 安徽大学 一种用于光电催化杀灭耐药菌的三氧化钨/硒化钨复合纳米光阳极材料及其制备方法
CN115722234A (zh) * 2022-11-15 2023-03-03 陕西科技大学 一种具有光动力-类酶活性的Ce-MoS2/WO3纳米复合抗菌材料的制备方法和应用

Similar Documents

Publication Publication Date Title
CN111974419A (zh) 一种制备二硫化钼/三氧化钨复合光催化剂的新方法
Chaudhary et al. Rationally designed multifunctional Ti3C2 MXene@ Graphene composite aerogel integrated with bimetallic selenides for enhanced supercapacitor performance and overall water splitting
Jiao et al. Synthesis of Z-scheme g-C3N4/PPy/Bi2WO6 composite with enhanced visible-light photocatalytic performance
CN104495937B (zh) 一种碳掺杂的二硫化钼纳米材料的制备方法
Xu et al. Synthesis and behaviors of g-C3N4 coupled with LaxCo3-xO4 nanocomposite for improved photocatalytic activeity and stability under visible light
CN108262054A (zh) 一种钒酸银/多孔氮化碳异质结复合光催化剂的制备方法
CN100494074C (zh) 非晶态硫化钼纳米粉体的制备方法
CN105056985A (zh) g-C3N4/氧化石墨烯/纳米铁可见光响应催化膜
CN106925304B (zh) Bi24O31Br10/ZnO复合可见光催化剂及其制备方法
Meena et al. Optical, electrochemical and photocatalytic properties of sunlight driven Cu doped manganese ferrite synthesized by solution combustion synthesis
CN108772092A (zh) 一种Ag3PO4/g-C3N4复合管状纳米粉体及其制备方法
Liu et al. Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction
CN106807411B (zh) 一种铁酸镧掺杂溴化银复合光催化剂的制备方法
Mehraeen et al. Homogeneous growth of TiO2-based nanotubes on nitrogen-doped reduced graphene oxide and its enhanced performance as a Li-ion battery anode
CN105582909A (zh) 一种钨酸铋/膨胀石墨片层纳米复合材料的制备方法及其用途
CN107601557A (zh) 一种制备1T@2H‑MoS2/黑色TiO2的方法
Yu et al. Novel Bi12TiO20/g-C3N4 composite with enhanced photocatalytic performance through Z-scheme mechanism
CN105540640A (zh) 一种花状纳米氧化锌的制备方法
CN110203976A (zh) 快速合成雪花状ZnCo2O4-ZnO复合电级材料的制备方法
CN105664975A (zh) 一种层状MoS2-Bi2MoO6纳米复合材料的制备方法
Borhade et al. A Comparative study on synthesis, characterization and photocatalytic activities of MgO and Fe/MgO nanoparticles
Lu et al. Microwave-assisted synthesis and characterization of BiOI/BiF 3 p–n heterojunctions and its enhanced photocatalytic properties
CN108658059B (zh) 一种三氧化钨/氮掺杂石墨烯复合物的制备方法
Deng et al. Fabrication of In-rich AgInS2 nanoplates and nanotubes by a facile low-temperature co-precipitation strategy and their excellent visible-light photocatalytic mineralization performance
CN106964388B (zh) 一种钨酸亚锡掺杂二维石墨相氮化碳复合光催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201124