CN111974418A - 一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法 - Google Patents

一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法 Download PDF

Info

Publication number
CN111974418A
CN111974418A CN202010668205.2A CN202010668205A CN111974418A CN 111974418 A CN111974418 A CN 111974418A CN 202010668205 A CN202010668205 A CN 202010668205A CN 111974418 A CN111974418 A CN 111974418A
Authority
CN
China
Prior art keywords
srfe
solution
mos
magnetic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010668205.2A
Other languages
English (en)
Inventor
徐龙君
芦媛
刘成伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202010668205.2A priority Critical patent/CN111974418A/zh
Publication of CN111974418A publication Critical patent/CN111974418A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法,属于纳米无机光催化材料领域。本发明先采用水热法制备了硬磁材料锶铁氧体作为磁性基体,再采用水热‑焙烧‑混合法制备了三元复合磁性光催化材料MoS2/WO3/SrFe12O19。制备的三元复合物磁性能稳定,光催化活性高,在模拟太阳光氙灯照射下,50mg制备的复合磁性光催化剂,降解100mL浓度为10mg/L的罗丹明B溶液,80min时的光催化降解率为93.0%,在外加磁场下回收3次循环再利用,三元复合磁性光催化材料对罗丹明B的降解率为87.7%。本发明方法安全环保,制备工艺简便,生产成本低,可作为降解有机污染废水的潜力候选材料。

Description

一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法
技术领域
本发明涉及一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法,属于无机纳米光催化材料技术领域。
背景技术
随着半导体光催化技术的发展,针对光催化材料的研究皆在致力于发掘带隙窄、光吸收性能强的新型高效光催化材料。其中,MoS2作为过渡金属硫化物中的典型代表,其可见光响应能力较好,禁带宽度较小(1.2-1.8eV)且储能大,其电化学性能、光催化性能和吸附性能均较优,近几年受到了国内外学者的广泛关注。特别是其晶体结构独特,在层与层之间微弱的范德华力下,两层S原子与二者中间夹层的Mo原子共同构成了一种层状三明治结构,结合其能带特征和特殊的层级结构常被应用在新型光催化材料的研究领域中。此外,WO3作为一种2D过渡金属氧化物,具有优异的光电、热电、和气敏特性。特别是在光催化领域中, WO3相比常见的几种半导体(如:TiO2、SnO2和ZnO等),具有相对较窄的禁带宽度,同时它具有抗光腐蚀性和在酸性溶液中的稳定性等优势,被认为是一种高效的可见光催化剂。
然而,单一的半导体光催化材料依旧无法避免光生电子-空穴对的再次复合,特别是大部分催化材料在参与反应后通常回收困难、成本较高,且存在次生污染而难以被推广。因此,将光催化材料赋磁,便于分离回收和再利用是十分必要的。目前,尚未见到关于三元复合磁性光催化材料MoS2/WO3/SrFe12O19的研究报道,且针对MoS2和WO3的磁性光催化剂主要是利用软磁性的Fe3O4或以Fe2O3为主成分的铁系磁性氧化物(如NiFe2O4和CoFe2O4等)为磁性基体,如“Chemistry-A European Journal”2011年第17卷5145-5154页中的“Fe3O4/WO3Hierarchical Core-Shell Structure:High-Performance and Recyclable Visible-Light Photocatalysis”一文(对比文件1),先以水热法制备Fe3O4,再采用水热-焙烧法制得复合磁性光催化剂 Fe3O4/WO3。该方法存在的问题是:(1)制备复合物的前驱体Fe3O4/W18O49需要历经2次水热反应,且还需在420℃下焙烧6h才能得到二元复合物Fe3O4/WO3,能耗较大,制备步骤繁琐;(2)复合磁性光催化剂处理污染物的能力欠佳,0.1g的催化剂仅适宜处理低浓度有机废水,即降解100mL浓度为4mg/L的罗丹明B水溶液,90min后降解率为93%左右。
又如“Journal of Colloid and Interface Science”2018年第514卷664-674页中的“Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highlyefficient photocatalytic activity”一文(对比文件2),该文先采用水热法制备了磁性基体CoFe2O4,随后按照一定的比例将 CoFe2O4投放至MoS2的前驱体溶液中,再次通过水热反应制备得到复合磁性光催化材料 MoS2/CoFe2O4。该方法存在的主要问题是:(1)磁性基体CoFe2O4的制备,其前驱体分散于大量的有机溶剂乙二醇中,不仅成本较高且低毒对人体有害,此外,反应若遇高热、容器内压强增大,则有开裂或爆炸的危险;(2)制备的MoS2/CoFe2O4复合物的饱和磁化强度较低,仅为0.14emu/g。
发明内容
本发明解决的技术问题是提供了一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法,其核心在于合成光催化性能优异且磁性能稳定的复合材料,本发明制备工艺简便,易于控制,成本低且安全环保,对有机染料废水的处理具有突出的优势,且在外加磁场作用下可快速分离回收。
本发明制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法如下:
(1)磁性基体SrFe12O19的制备
分别称取0.7465的SrCl2·6H2O和6.0545g的FeCl3·6H2O,用35mL去离子水超声溶解,得到混合溶液A;称取8.736g NaOH,用20mL去离子水超声溶解得到溶液B;在恒温20℃水浴和磁力搅拌下,将溶液B缓慢滴加到混合溶液A中,并持续搅拌15min,待溶液充分混合,得到SrFe12O19前驱体C;将前驱体C倒入100mL水热釜中,200℃下反应24h取出,自然冷却至室温,抽滤,滤饼用去离子水洗涤至滤液呈中性后置于80℃烘箱中干燥24h,研磨后,得到磁性基体SrFe12O19
(2)三元复合磁性光催化材料MoS2/WO3/SrFe12O19的制备
分别称取1g的Na2WO4·2H2O和1.2g的柠檬酸C6H8O7·H2O,加入到60mL去离子水中,超声15min并机械搅拌15min,使其充分混合得到溶液D;按照理论生成SrFe12O19在三元复合物中的质量百分数4wt%~6wt%,称取已制备好的SrFe12O19粉末,将其投放至混合溶液D中并持续搅拌30min,用2mol/L的稀HCl调节混合溶液的pH值至1,待其反应充分后得到悬浊液E;将悬浊液E装入100mL的水热釜中,保持120℃反应24h,冷却后过滤,滤饼用去离子水多次洗涤并在80℃烘箱中干燥12h,研磨后放入用马弗炉,在400℃下焙烧4h,得到WO3/SrFe12O19;分别称取0.4319g MoO3和0.8746g KSCN试剂,加入到60mL去离子水中,超声15min并机械搅拌30min,得到溶液F;用2mol/L的稀盐酸调节溶液F的pH值为2,随后以200℃水热条件反应24h,得到MoS2;将其与上述制得的WO3-SrFe12O19在水溶液环境下超声混合,并通过机械搅拌1h,离心后置于85℃烘箱中干燥12h,得到三元复合磁性光催化材料MoS2/WO3/SrFe12O19
本发明采用上述技术方案,主要有以下效果:
(1)本发明方法制备的三元复合磁性光催化材料MoS2/WO3/SrFe12O19具有较高的光催化活性,在模拟太阳光氙灯的照射下,50mg制备的复合光催化剂,降解100mL浓度为10mg/L 的罗丹明B溶液,80min时的光催化降解率为93.0%(优于对比文件1中制备的复合材料Fe3O4/WO3),且本发明用于降解染料罗丹明B的浓度更高,催化剂用量更少。
(2)本发明方法制备的三元复合磁性光催化材料MoS2/WO3/SrFe12O19(5wt%)的饱和磁化强度Ms为3.6emu/g(优于对比文件2),可在外加磁场作用下进行回收率。
(3)本发明采用水热-焙烧-混合法,操作简便,成本低,安全环保,适宜推广。
附图说明
图1为SrFe12O19、MoS2/WO3和MoS2/WO3/SrFe12O19的X射线衍射图谱;
图2为SrFe12O19、MoS2、WO3和MoS2/WO3/SrFe12O19的红外光谱图;
图3为SrFe12O19和MoS2/WO3/SrFe12O19的磁滞回线图。
具体实施方式
下面结合具体实施方式,进一步说明本发明。
实施例1
一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法,具体步骤如下:
(1)磁性基体SrFe12O19的制备
分别称取0.7465的SrCl2·6H2O和6.0545g的FeCl3·6H2O,用35mL去离子水超声溶解,得到混合溶液A;称取8.736g NaOH,用20mL去离子水超声溶解得到溶液B;在恒温20℃水浴和磁力搅拌下,将溶液B缓慢滴加到混合溶液A中,并持续搅拌15min,待溶液充分混合,得到SrFe12O19前驱体C;将前驱体C倒入100mL水热釜中,200℃下反应24h取出,自然冷却至室温,抽滤,滤饼用去离子水洗涤至滤液呈中性后置于80℃烘箱中干燥24h,研磨后,得到磁性基体SrFe12O19
(2)三元复合磁性光催化材料MoS2/WO3/SrFe12O19的制备
分别称取1g的Na2WO4·2H2O和1.2g的C6H8O7·H2O,加入到60mL去离子水中,超声15min并机械搅拌15min,使其充分混合得到溶液D;按照理论生成SrFe12O19在三元复合物中的质量百分数4wt%,称取已制备好的SrFe12O19粉末,将其投放至混合溶液D中并持续搅拌30min,用2mol/L的稀HCl调节混合溶液的pH值至1,待其反应充分后得到悬浊液E;将悬浊液E装入100mL的水热釜中,保持120℃反应24h,冷却后过滤,滤饼用去离子水多次洗涤并在80℃烘箱中干燥12h,研磨后放入用马弗炉,在400℃下焙烧4h,得到 WO3/SrFe12O19;分别称取0.4319g MoO3和0.8746g KSCN试剂,加入到60mL去离子水中,超声15min并机械搅拌30min,得到溶液F;用2mol/L的稀盐酸调节溶液F的pH值为2,随后以200℃水热条件反应24h,得到MoS2;将其与上述制得的WO3-SrFe12O19在水溶液环境下超声混合,并通过机械搅拌1h,离心后置于85℃烘箱中干燥12h,得到三元复合磁性光催化材料MoS2/WO3/SrFe12O19
实施例2
一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法,具体步骤如下:
(1)同实施例1的步骤(1)。
(2)三元复合磁性光催化材料MoS2/WO3/SrFe12O19的制备
分别称取1g的Na2WO4·2H2O和1.2g的柠檬酸C6H8O7·H2O,加入到60mL去离子水中,超声15min并机械搅拌15min,使其充分混合得到溶液D;按照理论生成SrFe12O19在三元复合物中的质量百分数5wt%,称取已制备好的SrFe12O19粉末,将其投放至混合溶液D中并持续搅拌30min,用2mol/L的稀HCl调节混合溶液的pH值至1,待其反应充分后得到悬浊液E;将悬浊液E装入100mL的水热釜中,保持120℃反应24h,冷却后过滤,滤饼用去离子水多次洗涤并在80℃烘箱中干燥12h,研磨后放入用马弗炉,在400℃下焙烧4h,得到 WO3/SrFe12O19;分别称取0.4319g MoO3和0.8746g KSCN试剂,加入到60mL去离子水中,超声15min并机械搅拌30min,得到溶液F;用2mol/L的稀盐酸调节溶液F的pH值为2,随后以200℃水热条件反应24h,得到MoS2;将其与上述制得的WO3-SrFe12O19在水溶液环境下超声混合,并通过机械搅拌1h,离心后置于85℃烘箱中干燥12h,得到三元复合磁性光催化材料MoS2/WO3/SrFe12O19
实施例3
一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法,具体步骤如下:
(1)同实施例1的步骤(1)。
(2)三元复合磁性光催化材料MoS2/WO3/SrFe12O19的制备
分别称取1g的Na2WO4·2H2O和1.2g的柠檬酸C6H8O7·H2O,加入到60mL去离子水中,超声15min并机械搅拌15min,使其充分混合得到溶液D;按照理论生成SrFe12O19在三元复合物中的质量百分数6wt%,称取已制备好的SrFe12O19粉末,将其投放至混合溶液D中并持续搅拌30min,用2mol/L的稀HCl调节混合溶液的pH值至1,待其反应充分后得到悬浊液E;将悬浊液E装入100mL的水热釜中,保持120℃反应24h,冷却后过滤,滤饼用去离子水多次洗涤并在80℃烘箱中干燥12h,研磨后放入用马弗炉,在400℃下焙烧4h,得到 WO3/SrFe12O19;分别称取0.4319g MoO3和0.8746g KSCN试剂,加入到60mL去离子水中,超声15min并机械搅拌30min,得到溶液F;用2mol/L的稀盐酸调节溶液F的pH值为2,随后以200℃水热条件反应24h,得到MoS2;将其与上述制得的WO3-SrFe12O19在水溶液环境下超声混合,并通过机械搅拌1h,离心后置于85℃烘箱中干燥12h,得到三元复合磁性光催化材料MoS2/WO3/SrFe12O19
实验结果
实施例2制备的三元复合磁性光催化材料MoS2/WO3/SrFe12O19的催化降解活性最佳。为了方便对比,制备了MoS2/WO3。MoS2/WO3的制备方法为实施例2步骤(2)中不加入SrFe12O19
本发明所制备的SrFe12O19、MoS2/WO3和MoS2/WO3/SrFe12O19的XRD图如图1所示。图1(a)为SrFe12O19的X射线衍射图,2-Theta位于23.19°、30.39°、31.02°、32.36°、34.22°、37.18°、40.43°和42.53°处的特征峰,分别归属于M型锶铁氧体SrFe12O19(JCPDS卡片No.33-1340)的(006)、(110)、(008)、(107)、(114)、(203)、(205)和(206)晶面;图1 (c)为MoS2/WO3的X射线衍射图,其衍射峰分别归属于标准卡片中2H型硫化钼MoS2 (JCPDS卡片No.37-1492)的(002)晶面和单斜相WO3(JCPDS卡片No.43-1035)的(020)、 (200)和(202)等晶面;图1(b)是采用本发明方法所制备的三元复合磁性光催化材料 MoS2/WO3/SrFe12O19,其X射线的特征衍射峰与上述SrFe12O19和MoS2/WO3的特征峰一一对应,表明在加入磁性基体后并不会破坏MoS2和WO3的晶型。同时,在2θ=30.44°处显示的微弱衍射峰与M型SrFe12O19的(110)晶面相对应(JCPDS卡片No.33-1340),说明已成功合成了MoS2/WO3/SrFe12O19三元复合磁性光催化剂。
本发明方法所制备的SrFe12O19、MoS2、WO3和MoS2/WO3/SrFe12O19的红外光谱如图2所示,在特征区中,波数在3443.8cm-1和1615.1cm-1较宽的吸收峰,分别对应样品的结构水分子和表面复合氧化物的吸附水分子的变形振动,即归属于O-H伸缩振动和弯曲振动所形成的吸收带;1393.3cm-1左右处的吸收峰为-NO2基团的伸缩振动所引起的,2353.7cm-1处微弱的吸收峰归因于大气中的CO2吸附;其中,指纹区所显示的特征吸收峰中位于957.5cm-1左右处的吸收带,归属于单斜相WO3其W=O键的终端振动,说明复合样品表面存在微小的水合作用;范围在450cm-1-1000cm-1区间的吸收峰为O-W-O的伸缩振动,能够发现三元复合样在610cm-1处的特征吸收峰与MoS2代表的Mo-S键以及SrFe12O19的特征吸收峰部分重叠,因此弱化了低波数位置的吸收振动带;通过对比磁性基体SrFe12O19在指纹区的特征吸收峰(591.5cm-1和542.8cm-1)发现,二者均能与复合样品MoS2/WO3/SrFe12O19在低波数显现的吸收峰相对应,归属于铁氧体中Fe3+-O2-的振动;复合材料拥有MoS2、SrFe12O19和WO3明显的特征峰,且上述表征结果与文献相符并与XRD结论相对应,证明本发明制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法切实有效。
光催化实验显示,本发明方法制备的三元复合磁性光催化材料MoS2/WO3/SrFe12O19,在模拟太阳光氙灯的照射下,50mg制备的复合光催化剂,降解100mL浓度为10mg/L的罗丹明 B溶液,80min时的光催化降解率达到93.0%,且经过3次循环再利用,三元复合磁性光催化材料对罗丹明B的降解率保持在87.7%。本发明方法制备工艺简单,易于控制,生产成本低,绿色环保,可广泛应用于催化降解有机污染物的领域中。
SrFe12O19和MoS2/WO3/SrFe12O19的磁性能参数测试结果如图3所示,SrFe12O19饱和磁化强度为61.5emu/g、矫顽力为746.3Oe;MoS2/WO3/SrFe12O19饱和磁化强度为3.6emu/g、矫顽力为1037.2Oe;以本发明方法制备的上述产品拥有较强的磁学性能优势,特别是所制备的复合样,其矫顽力有明显的提升,具有更高的抗退磁能力和磁稳定性,有利于回收利用。
以上实施例描述了本发明的制备方法、主要特征及优点。本发明不受上述实施例的限制,在不脱离本发明原理、方法的范围下,本发明将持续改进,这些均落入本发明保护的范围内。

Claims (2)

1.一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法,其特征包括以下步骤:
(1)磁性基体SrFe12O19的制备
分别称取0.7465的SrCl2·6H2O和6.0545g的FeCl3·6H2O,用35mL去离子水超声溶解,得到混合溶液A;称取8.736g NaOH,用20mL去离子水超声溶解得到溶液B;在恒温20℃水浴和磁力搅拌下,将溶液B缓慢滴加到混合溶液A中,并持续搅拌15min,待溶液充分混合,得到SrFe12O19前驱体C;将前驱体C倒入100mL水热釜中,200℃下反应24h取出,自然冷却至室温,抽滤,滤饼用去离子水洗涤至滤液呈中性后置于80℃烘箱中干燥24h,研磨后,得到磁性基体SrFe12O19
(2)三元复合磁性光催化材料MoS2/WO3/SrFe12O19的制备
分别称取1g的Na2WO4·2H2O和1.2g的柠檬酸C6H8O7·H2O,加入到60mL去离子水中,超声15min并机械搅拌15min,使其充分混合得到溶液D;按照理论生成SrFe12O19在三元复合物中的质量百分数4wt%~6wt%,称取已制备好的SrFe12O19粉末,将其投放至混合溶液D中并持续搅拌30min,用2mol/L的稀HCl调节混合溶液的pH值至1,待其反应充分后得到悬浊液E;将悬浊液E装入100mL的水热釜中,保持120℃反应24h,冷却后过滤,滤饼用去离子水多次洗涤并在80℃烘箱中干燥12h,研磨后放入用马弗炉,在400℃下焙烧4h,得到WO3/SrFe12O19;分别称取0.4319g MoO3和0.8746g KSCN试剂,加入到60mL去离子水中,超声15min并机械搅拌30min,得到溶液F;用2mol/L的稀盐酸调节溶液F的pH值为2,随后以200℃水热条件反应24h,得到MoS2;将其与上述制得的WO3-SrFe12O19在水溶液环境下超声混合,并通过机械搅拌1h,离心后置于85℃烘箱中干燥12h,得到三元复合磁性光催化材料MoS2/WO3/SrFe12O19
2.根据权利要求1所述的三元复合磁性光催化材料MoS2/WO3/SrFe12O19的制备方法,其特征在于以水热-焙烧-混合法制备,实现了MoS2、WO3与磁性基体SrFe12O19的有效复合。
CN202010668205.2A 2020-07-13 2020-07-13 一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法 Pending CN111974418A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010668205.2A CN111974418A (zh) 2020-07-13 2020-07-13 一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010668205.2A CN111974418A (zh) 2020-07-13 2020-07-13 一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法

Publications (1)

Publication Number Publication Date
CN111974418A true CN111974418A (zh) 2020-11-24

Family

ID=73437689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010668205.2A Pending CN111974418A (zh) 2020-07-13 2020-07-13 一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法

Country Status (1)

Country Link
CN (1) CN111974418A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939416A (zh) * 2022-07-01 2022-08-26 重庆大学 一种可见光响应的复合磁性二氧化锡光催化剂的制备方法
CN115041182A (zh) * 2022-07-12 2022-09-13 重庆大学 一种磁性三元复合光催化剂In-MoO3/SrFe12O19的制备方法
CN115254123A (zh) * 2022-07-12 2022-11-01 重庆大学 一种新型镍磁性复合光催化剂SnO2/NiFe2O4的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830087A (zh) * 2017-02-28 2017-06-13 河北工业大学 一种单斜系三氧化钨的制备方法
CN107552073A (zh) * 2017-09-13 2018-01-09 重庆大学 一种MoS2‑AIZS纳米复合材料的制备方法及其产品和应用
CN108452813A (zh) * 2018-03-23 2018-08-28 重庆大学 一种MoS2/SrFe12O19复合磁性光催化剂的制备方法
CN109201084A (zh) * 2018-11-06 2019-01-15 中国科学院东北地理与农业生态研究所 一种三氧化钨@二硫化钼中空管复合催化剂的制备方法及其应用
US20190015818A1 (en) * 2017-07-13 2019-01-17 Board Of Trustees Of The University Of Arkansas Doped carbonaceous materials for photocatalytic removal of pollutants under visible light, making methods and applications of same
CN109985640A (zh) * 2019-02-18 2019-07-09 中国科学院东北地理与农业生态研究所 三氧化钨@二硫化钼/银中空管光催化剂的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106830087A (zh) * 2017-02-28 2017-06-13 河北工业大学 一种单斜系三氧化钨的制备方法
US20190015818A1 (en) * 2017-07-13 2019-01-17 Board Of Trustees Of The University Of Arkansas Doped carbonaceous materials for photocatalytic removal of pollutants under visible light, making methods and applications of same
CN107552073A (zh) * 2017-09-13 2018-01-09 重庆大学 一种MoS2‑AIZS纳米复合材料的制备方法及其产品和应用
CN108452813A (zh) * 2018-03-23 2018-08-28 重庆大学 一种MoS2/SrFe12O19复合磁性光催化剂的制备方法
CN109201084A (zh) * 2018-11-06 2019-01-15 中国科学院东北地理与农业生态研究所 一种三氧化钨@二硫化钼中空管复合催化剂的制备方法及其应用
CN109985640A (zh) * 2019-02-18 2019-07-09 中国科学院东北地理与农业生态研究所 三氧化钨@二硫化钼/银中空管光催化剂的制备方法及其应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939416A (zh) * 2022-07-01 2022-08-26 重庆大学 一种可见光响应的复合磁性二氧化锡光催化剂的制备方法
CN114939416B (zh) * 2022-07-01 2023-08-22 重庆大学 一种可见光响应的复合磁性二氧化锡光催化剂的制备方法
CN115041182A (zh) * 2022-07-12 2022-09-13 重庆大学 一种磁性三元复合光催化剂In-MoO3/SrFe12O19的制备方法
CN115254123A (zh) * 2022-07-12 2022-11-01 重庆大学 一种新型镍磁性复合光催化剂SnO2/NiFe2O4的制备方法
CN115041182B (zh) * 2022-07-12 2023-06-09 重庆大学 一种磁性三元复合光催化剂In-MoO3/SrFe12O19的制备方法
CN115254123B (zh) * 2022-07-12 2023-08-22 重庆大学 一种新型镍磁性复合光催化剂SnO2/NiFe2O4的制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Microwave hydrothermally synthesized WO 3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B
Shafawi et al. Bi2O3 particles decorated on porous g-C3N4 sheets: enhanced photocatalytic activity through a direct Z-scheme mechanism for degradation of Reactive Black 5 under UV–vis light
Liu et al. Insight into the photocatalytic properties of diatomite@ Ni/NiO composite for effective photo-degradation of malachite green dye and photo-reduction of Cr (VI) under visible light
CN111974418A (zh) 一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法
Van Tran et al. New TiO2-doped Cu–Mg spinel-ferrite-based photocatalyst for degrading highly toxic rhodamine B dye in wastewater
Zouhier et al. Preparation of ZnFe2O4/ZnO composite: effect of operational parameters for photocatalytic degradation of dyes under UV and visible illumination
Shi et al. Assembling g-C3N4 nanosheets on rod-like CoFe2O4 nanocrystals to boost photocatalytic degradation of ciprofloxacin with peroxymonosulfate activation
CN103480384B (zh) 一种锶铁氧体负载的钒酸铋复合光催化剂的制备方法
CN108311165B (zh) 一种制备BiOCl/SrFe12-xCoxO19复合磁性光催化材料的方法
CN108452813B (zh) 一种MoS2/SrFe12O19复合磁性光催化剂的制备方法
Amouhadi et al. Photodegradation and mineralization of metronidazole by a novel quadripartite SnO2@ TiO2/ZrTiO4/ZrO2 photocatalyst: comprehensive photocatalyst characterization and kinetic study
CN108404856B (zh) 用稻壳灰制备磁性硅酸铜吸附剂及其制备方法
Suppaso et al. Magnetically recoverable β-Ni (OH) 2/γ-Fe2O3/NiFe-LDH composites; isotherm, thermodynamic and kinetic studies of synthetic dye adsorption and photocatalytic activity
CN109647437B (zh) 一种CuS掺杂纳米TiO2光催化剂、制备方法及其应用
CN111974422A (zh) 一种制备二溴五氧化四铋/锰锌铁氧体复合磁性光催化剂的方法
CN108355700B (zh) 多金属氧酸盐及其复合物、制备方法和应用
CN110339843B (zh) 一种磁性氧化铋/钒酸铋复合光催化剂的制备方法
CN104148094A (zh) 一种氟氧化铋/石墨烯复合可见光催化剂的制备方法
Mohebali et al. Effect of substituting molybdenum atoms with tungsten on photocatalyst activity of cesium salt of keggin type polyoxometalates decorated magnetic ceria
Zhao et al. Fabrication of sulfuretted NiFe-layered double hydroxides/nitrogen self-doped g-C3N4 Z-scheme heterojunction for hexavalent chromium reduction under visible light irradiation
Sharafinia et al. Decoration of ZnFe2O4 and UiO-66 over g-C3N4 as magnetically novel reusable visible light photocatalyst for degradation of Rh–B
Feng et al. Hierarchical structured ZnFe 2 O 4@ RGO@ TiO 2 composite as powerful visible light catalyst for degradation of fulvic acid
CN111974407A (zh) 一种制备磁性三氧化钨复合光催化剂的方法
Elansary et al. In-depth study of the photocatalytic performance of novel magnetic catalysts for efficient photocatalytic degradation of the dye orange G
Bhat et al. Insights into the dopant engineering in copper-doped SrTiO3 nanocubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201124

RJ01 Rejection of invention patent application after publication