CN111974407A - 一种制备磁性三氧化钨复合光催化剂的方法 - Google Patents

一种制备磁性三氧化钨复合光催化剂的方法 Download PDF

Info

Publication number
CN111974407A
CN111974407A CN202010668611.9A CN202010668611A CN111974407A CN 111974407 A CN111974407 A CN 111974407A CN 202010668611 A CN202010668611 A CN 202010668611A CN 111974407 A CN111974407 A CN 111974407A
Authority
CN
China
Prior art keywords
srfe
magnetic
photocatalyst
composite
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010668611.9A
Other languages
English (en)
Inventor
芦媛
冯岐
徐龙君
刘成伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202010668611.9A priority Critical patent/CN111974407A/zh
Publication of CN111974407A publication Critical patent/CN111974407A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种磁性三氧化钨复合光催化剂WO3/SrFe12O19的制备方法,属于无机纳米光催化材料领域。本发明先采用水热法制备了磁性基体SrFe12O19,再采用水热‑焙烧法制备了磁性复合光催化剂WO3/SrFe12O19。本发明方法制备工艺简单,能耗少,易于控制,生产成本低。制备的WO3/SrFe12O19复合磁性光催化剂磁性能稳定,结晶度良好。在模拟太阳光氙灯的照射下,当5mM的H2O2存在时,0.1g制备的复合磁性光催化剂,降解100mL浓度为10mg/L的罗丹明B溶液,80min时对罗丹明B的降解率达到98.4%,重复使用3次后对罗丹明B降解率保持在86.6%以上。本发明制备的产品使用过程绿色环保,对工业化有机染料废水的处理具有突出的优势。

Description

一种制备磁性三氧化钨复合光催化剂的方法
技术领域
本发明涉及一种磁性三氧化钨复合光催化剂WO3/SrFe12O19的制备方法,属于无机纳米光催化材料技术领域。
背景技术
纳米材料的光催化领域作为一种涵盖多学科交叉的新兴研究领域,已成为工业废水治理和洁净能源生产技术的热点研究方向。其中,以三氧化钨(WO3)为代表的过渡金属氧化物,具有优异的光电、热电、湿敏和气敏等特性。特别是纳米结构的WO3在催化、光开关、显示器智能窗口和光记录设备等领域有着广泛的应用前景。同时,WO3作为一种窄带隙半导体材料,禁带宽度约为2.4eV-2.8eV,并表现出在价带边缘电位上光催化氧化能力增强的特性。此外,它具有在酸性溶液中的稳定性、低毒性、性价比高等优势,被认为是一种高效可见光驱的半导体光催化剂。
就目前相关文献报道,对于WO3的改性及其复合物的研究成果较多,如“Preparation of hierarchical micro/nanostructured Bi2S3-WO3 composites forenhanced photocatalytic performance”(Journal of Alloys and Compounds,2016,685:812-819)一文(对比文件1),该文先采用水热-焙烧法制备出WO3,再采用水热法复合得到纳米结构的Bi2S3-WO3。该方法存在的主要问题是:(1)制备WO3时是将Pb(Ac)2·H2O和Na2WO4分别溶解于乙二醇溶液中,水热反应12h(160℃)形成前驱体PbWO4,然后将PbWO4浸入HNO3溶液中48h以洗脱Pb2+,最后使H2WO4在500℃下焙烧2h制得,该过程制备周期较长,前驱体在有机溶剂乙二醇中反应生成,特别是所用试剂含有醋酸铅(Pb(Ac)2·H2O)具有毒性,成本较高,且会产生含有一类重金属污染物的高浓度有机废水,不适合推广;(2)制备的WO3光催化活性不高,120min对罗丹明B的降解率仅为25%,复合物Bi2S3-WO3的降解率为90.7%;(3)复合材料的回收成本较高,且易造成催化剂回收不彻底而引发二次污染。
为了使光催化剂做到节能环保,将其赋磁以便于分离使用是十分必要的。目前,磁性基体主要是以软磁性的四氧化三铁(Fe3O4)为主,如“Fe3O4/WO3 Hierarchical Core-Shell Structure:High-Performance and Recyclable Visible-Light Photocatalysis”(CHEMISTRY-A EUROPEAN JOURNAL,2011,17(18):5145-5154)一文(对比文件2),以水热法先制备Fe3O4,再采用水热-焙烧法得到复合磁性光催化剂Fe3O4/WO3。该方法存在的问题是:(1)制备Fe3O4和WO3的过程中均涉及到有机溶剂乙二醇,致使成本较高,且反应时间较长,使得能耗较大,对于大规模的工业化生产并不适用;(2)制得的复合磁性光催化材料的矫顽力较小(160Oe),磁化后易失去磁性,磁稳定性能不佳;(3)复合磁性光催化剂仅对低浓度的污染物具有一定的处理效果,0.1g的Fe3O4/WO3降解100mL浓度为4mg/L的罗丹明B,在1.5h时的降解率为93%左右。
锶铁氧体(SrFe12O19)作为一种硬磁性材料,是一种可见光驱的n型半导体光催化剂,禁带宽度较小,仅为1.5eV,与上述传统的金属软磁材料Fe3O4相比,矫顽力较高、抗退磁能力较强。因此,本发明以SrFe12O19为磁性基体,制备复合磁性光催化剂,以此提高WO3的光催化活性并赋予磁性能,便于分离和循环利用。
发明内容
本发明解决的技术问题是提供了一种WO3/SrFe12O19复合磁性光催化剂的制备方法,其核心在于合成磁学性能优异且稳定的复合磁性光催化剂,在提高WO3光催化活性的同时,有效解决传统方法回收不彻底对环境造成的二次污染的问题。本发明制备工艺简便,易于控制,生产效率高且成本低,对工业化有机染料废水的处理具有突出的优势,同时也拓展了WO3及其复合材料光催化剂的应用。
本发明WO3/SrFe12O19复合磁性光催化剂的制备方法如下:
(1)SrFe12O19的制备
分别称取0.7465g的SrCl2·6H2O和6.0545g的FeCl3·6H2O,用35mL去离子水超声溶解,得到混合溶液A;称取8.736g的NaOH,用20mL去离子水超声溶解,得到溶液B;在恒温20℃水浴和磁力搅拌下,将溶液B缓慢滴加到混合溶液A中,持续搅拌15min,待溶液充分混合,得到SrFe12O19前驱体C;将前驱体C倒入100mL水热釜中,200℃下反应24h取出,自然冷却至室温,抽滤,滤饼用去离子水洗涤至滤液呈中性后,置于80℃烘箱中干燥24h,研磨得到SrFe12O19
(2)WO3/SrFe12O19的制备
分别称取1g的Na2WO4·2H2O和1.2g的柠檬酸C6H8O7·H2O,加入到60mL去离子水中,超声15min并机械搅拌15min使其充分混合,得到溶液D;按照理论生成SrFe12O19在复合物中的质量百分数3wt%~7wt%,称取已制备好的SrFe12O19粉末加入到溶液D中,持续机械搅拌30min,用2mol/L的稀HCl调节混合溶液的pH为1,继续搅拌1h,得到悬浊液E;将悬浊液E装入100mL的水热釜中,120℃下反应24h取出,冷却至室温,过滤,滤饼用去离子水洗涤后置于80℃烘箱中干燥12h,将烘干样研磨后装入50mL的陶瓷坩埚,置于马弗炉中,在400℃下焙烧4h,即得到WO3/SrFe12O19
本发明采用上述技术方案,主要有以下效果:
(1)本发明方法制备的磁性复合光催化剂WO3/SrFe12O19具有较高的光催化活性,在H2O2(5mM)的共同参与下,0.1g制备的最优复合磁性光催化剂降解100mL浓度为10mg/L的罗丹明B溶液,80min时降解率达98.4%(明显优于对比文件2制备的Fe3O4/WO3复合磁性光催化剂),且本发明用于降解目标染料罗丹明B的浓度更高,所用时间更短。
(2)本发明方法制备的磁性复合光催化剂WO3/SrFe12O19可在外加磁场作用下进行回收,3次回收重复使用对罗丹明B降解率仍达到86.6%。
(3)本发明方法制备的磁性复合光催化剂WO3/SrFe12O19,比表面积为11.9m2/g,其制备方法简便,成本低,安全环保。
附图说明
图1为SrFe12O19、WO3和WO3/SrFe12O19的X射线衍射图谱;
图2为WO3/SrFe12O19的场发射扫描电镜SEM图;
图3为SrFe12O19、WO3和WO3/SrFe12O19的红外光谱图;
图4为SrFe12O19和WO3/SrFe12O19的磁滞回线图。
具体实施方式
下面结合具体实施方式,进一步说明本发明。
实施例1
一种磁性复合光催化剂WO3/SrFe12O19的制备方法,具体步骤如下:
(1)SrFe12O19的制备
分别称取0.7465g的SrCl2·6H2O和6.0545g的FeCl3·6H2O,用35mL去离子水超声溶解,得到混合溶液A;称取8.736g的NaOH,用20mL去离子水超声溶解,得到溶液B;在恒温20℃水浴和磁力搅拌下,将溶液B缓慢滴加到混合溶液A中,持续搅拌15min,待溶液充分混合,得到SrFe12O19前驱体C;将前驱体C倒入100mL水热釜中,200℃下反应24h取出,自然冷却至室温,抽滤,滤饼用去离子水洗涤至滤液呈中性后,置于80℃烘箱中干燥24h,研磨得到SrFe12O19
(2)WO3/SrFe12O19的制备
分别称取1g的Na2WO4·2H2O和1.2g的C6H8O7·H2O,加入到60mL去离子水中,超声15min并机械搅拌15min使其充分混合,得到溶液D;按照理论生成SrFe12O19在复合物中的质量百分数3wt%,称取已制备好的SrFe12O19粉末加入到溶液D中,持续机械搅拌30min,用2mol/L的稀HCl调节混合溶液的pH为1,继续搅拌1h,得到悬浊液E;将悬浊液E装入100mL的水热釜中,120℃下反应24h取出,冷却至室温,过滤,滤饼用去离子水洗涤后置于80℃烘箱中干燥12h,将烘干样研磨后装入50mL的陶瓷坩埚,置于马弗炉中,在400℃下焙烧4h,即得到WO3/SrFe12O19
实施例2
一种磁性复合光催化剂WO3/SrFe12O19的制备方法,具体步骤如下:
(1)同实施例1的步骤(1)。
(2)WO3/SrFe12O19的制备
分别称取1g的Na2WO4·2H2O和1.2g的C6H8O7·H2O,加入到60mL去离子水中,超声15min并机械搅拌15min使其充分混合,得到溶液D;按照理论生成SrFe12O19在复合物中的质量百分数5wt%,称取已制备好的SrFe12O19粉末加入到溶液D中,持续机械搅拌30min,用2mol/L的稀HCl调节混合溶液的pH为1,继续搅拌1h,得到悬浊液E;将悬浊液E装入100mL的水热釜中,120℃下反应24h取出,冷却至室温,过滤,滤饼用去离子水洗涤后置于80℃烘箱中干燥12h,将烘干样研磨后装入50mL的陶瓷坩埚,置于马弗炉中,在400℃下焙烧4h,即得到WO3/SrFe12O19
实施例3
一种磁性复合光催化剂WO3/SrFe12O19的制备方法,具体步骤如下:
(1)同实施例1的步骤(1)。
(2)WO3/SrFe12O19的制备
分别称取1g的Na2WO4·2H2O和1.2g的C6H8O7·H2O,加入到60mL去离子水中,超声15min并机械搅拌15min使其充分混合,得到溶液D;按照理论生成SrFe12O19在复合物中的质量百分数7wt%,称取已制备好的SrFe12O19粉末加入到溶液D中,持续机械搅拌30min,用2mol/L的稀HCl调节混合溶液的pH为1,继续搅拌1h,得到悬浊液E;将悬浊液E装入100mL的水热釜中,120℃下反应24h取出,冷却至室温,过滤,滤饼用去离子水洗涤后置于80℃烘箱中干燥12h,将烘干样研磨后装入50mL的陶瓷坩埚,置于马弗炉中,在400℃下焙烧4h,即得到WO3/SrFe12O19
实验结果
实施例2制备的磁性复合光催化剂WO3/SrFe12O19的催化降解活性最佳。为了方便对比,制备了WO3样品。WO3制备方法为实施例2步骤(2)中不加入SrFe12O19
本发明所制备的SrFe12O19、WO3和WO3/SrFe12O19的XRD表征如图1中所示。图1(a)为SrFe12O19的X射线衍射图,2-Theta位于23.19°,30.39°,31.02°,32.36°、34.22°、37.18°、40.43°、42.53°、55.18°和63.12°处的特征峰,分别归属于M型的六方晶系SrFe12O19(JCPDS卡片No.33-1340)的(006)、(110)、(008)、(107)、(114)、(203)、(205)、(206)、(217)和(220)晶面;图1(c)为WO3的X射线衍射图,2-Theta位于23.11°、23.58°、24.34°和34.12°处的衍射峰,分别对应标准卡片中单斜相WO3(JCPDS卡片No.43-1035)的(002)、(020)、(200)和(202)晶面;图1(b)是采用本发明方法所制备的磁性复合光催化剂WO3/SrFe12O19的X射线衍射图,特征衍射峰与上述SrFe12O19和WO3的特征峰一一对应,其各峰形都较为明显,说明产物结晶完整,谱图中既存在SrFe12O19的衍射峰,也有WO3的衍射峰,表明WO3/SrFe12O19复合磁性光催化是由单斜相三氧化钨和M型锶铁氧体所构成的,具有其相关的特性,结构稳定。
本发明所制备的SrFe12O19、WO3和WO3/SrFe12O19的扫描电镜图如图2所示,可以看出,采用水热-焙烧法制备的WO3是由60nm-65nm厚的纵横交错状纳米片组装而成的纳米微球,直径约为2.5μm-2.8μm;SrFe12O19呈现形貌完整的正六边形,无杂质生成,该形貌与XRD检测结果所对应的M型锶铁氧体的形貌特征相符;在放大倍数为200nm可视条件下,WO3/SrFe12O19选区中可明显辨识出磁性基体SrFe12O19,即六角纳米片分布在WO3微球中与球形颗粒具有良好的界面接触,复合样品同时满足三氧化钨和锶铁氧体的形貌特征,证明按照本发明方法已成功制备得到了WO3/SrFe12O19复合磁性光催化剂。
本发明方法所制备的SrFe12O19、WO3和WO3/SrFe12O19的红外光谱如图3所示,在特征区中,波数为1617.5cm-1处的吸收峰是被测样品表面的复合氧化物吸附水的羟基O-H弯曲振动所形成的吸收振动峰,在2921.7cm-1左右处的吸收峰为C-H键的伸缩振动所引起的;其中,指纹区所显示的特征吸收峰1410.6cm-1和1343.7cm-1处的微弱吸收带,分别归属于单斜相WO3的W-OH和W=O键,说明样品表面存在微小的水合作用;在500cm-1-1000cm-1区间的吸收峰为O-W-O的伸缩振动;位于541cm-1和580cm-1(Fe3+-O2-振动)处的吸收峰归属于SrFe12O19的特征吸收峰,但由于此范围内的吸收带与WO3(610cm-1左右)的部分特征峰重叠,因此,复合样品WO3/SrFe12O19在该峰位上向低波数方向略有偏移,这也可以说明WO3与SrFe12O19复合后,二者之间确实存在一种电子的供受体关系,从而表现为特征键位上的移动。由于WO3/SrFe12O19复合磁性光催化剂拥有SrFe12O19和WO3明显的特征峰,且上述表征结果与文献相符并与XRD表征结果相对应,证明本发明WO3/SrFe12O19复合磁性光催化剂的制备方法切实有效。
光催化实验显示,本发明方法制备的一种WO3/SrFe12O19复合磁性光催化剂,在模拟太阳光氙灯的照射下,0.1g制备的最优复合磁性光催化剂与H2O2(5mM)的共同作用,降解100mL浓度为10mg/L的罗丹明B溶液,80min时降解率达98.4%,说明采用本发明制备的WO3/SrFe12O19复合磁性光催化剂具有较高的光催化活性,对模拟太阳光有较强的利用转换和吸收作用,能够加快生成电子-空穴对,使得反应生成大量的具有强氧化性的·OH自由基,快速降解染料分子,且3次重复利用后,对罗丹明B的降解率保持在86.6%以上。
SrFe12O19和WO3/SrFe12O19的磁性能参数测试结果如图4所示,SrFe12O19饱和磁化强度为61.5emu/g、矫顽力为746.3Oe;WO3/SrFe12O19饱和磁化强度为3.4emu/g、矫顽力为951.1Oe;以本发明方法制备的磁性复合光催化剂WO3/SrFe12O19拥有较强的磁学性能优势,其矫顽力有明显的提升,具有更高的抗退磁能力和磁稳定性,有利于光催化剂的回收利用。
以上实施例描述了本发明的制备方法、主要特征及优点。本发明不受上述实施例的限制,在不脱离本发明原理、方法的范围下,本发明将持续改进,这些均落入本发明保护的范围内。

Claims (2)

1.一种磁性三氧化钨复合光催化剂WO3/SrFe12O19的制备方法,其特征包括以下步骤:
(1)SrFe12O19的制备
分别称取0.7465g的SrCl2·6H2O和6.0545g的FeCl3·6H2O,用35mL去离子水超声溶解,得到混合溶液A;称取8.736g的NaOH,用20mL去离子水超声溶解,得到溶液B;在恒温20℃水浴和磁力搅拌下,将溶液B缓慢滴加到混合溶液A中,持续搅拌15min,待溶液充分混合,得到SrFe12O19前驱体C;将前驱体C倒入100mL水热釜中,200℃下反应24h取出,自然冷却至室温,抽滤,滤饼用去离子水洗涤至滤液呈中性后,置于80℃烘箱中干燥24h,研磨得到SrFe12O19
(2)WO3/SrFe12O19的制备
分别称取1g的Na2WO4·2H2O和1.2g的柠檬酸C6H8O7·H2O,加入到60mL去离子水中,超声15min并机械搅拌15min使其充分混合,得到溶液D;按照理论生成SrFe12O19在复合物中的质量百分数3wt%~7wt%,称取已制备好的SrFe12O19粉末加入到溶液D中,持续机械搅拌30min,用2mol/L的稀HCl调节混合溶液的pH为1,继续搅拌1h,得到悬浊液E;将悬浊液E装入100mL的水热釜中,120℃下反应24h取出,冷却至室温,过滤,滤饼用去离子水洗涤后置于80℃烘箱中干燥12h,将烘干样研磨后装入50mL的陶瓷坩埚,置于马弗炉中,在400℃下焙烧4h,即得到WO3/SrFe12O19
2.根据权利要求1所述的WO3/SrFe12O19复合磁性光催化剂的制备方法,其特征在于以水热-焙烧两步法制备,实现了活性组分WO3与磁性基体SrFe12O19的有效复合。
CN202010668611.9A 2020-07-13 2020-07-13 一种制备磁性三氧化钨复合光催化剂的方法 Pending CN111974407A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010668611.9A CN111974407A (zh) 2020-07-13 2020-07-13 一种制备磁性三氧化钨复合光催化剂的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010668611.9A CN111974407A (zh) 2020-07-13 2020-07-13 一种制备磁性三氧化钨复合光催化剂的方法

Publications (1)

Publication Number Publication Date
CN111974407A true CN111974407A (zh) 2020-11-24

Family

ID=73437909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010668611.9A Pending CN111974407A (zh) 2020-07-13 2020-07-13 一种制备磁性三氧化钨复合光催化剂的方法

Country Status (1)

Country Link
CN (1) CN111974407A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939416A (zh) * 2022-07-01 2022-08-26 重庆大学 一种可见光响应的复合磁性二氧化锡光催化剂的制备方法
CN114950463A (zh) * 2022-07-01 2022-08-30 重庆大学 一种新型磁性复合光催化剂MoO3/SrFe12O19的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200959A (zh) * 1998-04-10 1998-12-09 中国科学院感光化学研究所 可磁分离的光催化剂及其制法
CN101913854A (zh) * 2010-08-18 2010-12-15 重庆大学 纳米锶铁氧体磁粉的制备方法
CN104437536A (zh) * 2014-11-13 2015-03-25 重庆大学 一种锰锌铁氧体/氧化铋磁性光催化剂的制备方法
CN106486687A (zh) * 2016-11-21 2017-03-08 重庆大学 光催化产过氧化氢与光催化燃料电池耦合系统
CN106830087A (zh) * 2017-02-28 2017-06-13 河北工业大学 一种单斜系三氧化钨的制备方法
US20180117577A1 (en) * 2013-07-01 2018-05-03 The Regents Of The University Of Colorado A Body Corporate Nanostructured photocatalysts and doped wide-bandgap semiconductors
CN108452813A (zh) * 2018-03-23 2018-08-28 重庆大学 一种MoS2/SrFe12O19复合磁性光催化剂的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200959A (zh) * 1998-04-10 1998-12-09 中国科学院感光化学研究所 可磁分离的光催化剂及其制法
CN101913854A (zh) * 2010-08-18 2010-12-15 重庆大学 纳米锶铁氧体磁粉的制备方法
US20180117577A1 (en) * 2013-07-01 2018-05-03 The Regents Of The University Of Colorado A Body Corporate Nanostructured photocatalysts and doped wide-bandgap semiconductors
CN104437536A (zh) * 2014-11-13 2015-03-25 重庆大学 一种锰锌铁氧体/氧化铋磁性光催化剂的制备方法
CN106486687A (zh) * 2016-11-21 2017-03-08 重庆大学 光催化产过氧化氢与光催化燃料电池耦合系统
CN106830087A (zh) * 2017-02-28 2017-06-13 河北工业大学 一种单斜系三氧化钨的制备方法
CN108452813A (zh) * 2018-03-23 2018-08-28 重庆大学 一种MoS2/SrFe12O19复合磁性光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XINTAI SU ET AL.,: ""Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process"", 《MATERIALS LETTERS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114939416A (zh) * 2022-07-01 2022-08-26 重庆大学 一种可见光响应的复合磁性二氧化锡光催化剂的制备方法
CN114950463A (zh) * 2022-07-01 2022-08-30 重庆大学 一种新型磁性复合光催化剂MoO3/SrFe12O19的制备方法
CN114939416B (zh) * 2022-07-01 2023-08-22 重庆大学 一种可见光响应的复合磁性二氧化锡光催化剂的制备方法
CN114950463B (zh) * 2022-07-01 2023-09-08 重庆大学 一种新型磁性复合光催化剂MoO3/SrFe12O19的制备方法

Similar Documents

Publication Publication Date Title
Labib Preparation, characterization and photocatalytic properties of doped and undoped Bi2O3
Duan et al. Synthesis and characterization of morphology-controllable BiFeO3 particles with efficient photocatalytic activity
CN106824213B (zh) 一种钴氧化物掺杂的碱式碳酸铋/氯氧化铋光催化剂及其制备方法
CN104591301B (zh) 一种多孔纳米CoFe2O4的制备方法
CN108452813B (zh) 一种MoS2/SrFe12O19复合磁性光催化剂的制备方法
Mousavi-Kamazani et al. Solvent-free synthesis of Cu-Cu2O nanocomposites via green thermal decomposition route using novel precursor and investigation of its photocatalytic activity
Quirino et al. CuO rapid synthesis with different morphologies by the microwave hydrothermal method
Zhou et al. Fabrication of Ag 3 PO 4/GO/NiFe 2 O 4 composites with highly efficient and stable visible-light-driven photocatalytic degradation of rhodamine B
CN111974407A (zh) 一种制备磁性三氧化钨复合光催化剂的方法
CN101584987A (zh) 磁性光催化剂制备及用于吸附和光催化降解染料废水
CN111974418A (zh) 一种制备三元复合磁性光催化材料MoS2/WO3/SrFe12O19的方法
CN110090652A (zh) 一种制备氯四氧化三铋/锶铁氧体复合磁性光催化材料的方法
CN101092244A (zh) 一种钛酸锶多孔球的制备方法
Ramezanalizadeh et al. Design and development of a novel lanthanum inserted CuCr2O4 nanoparticles photocatalyst for the efficient removal of water pollutions
CN105664950A (zh) 一种多孔纳米ZnFe2O4的制备方法
CN105540640A (zh) 一种花状纳米氧化锌的制备方法
CN110339843B (zh) 一种磁性氧化铋/钒酸铋复合光催化剂的制备方法
CN105126803A (zh) 一种钛酸锶/石墨烯复合纳米催化剂的制备方法
CN102872846A (zh) 一种粉煤灰微珠负载一维纳米二氧化钛复合光催化剂及其制备方法
CN113926483A (zh) 一种磁回收型双芬顿Fe3O4-Fe-CN复合材料的制备方法及应用
Elansary et al. In-depth study of the photocatalytic performance of novel magnetic catalysts for efficient photocatalytic degradation of the dye orange G
Yao et al. Preparation and hydrogenation of urchin-like titania using a one-step hydrothermal method
Li et al. Enhanced visible-light-driven photocatalytic activity of multiferroic KBiFe 2 O 5 by adjusting pH value
CN111701605A (zh) 一种制备磁性碘七氧化五铋复合光催化材料的方法
CN111569895A (zh) 一种具有活化多种催化作用的纳米结构化催化剂及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201124