CN111974412A - 一种Au@Cu2O-Ag纳米材料及光催化剂 - Google Patents

一种Au@Cu2O-Ag纳米材料及光催化剂 Download PDF

Info

Publication number
CN111974412A
CN111974412A CN202010922342.4A CN202010922342A CN111974412A CN 111974412 A CN111974412 A CN 111974412A CN 202010922342 A CN202010922342 A CN 202010922342A CN 111974412 A CN111974412 A CN 111974412A
Authority
CN
China
Prior art keywords
nano
nano material
nanoparticles
solution
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010922342.4A
Other languages
English (en)
Inventor
姜雨虹
张小龙
刘洪波
李佳
高铭
吴彤
刘洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Normal University
Original Assignee
Jilin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Normal University filed Critical Jilin Normal University
Priority to CN202010922342.4A priority Critical patent/CN111974412A/zh
Publication of CN111974412A publication Critical patent/CN111974412A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开一种Au@Cu2O‑Ag纳米材料,其特征在于,所述纳米材料包括Au@Cu2O纳米颗粒和负载在Au@Cu2O纳米颗粒表面的Ag纳米颗粒。本发明所述纳米材料实现了大幅度提高其用作光催化性能的催化性能。

Description

一种Au@Cu2O-Ag纳米材料及光催化剂
技术领域
本发明涉及纳米材料领域,尤其涉及一种Au@Cu2O-Ag纳米材料及光催化剂。
背景技术
随着工业化的快速发展,水污染等环境污染问题已成为威胁人类健康的重大问题。半导体光催化技术利用取之不尽的太阳能有效降解有机污染物分子这一特性成为一种很有前途的技术,引起了全世界的极大关注。在各种光催化剂中,相比于传统光催化剂氧化锌(ZnO),二氧化钛(TiO2)等的带隙较宽,因此只能在紫外光下照射激发,氧化亚铜(Cu2O)是一种具有2eV窄带隙的p型半导体,由于其地球储量丰富且无毒、低成本、良好的可见光吸收能力而受到广泛关注。
但是单独Cu2O作为光催化剂面临着由于在光催化过程中的电荷转移和严重的电荷复合导致光催化活性降低的问题。因此为了提高Cu2O的电荷分离性能,已经开发出很多方法。例如元素参杂,或将Cu2O与其他n型半导体复合形成p-n异质结,或者将Cu2O与碳材料复合,还有一种有效的方法是通过在Cu2O表面沉积贵金属如Pt和Pd等纳米粒子来构建肖特基异质结,贵金属与Cu2O之间的肖特基异质结可以使光生载流子迁移到金属纳米粒子上,从而抑制电荷复合,提高光催化效率。虽然已经做了很多尝试,但光催化剂的性能仍然受到严重的电荷复合和光吸收不足的影响。
发明内容
基于背景技术存在的技术问题,本发明提出了一种Au@Cu2O-Ag纳米材料及光催化剂。所述纳米材料实现了大幅度提高其用作光催化性能的催化性能。
本发明提出的一种Au@Cu2O-Ag纳米材料,所述纳米材料包括Au@Cu2O纳米颗粒和负载在Au@Cu2O纳米颗粒表面的Ag纳米颗粒。
优选地,所述Au@Cu2O纳米颗粒的颗粒尺寸为50-130nm,所述纳米材料的颗粒尺寸为60-150nm。
优选地,所述纳米材料是通过在Au@Cu2O纳米颗粒表面进行硝酸银的还原反应得到。
优选地,所述“在Au@Cu2O纳米颗粒表面进行硝酸银的还原反应”具体包括:将Au@Cu2O纳米颗粒分散在水中,加入AgNO3溶液搅拌反应,即得到所述纳米材料;优选地,所述AgNO3溶液的浓度为0.001-0.01M,更优选地,AgNO3和Au@Cu2O纳米颗粒的摩尔质量比为(0.08-0.2)mmol:1g。
优选地,所述Au@Cu2O纳米颗粒是通过将Au纳米颗粒与二价铜盐和水合肼进行反应得到;优选地,所述二价铜盐为硝酸铜。
优选地,所述“将Au纳米颗粒与二价铜盐和水合肼进行反应”具体包括:向硝酸铜的二价铜盐溶液中加入PVP混匀后,再加入Au纳米颗粒的溶胶,然后加入水合肼溶液搅拌反应,即得到所述Au@Cu2O纳米颗粒;优选地,硝酸铜与PVP的摩尔质量比为(0.1-1)mmol:1g,硝酸铜与Au纳米颗粒的摩尔比为(1000-3000):1,硝酸铜与水合肼的摩尔质量比为1mmol:(20-30)mg。
优选地,所述Au纳米颗粒是通过将氯金酸与柠檬酸三钠进行加热反应得到。
优选地,所述“将氯金酸与柠檬酸三钠进行加热反应”具体包括:将氯金酸水溶液加热至沸腾,再加入柠檬酸钠溶液搅拌反应,即得到所述Au纳米颗粒;优选地,所述氯金酸水溶液的浓度为(2-4)×10-4mol/L。
本发明提出一种光催化剂,其包括上述Au@Cu2O-Ag纳米材料。
与现有技术相比,本发明方法具有以下优点和积极效果:
(1)本发明提供的一种Au@Cu2O-Ag纳米材料,制备过程所需生产设备简单,成本低,重复性好,易于实现工业化生产。
(2)本发明中通过对铜源浓度和还原剂进行改变,实现对Au@Cu2O-Ag纳米材料的壳层厚度和颗粒尺寸可控,分散性好,溶于水中即可分散。
附图说明
图1为本发明实施例1所制备得到的Au@Cu2O纳米颗粒的SEM图像;
图2为本发明实施例2所制备得到的Au@Cu2O纳米颗粒的SEM图像;
图3为本发明实施例3所制备得到的Au@Cu2O纳米颗粒的SEM图像;
图4为本发明实施例1所制备得到的Au@Cu2O-Ag纳米材料的SEM图像;
图5为本发明实施例1所制备得到的Au@Cu2O纳米颗粒的XRD图像;
图6为本发明实施例1所制备得到的Au@Cu2O-Ag纳米材料的XRD图像;
图7为本发明实施例1所制备得到的Au@Cu2O-Ag纳米材料光催化亚甲基蓝的紫外可见吸收光谱;
图8为本发明实施例2所制备得到的Au@Cu2O-Ag纳米材料光催化亚甲基蓝的紫外可见吸收光谱;
图9为本发明实施例3所制备得到的Au@Cu2O-Ag纳米材料光催化亚甲基蓝的紫外可见吸收光谱。
具体实施方式
下面,通过具体实施例对本发明的技术方案进行详细说明。
实施例1
本发明提出的一种Au@Cu2O-Ag纳米材料,其制备方法包括:
(1)制备Au纳米颗粒:
取100mL浓度为2.4×10-4mol/L的氯金酸溶液,在磁力搅拌条件下加热至105℃,当溶液开始沸腾时逐滴加入4mL浓度为0.034mol/L的柠檬酸三钠水溶液,反应混合物在回流条件下持续搅拌反应10min,直至溶液呈紫红色时停止反应,并避光冷却到室温,得到Au纳米颗粒的溶胶,离心清洗后,真空干燥,得到Au纳米颗粒;
(2)制备Au@Cu2O纳米颗粒:
取50mL浓度为0.01M的Cu(NO3)2·3H2O溶液,在300rpm的磁力搅拌条件下加入1.0gPVP,待PVP粉末完全溶解后,得到混合溶液;向所述混合溶液中加入1mL上述Au纳米颗粒的溶胶,再立即加入34μL的水合肼溶液(35wt%),搅拌反应2min后反应完成,采用乙醇离心清洗,干燥后,得到Au@Cu2O纳米颗粒,其SEM和XRD图像如图1、5所示,参照图1可知,Au@Cu2O纳米颗粒的尺寸为93nm;
(3)制备Au@Cu2O-Ag纳米材料:
将上述0.01gAu@Cu2O纳米颗粒分散在35mL的超纯水中,再加入200μL浓度为0.006M的AgNO3溶液,搅拌反应10min,离心清洗后,真空干燥,得到Au@Cu2O-Ag纳米材料;其SEM和XRD图像如图4、6所示,参照图4可知,Au@Cu2O-Ag纳米材料的颗粒尺寸为98nm;
实施例2
本发明提出的一种Au@Cu2O-Ag纳米材料,其制备方法包括:
(1)制备Au纳米颗粒:
取100mL浓度为2.4×10-4mol/L的氯金酸溶液,在磁力搅拌条件下加热至105℃,当溶液开始沸腾时逐滴加入4mL浓度为0.034mol/L的柠檬酸三钠水溶液,反应混合物在回流条件下持续搅拌反应10min,直至溶液呈紫红色时停止反应,并避光冷却到室温,得到Au纳米颗粒的溶胶,离心清洗后,真空干燥,得到Au纳米颗粒;
(2)制备Au@Cu2O纳米颗粒:
取50mL浓度为0.008M的Cu(NO3)2·3H2O溶液,在300rpm的磁力搅拌条件下加入1.0g PVP,待PVP粉末完全溶解后,得到混合溶液;向所述混合溶液中加入1mL上述Au纳米颗粒的溶胶,再立即加入27μL的水合肼溶液(35wt%),搅拌反应2min后反应完成,采用乙醇离心清洗,干燥后,得到Au@Cu2O纳米颗粒,其SEM图像如图2所示,参照图2可知,Au@Cu2O纳米颗粒的尺寸为84nm;
(3)制备Au@Cu2O-Ag纳米材料:
将上述0.01gAu@Cu2O纳米颗粒分散在35mL的超纯水中,再加入200μL浓度为0.006M的AgNO3溶液,搅拌反应10min,离心清洗后,真空干燥,得到Au@Cu2O-Ag纳米材料。
实施例3
本发明提出的一种Au@Cu2O-Ag纳米材料,其制备方法包括:
(1)制备Au纳米颗粒:
取100mL浓度为2.4×10-4mol/L的氯金酸溶液,在磁力搅拌条件下加热至105℃,当溶液开始沸腾时逐滴加入4mL浓度为0.034mol/L的柠檬酸三钠水溶液,反应混合物在回流条件下持续搅拌反应10min,直至溶液呈紫红色时停止反应,并避光冷却到室温,得到Au纳米颗粒的溶胶,离心清洗后,真空干燥,得到Au纳米颗粒;
(2)制备Au@Cu2O纳米颗粒:
取50mL浓度为0.006M的Cu(NO3)2·3H2O溶液,在300rpm的磁力搅拌条件下加入1.0g PVP,待PVP粉末完全溶解后,得到混合溶液;向所述混合溶液中加入1mL上述Au纳米颗粒的溶胶,再立即加入20μL的水合肼溶液(35wt%),搅拌反应2min后反应完成,采用乙醇离心清洗,干燥后,得到Au@Cu2O纳米颗粒,其SEM图像如图3所示,参照图3可知,Au@Cu2O纳米颗粒的尺寸为68nm;
(3)制备Au@Cu2O-Ag纳米材料:
将上述0.01gAu@Cu2O纳米颗粒分散在35mL的超纯水中,再加入200μL浓度为0.006M的AgNO3溶液,搅拌反应10min,离心清洗后,真空干燥,得到Au@Cu2O-Ag纳米材料。
对上述实施例1-3所得到的Au@Cu2O-Ag纳米材料进行光催化性能的测试,具体的,将10mg的Au@Cu2O-Ag纳米材料作为光催化剂分散在20mL浓度为5mg/L亚甲基蓝(MB)水溶液中,在黑暗条件下搅拌30min,使其达到吸附-脱附平衡,然后将装有反应液的器皿置于氙灯(模拟太阳光)下照射,每隔一定时间取样一次离心分离,取上层清液,并用紫外分光光度计进行检测和分析,同时检测MB浓度C,并计算其与初始浓度C0之比(C/C0),结果如图7-9和下表所示:
Figure BDA0002667155120000061
Figure BDA0002667155120000071
反应时间(min) 实施例2(C/C<sub>0</sub>)
15 0.6471
30 0.4090
45 0.1904
60 0.0345
反应时间(min) 实施例3(C/C<sub>0</sub>)
20 0.6470
40 0.3685
60 0.1700
75 0.0354
参照图7,可知在光照下,亚甲基蓝溶液在实施例1所制备得到的Au@Cu2O-Ag纳米材料存在时,经过0min、10min、20min、30min、40min时的紫外可见吸收光谱;参照图8,可知在光照下,亚甲基蓝溶液在实施例2所制备得到的Au@Cu2O-Ag纳米材料存在时,经过0min、15min、30min、45min、60min时的紫外可见吸收光谱;参照图9,可知在光照下,亚甲基蓝溶液在实施例3所制备得到的Au@Cu2O-Ag纳米材料存在时,经过0min、20min、40min、60min、75min时的紫外可见吸收光谱。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明的技术范围内,根据本发明的技术方案及其发明加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种Au@Cu2O-Ag纳米材料,其特征在于,所述纳米材料包括Au@Cu2O纳米颗粒和负载在Au@Cu2O纳米颗粒表面的Ag纳米颗粒。
2.根据权利要求1所述的Au@Cu2O-Ag纳米材料,其特征在于,所述Au@Cu2O纳米颗粒的颗粒尺寸为50-130nm,所述纳米材料的颗粒尺寸为60-150nm。
3.根据权利要求1或2所述的Au@Cu2O-Ag纳米材料,其特征在于,所述纳米材料是通过在Au@Cu2O纳米颗粒表面进行硝酸银的还原反应得到。
4.根据权利要求3所述的Au@Cu2O-Ag纳米材料,其特征在于,所述“在Au@Cu2O纳米颗粒表面进行硝酸银的还原反应”具体包括:将Au@Cu2O纳米颗粒分散在水中,加入AgNO3溶液搅拌反应,即得到所述纳米材料;优选地,所述AgNO3溶液的浓度为0.001-0.01M,更优选地,AgNO3和Au@Cu2O纳米颗粒的摩尔质量比为(0.08-0.2)mmol:1g。
5.根据权利要求1-4任一项所述的Au@Cu2O-Ag纳米材料,其特征在于,所述Au@Cu2O纳米颗粒是通过将Au纳米颗粒与二价铜盐和水合肼进行反应得到;优选地,所述二价铜盐为硝酸铜。
6.根据权利要求5所述的Au@Cu2O-Ag纳米材料,其特征在于,所述“将Au纳米颗粒与二价铜盐和水合肼进行反应”具体包括:向硝酸铜的二价铜盐溶液中加入PVP混匀后,再加入Au纳米颗粒的溶胶,然后加入水合肼溶液搅拌反应,即得到所述Au@Cu2O纳米颗粒;优选地,硝酸铜与PVP的摩尔质量比为(0.1-1)mmol:1g,硝酸铜与Au纳米颗粒的摩尔比为(1000-3000):1,硝酸铜与水合肼的摩尔质量比为1mmol:(20-30)mg。
7.根据权利要求5或6所述的Au@Cu2O-Ag纳米材料,其特征在于,所述Au纳米颗粒是通过将氯金酸与柠檬酸三钠进行加热反应得到。
8.根据权利要求7所述的Au@Cu2O-Ag纳米材料,其特征在于,所述“将氯金酸与柠檬酸三钠进行加热反应”具体包括:将氯金酸水溶液加热至沸腾,再加入柠檬酸钠溶液搅拌反应,即得到所述Au纳米颗粒;优选地,所述氯金酸水溶液的浓度为(2-4)×10-4mol/L。
9.一种光催化剂,其特征在于,其包括权利要求1-8任一项所述的Au@Cu2O-Ag纳米材料。
CN202010922342.4A 2020-09-04 2020-09-04 一种Au@Cu2O-Ag纳米材料及光催化剂 Pending CN111974412A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010922342.4A CN111974412A (zh) 2020-09-04 2020-09-04 一种Au@Cu2O-Ag纳米材料及光催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010922342.4A CN111974412A (zh) 2020-09-04 2020-09-04 一种Au@Cu2O-Ag纳米材料及光催化剂

Publications (1)

Publication Number Publication Date
CN111974412A true CN111974412A (zh) 2020-11-24

Family

ID=73448587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010922342.4A Pending CN111974412A (zh) 2020-09-04 2020-09-04 一种Au@Cu2O-Ag纳米材料及光催化剂

Country Status (1)

Country Link
CN (1) CN111974412A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888832A (zh) * 2015-05-15 2015-09-09 武汉理工大学 一种金属/金属氧化物/g-C3N4复合光催化材料及其制备方法
US20170225150A1 (en) * 2014-08-04 2017-08-10 King Abdullah University Of Science And Technology Catalytic structures and methods of generating hydrogen gas
CN108404824A (zh) * 2018-01-16 2018-08-17 吉林师范大学 一种Ag@Cu2O-rGO二维纳米复合材料及其制备方法和应用
CN108772060A (zh) * 2018-05-24 2018-11-09 西安交通大学 Au@Cu2O复合空心微米粒子、制备方法及应用
WO2018220160A1 (en) * 2017-06-02 2018-12-06 Nexdot Uniformly encapsulated nanoparticles and uses thereof
CN110694620A (zh) * 2019-10-22 2020-01-17 吉林师范大学 一种Ag-HSTiO2复合结构催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170225150A1 (en) * 2014-08-04 2017-08-10 King Abdullah University Of Science And Technology Catalytic structures and methods of generating hydrogen gas
CN104888832A (zh) * 2015-05-15 2015-09-09 武汉理工大学 一种金属/金属氧化物/g-C3N4复合光催化材料及其制备方法
WO2018220160A1 (en) * 2017-06-02 2018-12-06 Nexdot Uniformly encapsulated nanoparticles and uses thereof
CN108404824A (zh) * 2018-01-16 2018-08-17 吉林师范大学 一种Ag@Cu2O-rGO二维纳米复合材料及其制备方法和应用
CN108772060A (zh) * 2018-05-24 2018-11-09 西安交通大学 Au@Cu2O复合空心微米粒子、制备方法及应用
CN110694620A (zh) * 2019-10-22 2020-01-17 吉林师范大学 一种Ag-HSTiO2复合结构催化剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
WU, T ET AL.: ""A Novel Au@Cu2O-Ag Ternary Nanocomposite with Highly Efficient Catalytic Performance: Towards Rapid Reduction of Methyl Orange Under Dark Condition"", 《NANOMATERIALS》 *
WU, T ET AL.: ""Self-sustainable and recyclable ternary Au@Cu2O-Ag nanocomposites: application in ultrasensitive SERS detection and highly efficient photocatalysis of organic dyes under visible light"", 《MICROSYSTEMS & NANOENGINEERING》 *
ZHANG, L ET AL.: ""Au-Cu2O Core-Shell Nanoparticles: A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties"", 《CHEMISTRY OF MATERIALS》 *
郭小华等: ""核壳结构纳米Cu2O/Ag的制备、表征和应用研究"", 《化学研究与应用》 *

Similar Documents

Publication Publication Date Title
Liu et al. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review
Wang et al. The synthesis strategies and photocatalytic performances of TiO2/MOFs composites: a state-of-the-art review
Han et al. Recent progress on the photocatalysis of carbon dots: Classification, mechanism and applications
Moon et al. Decoration of size-tunable CuO nanodots on TiO 2 nanocrystals for noble metal-free photocatalytic H 2 production
Liu et al. Enhanced visible light photocatalytic activity by Cu2O-coupled flower-like Bi2WO6 structures
Xu et al. BiOCl decorated NaNbO3 nanocubes: a novel pn heterojunction photocatalyst with improved activity for ofloxacin degradation
CN109012731B (zh) 海胆状CoZnAl-LDH/RGO/g-C3N4Z型异质结及其制备方法和应用
CN109876843B (zh) 铜合金修饰二氧化钛/氮化碳异质结光催化剂及制备方法
CN107899592B (zh) 一种磁性可回收片状NiFe2O4/BiOI复合纳米材料的制备方法及应用
CN110227453B (zh) 一种AgCl/ZnO/GO复合可见光催化剂的制备方法
CN105498820A (zh) 高可见光电子转移Au/g-C3N4负载型光催化材料的制备方法
Gan et al. Fabrication of Ag/AgBr/TiO2 composites with enhanced solar-light photocatalytic properties
Su et al. Multifunctional MoS2 ultrathin nanoflakes loaded by Cd0. 5Zn0. 5S QDs for enhanced photocatalytic H2 production
CN108745382A (zh) 一种NiCd双非贵金属修饰的CdS可见光催化剂的制备方法及其应用
Ren et al. Novel ternary Ag/CeVO 4/gC 3 N 4 nanocomposite as a highly efficient visible-light-driven photocatalyst
CN108295875B (zh) 高活性空心复合光催化剂Ag/Au/AgCl的制备方法
CN107537520B (zh) 一种溴氧化铋-氧化铜纳米复合光催化剂及其制备方法
CN114522709B (zh) 一种三维多孔石墨相氮化碳/碘氧化铋/银纳米粒子复合光催化剂及其制备方法和应用
She et al. Photocatalytic activation of saturated C–H bond over the CdS mixed-phase under visible light irradiation
Cai et al. Z-type heterojunction of Cu2O-modified layered BiOI composites with superior photocatalytic performance for CO2 reduction
CN108837840B (zh) 一种Ag/g-C3N4修饰钨酸铋混晶复合材料及其制备方法和应用
CN112934233A (zh) 复合光催化剂及其制备方法和应用
CN109553067B (zh) 一种光催化分解甲酸的方法
Jin et al. Preparation of flower-like Bi 2 WO 6/ZnO heterojunction photocatalyst with improved photocatalytic performance
CN109126821A (zh) 一种生物质碳基金属修饰自掺杂富缺陷氧化锡纳米复合光催化材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20201124