CN108404824A - 一种Ag@Cu2O-rGO二维纳米复合材料及其制备方法和应用 - Google Patents

一种Ag@Cu2O-rGO二维纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN108404824A
CN108404824A CN201810039695.2A CN201810039695A CN108404824A CN 108404824 A CN108404824 A CN 108404824A CN 201810039695 A CN201810039695 A CN 201810039695A CN 108404824 A CN108404824 A CN 108404824A
Authority
CN
China
Prior art keywords
solution
rgo
added
nano composite
composite materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810039695.2A
Other languages
English (en)
Inventor
张永军
郭爽
陈雷
董丽荣
王雅新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Normal University
Original Assignee
Jilin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Normal University filed Critical Jilin Normal University
Priority to CN201810039695.2A priority Critical patent/CN108404824A/zh
Publication of CN108404824A publication Critical patent/CN108404824A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Ag@Cu2O‑rGO二维纳米复合材料及其制备方法和应用,属于复合纳米功能材料技术领域。传统的SERS基底大多采用贵金属金、银作为基底,这些材料能够得到较强的拉曼信号,然而材料的催化效果较差。本发明的二维结构,为材料提供良好的均一性,避免小尺寸纳米粒子团聚现象的发生。本发明选取rGO作为材料的衬底,其导电性能好,与金属、半导体复合后,能促进电荷转移,从而降低电子‑空穴的复合几率,增强材料的催化性能。Ag@Cu2O核壳结构一方面Cu2O壳对内部的Ag核起隔离保护的作用,防止Ag核与催化体系相互作用,影响SERS结果的检测;另一方面,金属与半导体复合,提高量子利用率,从而提高催化活性。

Description

一种Ag@Cu2O-rGO二维纳米复合材料及其制备方法和应用
技术领域
本发明属于复合纳米功能材料技术领域。
背景技术
表面增强拉曼散射(SERS)是最灵敏的光谱检测技术之一。灵敏度高、能够与无标记的分子特异性结合这两种因素促使SERS成为一种重要的检测方法。特别是在催化反应过程中,SERS光谱可以提供丰富的结构信息,更能够提供正常拉曼光谱检测不到的催化剂表面的痕量物质。在研究催化过程中,理解结构-活性的关系有利于在理论上设计高催化活性的复合材料。贵金属有较高的SPR效应是SERS基底的首选材料,银以其高活性和经济适用性吸引广大研究者兴趣。然而在以SERS为检测手段检测催化反应过程中,贵金属容易与催化体系发生作用干扰检测结果。Cu2O一种适当带隙宽度(2.0-2.2eV)的P型氧化物半导体,由于其吸收波长在可见光范围内、价格低廉、易于制备等特点将其视为光催化的优秀候选物。然而Cu2O作为催化剂也有一定的局限性,空穴扩散长度短,光生电子-空穴对容易复合,这导致非常低的量子利用效率,进而限制了其在光催化中的应用。纳米复合材料其粒子处于纳米级,尺寸小,粒子容易团聚,形成不规则的团聚体,这严重影响SERS结果的均一性,从而影响以SERS为检测手段检测催化过程中的结构信息,限制了催化机理的研究,很难在理论上设计高性能的催化剂。
发明内容
为了解决现有技术以SERS为监测手段研究催化反应机理中金属易于催化体系发生作用、的空穴利用率低、粒子容易聚集等问题。本发明提供了一种Ag@Cu2O-rGO二维纳米复合材料,其复合结构为以GO(氧化石墨烯)为衬底,将Ag纳米粒子均匀的分散在GO表面并保持GO的二维纳米结构,Ag表面包覆一层Cu2O纳米粒子;其中Ag纳米粒子的粒径为19nm,Cu2O壳层厚度为22nm。
该结构以GO为衬底可以有效解决Ag纳米粒子聚集的问题,使Ag纳米粒子均匀的分散在GO表面,并不破坏GO的二维结构。Ag@Cu2O的包覆结构可以即引入了Ag纳米粒子又阻碍金属与催化体系发生反应,同时金属与半导体复合能够降低电子-空穴复合率,提高空穴利用率,从而提高复合材料的催化活性,形成一种具有较好SERS活性、较高催化性能并能偶应用SERS手段研究自身催化机理的高性能材料,解决现有技术存在的上述问题。
Ag@Cu2O-rGO二维纳米复合材料的制备方法如下:
A、采用两步氧化法制备GO;
B、利用Lee-Meisel(李-迈泽尔)法对GO进行表面修饰Ag纳米粒子形成Ag–rGO(还原氧化石墨烯)结构;
C、通过水合肼还原硝酸铜使形成的Cu包覆在Ag–rGO结构中Ag纳米粒子表面上,得到Ag@Cu2O-rGO二维纳米复合材料。
A1、初级氧化;将0.5g K2S2O8和0.5gP2O5加入到锥形瓶中,再向锥形瓶中加入25mL浓硫酸,磁力搅拌至充分溶解,再向其中加入6g石墨粉,80℃下水浴加热回流4.5h;反应体系冷却至室温后进行抽滤,除去滤液;然后将所得固体在室温下干燥。
A2、深度氧化;取40mL浓磷酸(85wt%)加入到锥形瓶中,再加入360mL浓硫酸(98.98wt%),最后加入3g步骤A1所得的固体后磁力搅拌1h;将锥形瓶放入<5℃的冰浴锅中并缓慢的加入18g KMnO4,然后50℃下水浴并机械搅拌12h;将溶液冷却至室温,磁力搅拌5天,再将锥形瓶中的溶液注入到400mL冰水混合物中,然后向其中缓慢的滴加12mL浓度为30wt%的H2O2使溶液由棕黄色变为黄色,经离心、清洗至中性,冷冻干燥得到GO。
步骤B中利用lee和Meisel的方法对GO进行表面修饰Ag纳米粒子的具体步骤如下:
将步骤A制备得到GO取0.001g分散到30mL超纯水中,超声1h使GO均匀的分散到超纯水中;将溶液加入到170mL水中,再加入36mg硝酸银,磁力搅拌,回流加热90℃至微沸。然后向溶液中加入4mL的0.1wt%的二水合柠檬酸钠溶液,85℃下保持30min,溶液变成墨绿色,反应结束;最后将溶液冷却到室温,密封保存。
步骤C通过水合肼还原硝酸铜使形成的Cu包覆在Ag–rGO结构中Ag纳米粒子表面上的具体步骤如下:
取1g的PVP(聚乙烯吡咯烷酮)溶于40ml的0.01M的Cu(NO3)2溶液中,磁力搅拌10min,转速为300rmp,PVP能够充分溶于溶液中。将取20ml步骤B中的溶液,离心清洗加入到上述溶液中,随后加入55uL的水合肼(35wt%)溶液,搅拌30s后溶液变成紫红色。将溶液离心,依次用去离子水和无水乙醇清洗样品三次,最终形成Ag@Cu2O-rGO二维纳米复合材料。
本发明中所制备得到的Ag@Cu2O-rGO二维纳米复合材料可用作SERS基底和催化剂。
本发明的有益效果:
在本发明中,设计并制备三种材料的Ag@Cu2O-rGO二维纳米复合结构,这种复合结构具有制备成本低、结构稳定、性能可控等优点。这种材料的结构特点:首先,以GO为衬底,能够防止在纳米级条件下由于尺寸过小而引起团聚现象的发生,同时二维材料结构均一,能够减小测试过程中由于结构不均匀而产生的误差,GO也具有良好的导电性能,能有效的抑制Cu2O中的电子-空穴对的复合,提高量子利用效率;其次采用Ag@Cu2O这种核壳结构,能够防止金属与催化体系的相互作用,以免影响SERS的检测结果,同时金属与半导体复合,也能够抑制电子-空穴对的复合,从而改善催化性能。因此,本结构可应用于利用SERS光谱研究材料本身的催化机理。
附图说明
图1本发明制备过程中得到的GO扫描电镜照片。
图2本发明制备过程中得到的Ag–rGO结构扫描电镜照片。
图3本发明制备得到的Ag@Cu2O-rGO二维纳米复合材料扫描电镜照片。
图4本发明制备得到的Ag@Cu2O-rGO二维纳米复合材料的透射电镜照片。
图5本发明制备得到的Ag@Cu2O-rGO二维纳米复合材料的高分辨透射电镜照片。
图6在可见光照射下,Ag@Cu2O-rGO室温环境中光催化降解甲基橙(40mg/L)的吸收光谱,每20min取一次样品。
图7在光催化降解甲基橙中,利用SERS光谱检测样品表面的有机分子。
具体实施方式
下面以具体实施例的方式对本发明技术方案作进一步解释和说明。
实施例1
步骤A、采用两步氧化法制备GO,具体步骤如下:
A1、初级氧化。将0.5g K2S2O8和0.5gP2O5加入到锥形瓶中,再向锥形瓶中加入25ml浓硫酸,磁力搅拌至充分溶解,再向其中加入6g石墨粉,80℃下水浴加热回流4.5h。混合溶液冷却至室温后进行抽滤,然后将所得样品在室温下干燥。
A2、深度氧化。取40ml浓磷酸加入到锥形瓶中,再加入360ml浓硫酸,最后加入3g步骤A1所得的样品后磁力搅拌1h。将锥形瓶放入冰浴锅中(<5℃)并缓慢的加入18g KMnO4,然后50℃下水浴并机械搅拌12h。将溶液冷却至室温,磁力搅拌5天,再将锥形瓶中的样品注入到400ml冰水中,然后向其中缓慢的滴加12ml 30wt%H2O2使溶液由棕黄色变为黄色,将样品离心、清洗至中性,冷冻干燥得到GO。
如图1所示,为GO的扫描电镜照片。
步骤B中利用Lee和Meisel的方法对GO进行表面修饰Ag纳米粒子的具体步骤如下:
将步骤A制备得到GO取0.001g分散到30ml超纯水中,超声1h使GO均匀的分散到超纯水中;将溶液加入到170ml水中,再加入36mg硝酸银,磁力搅拌,回流加热90℃至微沸。然后向溶液中加入4ml的0.1%的二水合柠檬酸钠溶液,85℃下保持30min,溶液逐渐变成墨绿色。最后将溶液冷却到室温,密封保存。
如图2所示,利用Lee和Meisel法对GO表面修饰Ag纳米粒子,使Ag纳米粒子均与的分散在氧化石墨烯表面。
步骤C通过水合肼还原硝酸铜使形成的Cu包覆在Ag–rGO结构中Ag纳米粒子表面上的具体步骤如下:
取1g的PVP(聚乙烯吡咯烷酮)溶于40ml的0.01M的Cu(NO3)2溶液中,磁力搅拌10min,转速为300rmp,PVP能够充分溶于溶液中。将取20ml步骤B中的溶液,离心清洗加入到上述溶液中,随后加入55uL的水合肼(35wt%)溶液,搅拌30s后溶液变成紫红色。将溶液离心,依次用去离子水和无水乙醇清洗样品三次,最终形成Ag@Cu2O-rGO二维纳米复合材料。如图3所示,可以明显看出GO表面的粒子的尺寸增大,粒子间的排列更紧密。
如图4所示,为Ag@Cu2O-rGO二维纳米复合材料的透射电镜照片,可以清楚的看到Ag@Cu2O结构,经过测量,Ag@Cu2O-rGO二维纳米复合材料中Ag纳米粒子的粒径平均为19nm,Cu2O壳层厚度平均为22nm。
图5为Ag@Cu2O-rGO二维纳米复合材料的高分辨透射电镜照片,可以清楚地看到Ag和Cu2O的晶格衍射条纹。
对于Ag@Cu2O-rGO二维纳米复合结构进行光催化性能检测。以甲基橙(MO)为探针分子。将10mg Ag@Cu2O-rGO分散于50mL(40mg/L)的甲基橙溶液。首先暗室条件下吸附40min达到吸附平衡,然后在室温下模拟可见光对样品的光催化性能测试,通过UV光谱记录分光光度计记录MO的浓度变化,如图6所示。从图6可以看出随着时间的增长,MO的浓度逐渐降低,当达到60min后从吸收光谱中可以看出MO的浓度变化基本稳定。图7为10-2M的SERS光谱、催化过程中样品表面的MO的SERS光谱,从图中可以看出在催化前100min内MO的峰强基本不变,说明光催化降解MO的速率与Ag@Cu2O-rGO对MO的吸附速率是一致的。随着时间的增长,MO的峰强逐渐减小,在这段时间里光催化降解MO的速率大于Ag@Cu2O-rGO对MO的吸附速率,由于溶液中MO的浓度的减少。从图7中也可以看出在催化过程中,光谱中没有新峰出现,说明MO在催化过程中没有中间产物的生成,直接降解成水和二氧化碳。

Claims (6)

1.一种Ag@Cu2O-rGO二维纳米复合材料,其特征在于,其复合结构为以GO为衬底,将Ag纳米粒子均匀的分散在GO表面并保持GO的二维纳米结构,Ag表面包覆一层Cu2O纳米粒子;其中Ag纳米粒子的粒径为19nm,Cu2O壳层厚度为22nm。
2.一种如权利要求1所述的Ag@Cu2O-rGO二维纳米复合材料的制备方法如下:
A、采用两步氧化法制备GO;
B、利用李-迈泽尔法对GO进行表面修饰Ag纳米粒子形成Ag–rGO结构,得到Ag–rGO纳米粒子溶液;
C、通过水合肼还原硝酸铜使形成的Cu包覆在Ag–rGO结构中Ag纳米粒子表面上,得到Ag@Cu2O-rGO二维纳米复合材料。
3.根据权利要求1所述的Ag@Cu2O-rGO二维纳米复合材料的制备方法,其特征在于,步骤A中两步氧化法制备GO的具体步骤如下:
A1、初级氧化;将0.5g K2S2O8和0.5gP2O5加入到锥形瓶中,再向锥形瓶中加入25mL浓硫酸,磁力搅拌至充分溶解,再向其中加入6g石墨粉,80℃下水浴加热回流4.5h;反应体系冷却至室温后进行抽滤,除去滤液;然后将所得固体在室温下干燥。
A2、深度氧化;取40mL浓磷酸加入到锥形瓶中,再加入360mL浓硫酸,最后加入3g步骤A1所得的固体后磁力搅拌1h;将锥形瓶放入<5℃的冰浴锅中并缓慢的加入18g KMnO4,然后50℃下水浴并机械搅拌12h;将溶液冷却至室温,磁力搅拌5天,再将锥形瓶中的溶液注入到400mL冰水混合物中,然后向其中缓慢的滴加12mL浓度为30wt%的H2O2使溶液由棕黄色变为黄色,经离心、清洗至中性,冷冻干燥得到GO。
4.根据权利要求1所述的Ag@Cu2O-rGO二维纳米复合材料的制备方法,其特征在于,步骤B中利用Lee和Meisel法对GO进行表面修饰Ag纳米粒子的具体步骤如下:
将步骤A制备得到GO取0.001g分散到30mL超纯水中,超声1h使GO均匀的分散到超纯水中;将溶液加入到170mL水中,再加入36mg硝酸银,磁力搅拌,回流加热90℃至微沸。然后向溶液中加入4mL的0.1wt%的二水合柠檬酸钠溶液,85℃下保持30min,溶液变成墨绿色,反应结束;最后将溶液冷却到室温,密封保存。
5.根据权利要求1所述的Ag@Cu2O-rGO二维纳米复合材料的制备方法,其特征在于,步骤C通过水合肼还原硝酸铜使形成的Cu包覆在Ag–rGO结构中Ag纳米粒子表面上的具体步骤如下:
取1g的聚乙烯吡咯烷酮溶于40mL的0.01M的Cu(NO3)2溶液中,磁力搅拌10min,转速为300rmp,聚乙烯吡咯烷酮能够充分溶于溶液中;取20mL步骤B中的溶液,离心清洗加入到上述溶液中,随后加入55uL浓度为35wt%的水合肼溶液,搅拌30s后溶液变成紫红色;将溶液离心,依次用去离子水和无水乙醇清洗样品三次,最终形成Ag@Cu2O-rGO二维纳米复合材料。
6.一种如权利要求1所述的Ag@Cu2O-rGO二维纳米复合材料用作表面增强拉曼散射基底和光催化反应的催化剂的用途。
CN201810039695.2A 2018-01-16 2018-01-16 一种Ag@Cu2O-rGO二维纳米复合材料及其制备方法和应用 Pending CN108404824A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810039695.2A CN108404824A (zh) 2018-01-16 2018-01-16 一种Ag@Cu2O-rGO二维纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810039695.2A CN108404824A (zh) 2018-01-16 2018-01-16 一种Ag@Cu2O-rGO二维纳米复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN108404824A true CN108404824A (zh) 2018-08-17

Family

ID=63125653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810039695.2A Pending CN108404824A (zh) 2018-01-16 2018-01-16 一种Ag@Cu2O-rGO二维纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108404824A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728098A (zh) * 2019-01-03 2019-05-07 合肥鑫晟光电科技有限公司 薄膜晶体管、传感器、检测方法、检测装置及检测系统
CN110104642A (zh) * 2019-06-03 2019-08-09 深圳大学 一种2D+2D的MoS2-Ag-rGO纳米复合物及其制备方法
CN111333059A (zh) * 2020-03-05 2020-06-26 杭州电子科技大学 银掺杂海胆形氧化铜/多层石墨烯复合材料及制备方法和葡萄糖传感器
CN111678905A (zh) * 2020-06-15 2020-09-18 青岛峰峦新材料科技有限责任公司 Cu2O-Ag-氮掺杂石墨烯纳米复合材料表面增强拉曼基底及其制备方法
CN111974412A (zh) * 2020-09-04 2020-11-24 吉林师范大学 一种Au@Cu2O-Ag纳米材料及光催化剂
CN113881100A (zh) * 2021-09-24 2022-01-04 深圳环能石墨烯科技有限公司 Ag/Cu2O/rGO纳米复合抗菌剂、抗菌母粒及其制备方法
CN115739013A (zh) * 2022-06-23 2023-03-07 广州大学 一种三维多功能石墨烯膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072894A (zh) * 2009-11-25 2011-05-25 欧普图斯(苏州)光学纳米科技有限公司 用基于纳米结构的光谱检测方法检测化学物和生化物杂质
CN102773495A (zh) * 2012-07-30 2012-11-14 中国科学院宁波材料技术与工程研究所 一种具有表面增强拉曼效应的氧化石墨烯/纳米贵金属复合材料及其制备
WO2014008363A1 (en) * 2012-07-05 2014-01-09 Brigham And Women"S Hospital, Inc. Detection, capture and quatification of biological moieties from unprocessed bodily fluids using nanoplasmonic platform
CN104399415A (zh) * 2014-10-09 2015-03-11 吉林师范大学 一种核壳式氧化石墨烯/银复合材料的制备方法
CN104874809A (zh) * 2015-05-08 2015-09-02 江苏大学 一种sers基底复合材料及其制备方法
CN107322004A (zh) * 2017-06-07 2017-11-07 安徽师范大学 一种银/还原氧化石墨烯纳米复合材料及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102072894A (zh) * 2009-11-25 2011-05-25 欧普图斯(苏州)光学纳米科技有限公司 用基于纳米结构的光谱检测方法检测化学物和生化物杂质
WO2014008363A1 (en) * 2012-07-05 2014-01-09 Brigham And Women"S Hospital, Inc. Detection, capture and quatification of biological moieties from unprocessed bodily fluids using nanoplasmonic platform
CN102773495A (zh) * 2012-07-30 2012-11-14 中国科学院宁波材料技术与工程研究所 一种具有表面增强拉曼效应的氧化石墨烯/纳米贵金属复合材料及其制备
CN104399415A (zh) * 2014-10-09 2015-03-11 吉林师范大学 一种核壳式氧化石墨烯/银复合材料的制备方法
CN104874809A (zh) * 2015-05-08 2015-09-02 江苏大学 一种sers基底复合材料及其制备方法
CN107322004A (zh) * 2017-06-07 2017-11-07 安徽师范大学 一种银/还原氧化石墨烯纳米复合材料及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JIANGTIAN LI,ET AL.: "Ag@Cu2O Core-Shell Nanoparticles as Visible-Light Plasmonic", 《ACS CATALYSIS》 *
LEI CHEN, ET AL.: "Plasmonic-induced SERS enhancement of shell-dependent Ag@Cu2O core–shell nanoparticles", 《RSC ADVANCED》 *
P. C. LEE AND D. MEISEL: "Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols", 《THE JOURNAL OF PHYSICAL CHEMISTRY》 *
于凤银: "氧化石墨烯及其复合物在表面增强拉曼光谱中的研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
钱志江等: "一种银/ 还原石墨烯复合物的制备及其在表面增强拉曼散射中的应用", 《光谱学与光谱分析》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109728098A (zh) * 2019-01-03 2019-05-07 合肥鑫晟光电科技有限公司 薄膜晶体管、传感器、检测方法、检测装置及检测系统
CN110104642A (zh) * 2019-06-03 2019-08-09 深圳大学 一种2D+2D的MoS2-Ag-rGO纳米复合物及其制备方法
CN111333059A (zh) * 2020-03-05 2020-06-26 杭州电子科技大学 银掺杂海胆形氧化铜/多层石墨烯复合材料及制备方法和葡萄糖传感器
CN111333059B (zh) * 2020-03-05 2021-07-23 杭州电子科技大学 银掺杂海胆形氧化铜/多层石墨烯复合材料及制备方法和葡萄糖传感器
CN111678905A (zh) * 2020-06-15 2020-09-18 青岛峰峦新材料科技有限责任公司 Cu2O-Ag-氮掺杂石墨烯纳米复合材料表面增强拉曼基底及其制备方法
CN111974412A (zh) * 2020-09-04 2020-11-24 吉林师范大学 一种Au@Cu2O-Ag纳米材料及光催化剂
CN113881100A (zh) * 2021-09-24 2022-01-04 深圳环能石墨烯科技有限公司 Ag/Cu2O/rGO纳米复合抗菌剂、抗菌母粒及其制备方法
CN115739013A (zh) * 2022-06-23 2023-03-07 广州大学 一种三维多功能石墨烯膜及其制备方法

Similar Documents

Publication Publication Date Title
CN108404824A (zh) 一种Ag@Cu2O-rGO二维纳米复合材料及其制备方法和应用
Liu et al. Metal–semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer
Fu et al. Hybrid architectures based on noble metals and carbon-based dots nanomaterials: A review of recent progress in synthesis and applications
Rashid et al. Templateless synthesis of polygonal gold nanoparticles: an unsupported and reusable catalyst with superior activity
CN104801724B (zh) 一种Ag/C纳米空心球及其制备方法
CN101101263A (zh) 高活性表面增强拉曼光谱的核壳纳米粒子及其制备方法
CN101780420B (zh) 一种金属与石墨烯复合催化剂的制备方法
Zhao et al. Seed-assisted synthesis of Pd@ Au core–shell nanotetrapods and their optical and catalytic properties
Wang et al. Facile synthesis of hollow urchin-like gold nanoparticles and their catalytic activity
CN103286312A (zh) 一种表面共增强荧光及表面增强拉曼的多层核壳结构的复合微粒及其制备方法
CN103926234A (zh) 一种单层纳米金表面增强拉曼活性基底及其制备方法
Khedkar et al. Magnetically separable Ag-Fe3O4 catalyst for the reduction of organic dyes
Gao et al. Controlled fabrication of Au@ MnO2 core/shell assembled nanosheets by localized surface plasmon resonance
Bhattacharjee et al. Enzyme-mimetic activity of sugar cane juice stabilized CuO nanospheres and CuO/GO nanocomposite: Green synthesis and applications
Huang et al. Construction of ternary multifunctional Fe3O4/Cu2O/Au nanocomposites: SERS detection and visible light driven photocatalysis for organic dyes
Feng et al. Facile synthesis of Cu2O nanoparticle-loaded carbon nanotubes composite catalysts for reduction of 4-nitrophenol
Jin et al. Highly efficient core–shell Ag@ carbon dot modified TiO 2 nanofibers for photocatalytic degradation of organic pollutants and their SERS monitoring
Shi et al. Synergistic enhancement effect of MoO3@ Ag hybrid nanostructures for boosting selective detection sensitivity
Zeng et al. Breaking the cost barrier: polydopamine@ NixCo100-x nanotubes as efficient photocatalysts for organic pollutant degradation
Sayson et al. Rational design and synthesis of Ag− Cu2O nanocomposites for SERS detection, catalysis, and antibacterial applications
Kang et al. Photothermal reduction of 4-nitrophenol using rod-shaped core–shell structured catalysts
Sabahat et al. Surface plasmon resonance-based synthesis of gold nanorods for sensing applications
CN104001523B (zh) 一种钴/贵金属/氢氧化钴纳米复合材料、制备方法及其应用
Xie et al. Fabrication of large size individual octahedral tungsten oxide hydrate and Au NPs as SERS platforms for sensitive detection of cytochrome C
Zhang et al. Chiral induction enhanced photocatalytic degradation of methyl orange by Ag@ Ag3PO4 and the reaction mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180817

WD01 Invention patent application deemed withdrawn after publication