CN111968850A - 一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法 - Google Patents

一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法 Download PDF

Info

Publication number
CN111968850A
CN111968850A CN202010681431.4A CN202010681431A CN111968850A CN 111968850 A CN111968850 A CN 111968850A CN 202010681431 A CN202010681431 A CN 202010681431A CN 111968850 A CN111968850 A CN 111968850A
Authority
CN
China
Prior art keywords
hydrogen
percent
permanent magnet
temperature
green body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010681431.4A
Other languages
English (en)
Other versions
CN111968850B (zh
Inventor
王俊勃
李欢
刘江南
吴树杰
董义
司鹏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Polytechnic University
Original Assignee
Xian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Polytechnic University filed Critical Xian Polytechnic University
Priority to CN202010681431.4A priority Critical patent/CN111968850B/zh
Publication of CN111968850A publication Critical patent/CN111968850A/zh
Application granted granted Critical
Publication of CN111968850B publication Critical patent/CN111968850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Abstract

本发明公开了一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法,步骤包括:1)按下列原子百分比进行配料:Nd:13.5‑15.4%;Cu:0.01‑0.5%;Al:0.5‑0.9%;Co:1.3‑1.6%;Ti:0.1‑0.3%;B:5.5‑6.1%;Ga:0.1‑0.3%,其余为Fe;2)将所有组分混合后在真空感应速凝炉里进行铸片;3)对合金铸片用氢碎炉进行氢碎;4)对氢碎粉用气流磨制成粒度更细的粉末;5)对细粉在磁场下成型得到生坯;6)对生坯进行放电等离子烧结;7)对烧结后的生坯进行两级时效处理,得到烧结钕铁硼永磁材料。本发明的方法有效提高了磁体矫顽力,又有好的力学性能。

Description

一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法
技术领域
本发明属于永磁材料制备技术领域,涉及一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法。
技术背景
自1983年问世以来,烧结NdFeB磁体以其优越的磁性能被广泛应用于风力发电、混合动力汽车、牵引电机、计算机磁盘驱动器、核磁共振仪等领域。但由于NdFeB磁体矫顽力低、力学性能差而限制了其应用及进一步发展。目前研究人员考虑从工艺和成分两方面解决此问题,从成分上,熔炼时添加不同含量的Cu来制备烧结钕铁硼材料改善其力学性能。从工艺上,放电等离子烧结技术作为新一代先进的工艺,因其具有升温、降温速度快、能在较低的温度下烧结、烧结时间短的特点而有效抑制晶粒长大,并形成晶粒细小、致密度高的块状磁体,从而使磁体有好的磁性能。
发明内容
本发明的目的在于提供一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法,能够提高磁体的矫顽力、改善其力学性能。
本发明所采用的技术方案是,一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法,按照以下步骤实施:
步骤1、按下列原子百分比进行配料:Nd:13.5-15.4%;Cu:0.01-0.5%;Al:0.5-0.9%;Co:1.3-1.6%;Ti:0.1-0.3%;B:5.5-6.1%;Ga:0.1-0.3%,其余为Fe;
步骤2、将所有组分混合后在真空感应速凝炉里进行铸片,得到合金铸片;
步骤3、对合金铸片用氢碎炉进行氢碎,得到氢碎粉;
步骤4、对氢碎粉用气流磨制成细粉;
步骤5、对步骤4得到的细粉在磁场下成型,得到生坯;
步骤6、对步骤5得到的生坯进行放电等离子烧结;
步骤7、对步骤6烧结后的生坯进行两级时效处理,得到烧结钕铁硼永磁材料。
本发明的有益效果是,利用速凝铸片(SC)+氢破碎制粉(HD)+气流磨制粉(JM)三种工艺与等离子烧结工艺相结合,同时添加不同含量的Cu来制备烧结钕铁硼永磁材料,制备出的钕铁硼永磁材料不仅矫顽力高,而且力学性能好。具体包括:
1)在本发明的烧结过程中,采用放电等离子烧结装置进行烧结,加热均匀、升温速度快、烧结温度低、烧结时间短、生产效率高。
2)在本发明制备方法中,添加不同含量的Cu到钕铁硼永磁材料中,在室温下磁体矫顽力为1394kA/m,剩磁为1.365T,最大磁能积为350.9kJ/m3
3)在本发明制备方法中,添加Cu使磁体有好的力学性能,硬度达到534.4HV。
具体实施方式
下面结合具体实施方式对本发明进行详细说明。
本发明的放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法,按照以下步骤实施:
步骤1、按下列原子百分比进行配料:Nd:13.5-15.4%;Cu:0.01-0.5%;Al:0.5-0.9%;Co:1.3-1.6%;Ti:0.1-0.3%;B:5.5-6.1%;Ga:0.1-0.3%,其余为Fe;
以上各组分可以是金属单质也可以是该组分的合金原料(例如铁硼合金、镨钕合金)。
步骤2、将所有组分混合后在真空感应速凝炉里进行铸片,得到合金铸片,
具体过程是:抽真空在小于1Pa的条件下,开启加热电源进行加热,充入0.04-0.06MPa的氩气保护进行加热融化,在精炼结束后当钢液温度达到1400-1500℃浇钢,钢液顺着导流槽流到通有冷却水的旋转铜锟上迅速冷却,制备出厚度为0.2-0.4mm的合金铸片。
合金铸片厚度必须小于0.5mm,当厚度达到0.5mm时容易出现成分偏析,产生不利于永磁体的α-Fe。
步骤3、对步骤2得到的合金铸片用氢碎炉进行氢碎,得到氢碎粉,
具体过程是:首先向氢碎炉中通入氢气,合金铸片吸氢后变成0.1-0.3mm粉末,吸氢过程要释放大量的热量,必须在冷却条件下进行,当吸氢结束后,开启真空系统抽气,将炉体加热到500-650℃使氢原子从材料内部析出(称为脱氢反应),然后使设备冷却到室温取出氢碎粉。
氢破分为低温吸氢与高温脱氢两个过程,吸氢反应的时间为2-3小时,脱氢反应的时间为5-6h。
步骤4、对步骤3得到的氢碎粉用气流磨制成粒度更细的粉末,细粉的平均粒度控制在3μm(气流磨过程要严格控制氧含量,使氧含量控制在2000PPM以内)。
步骤5、对步骤4得到的细粉在磁场下成型,得到生坯,
具体过程是:将细粉称好后,放入压机磨具内,在磁场强度大于1.5T的磁场中取向并压制成型,然后退磁,取出生坯,抽真空封装,再将封装好的坯料放入等静压机中加压15-20Mpa,保压后取出生坯。压制后的生坯密度应控制在3.8-4.2g/cm3,密度太高容易产生内裂。
步骤6、对步骤5得到的生坯进行放电等离子烧结,
具体过程是:将生坯放入石墨磨具进行SPS烧结,SPS烧结条件为:烧结温度1025-1050℃,升温速率为30-50℃/min,压力30-100Mpa,烧结保温时间为20-60min。
步骤7、对步骤6烧结后的生坯在真空炉中进行两级时效处理,得到烧结钕铁硼永磁材料,
具体过程是:第一级时效温度800-1000℃,保持该温度2-3h后充入氩气冷却到90℃以下;第二级时效温度400-600℃,保持该温度3-5h后充入氩气冷却到90℃以下。
在制粉、成型和烧结工序中严格控制氧含量,上述整个生产过程都是在惰性气体氩气或氮气保护下进行。
本发明制备方法中各个配料元素的理化作用分别是:
铝:铝是研究和使用最多的一种元素,因为铝不仅价格便宜,而且可以提高磁体的矫顽力,铝之所以可以显著提高磁体矫顽力的原因有两个,一方面铝可以改变富Nd相与主相的浸润性,另一方面铝可以有效细化主相晶粒,提高反磁化轴的形核场。
镓:镓是提高矫顽力和温度稳定性的重要添加元素,与其他元素相比,镓的添加对磁体矫顽力的提高是最有效的。镓不仅可以优化磁体的显微结构,而且能溶入主相Nd2Fe14B中增大各向异性场HA
钛:钛既可以提高室温矫顽力,也可以降低磁体在200℃的磁通不可逆损失,从而提高磁体的高温稳定性。
钴:添加适量的钴可以有效改善磁体的居里温度。
实施例1
步骤1、按下列原子百分比进行配料:Nd:13.5%;Cu:0.01%;Al:0.5%;Co:1.3%;Ti:0.1%;B:5.5%;Ga:0.1%,其余为Fe,以上各组分选用金属单质。
步骤2、将所有组分混合后在真空感应速凝炉里进行铸片,
具体过程是:抽真空在小于1Pa的条件下,开启加热电源进行加热,充入0.04MPa的氩气保护进行加热融化,在精炼结束后当钢液温度达到1450℃浇钢,钢液顺着导流槽流到通有冷却水的旋转铜锟上迅速冷却,制备出厚度为0.3mm的合金铸片。
步骤3、对步骤2得到的合金铸片用氢碎炉进行氢碎,
具体过程是:首先向氢碎炉中通入氢气,合金铸片吸氢后变成0.2mm粉末,吸氢过程要释放大量的热量,必须在冷却条件下进行,当吸氢结束后,开启真空系统抽气,将炉体加热到500℃使氢原子从材料内部析出,然后使设备冷却到室温取出氢碎粉。吸氢反应的时间为2小时,脱氢反应的时间为6h。
步骤4、对步骤3得到的氢碎粉用气流磨制成粒度更细的粉末,细粉的平均粒度控制在3μm(气流磨过程要严格控制氧含量,使氧含量控制在2000PPM以内)。
步骤5、对步骤4得到的细粉在磁场下成型,
具体过程是:将细粉称好后,放入压机磨具内,在磁场强度为1.6T的磁场中取向并压制成型,然后退磁,取出生坯,抽真空封装,再将封装好的坯料放入等静压机中加压20Mpa,保压后取出生坯。压制后的毛坯密度为4.2g/cm3
步骤6、对步骤5得到的生坯进行放电等离子烧结,
具体过程是:将生坯放入石墨磨具进行SPS烧结,SPS烧结条件为:烧结温度1025℃,升温速率为30℃/min,压力30Mpa,烧结保温时间为60min。
步骤7、对步骤6得到的生坯在真空炉中进行两级时效处理,得到烧结钕铁硼永磁材料,
具体过程是:第一级时效温度900℃,保持该温度2h后充入氩气冷却到90℃以下;第二级时效温度500℃,保持该温度4h后充入氩气冷却到90℃以下,再取出样品进行磁性能测试。
在制粉、成型和烧结工序中严格控制氧含量,整个生产过程都是在惰性气体氩气或氮气保护下进行。
实施例2
步骤1、按下列原子百分比进行配料:Nd:14.5%;Cu:0.1%;Al:0.75%;Co:1.5%;Ti:0.15%;B:5.8%;Ga:0.15%,其余为Fe,以上各组分均为金属单质。
步骤2、将所有组分混合后在真空感应速凝炉里进行铸片,
具体过程是:抽真空在小于1Pa的条件下,开启加热电源进行加热,充入0.05MPa的氩气保护进行加热融化,在精炼结束后当钢液温度达到1400℃浇钢,钢液顺着导流槽流到通有冷却水的旋转铜锟上迅速冷却,制备出厚度为0.35mm的合金铸片。
步骤3、对步骤2得到的合金铸片用氢碎炉进行氢碎,
具体过程是:首先向氢碎炉中通入氢气,合金铸片吸氢后变成0.2mm粉末,吸氢过程要释放大量的热量,必须在冷却条件下进行,当吸氢结束后,开启真空系统抽气,将炉体加热到550℃使氢原子从材料内部析出,然后使设备冷却到室温取出氢碎粉。吸氢反应的时间为2小时,脱氢反应的时间为7h。
步骤4、对步骤3得到的氢碎粉用气流磨制成粒度更细的粉末,细粉的平均粒度控制在3μm(气流磨过程要严格控制氧含量,使氧含量控制在2000PPM以内)。
步骤5、对步骤4得到的细粉在磁场下成型,
具体过程是:将细粉称好后,放入压机磨具内,在磁场强度为1.65T的磁场中取向并压制成型,然后退磁,取出生坯,抽真空封装,再将封装好的坯料放入等静压机中加压15Mpa,保压后取出生坯。压制后的毛坯密度为4.0g/cm3
步骤6、对步骤5得到的生坯进行放电等离子烧结,
具体过程是:将生坯放入石墨磨具进行SPS烧结,SPS条件为:烧结温度1050℃,升温速率为50℃/min,压力100Mpa,烧结保温时间为20min。
步骤7、对步骤6得到的生坯在真空炉中进行两级时效处理,得到烧结钕铁硼永磁材料,
具体过程是:第一级时效温度900℃,保持该温度2h后充入氩气冷却到90℃以下;第二级时效温度500℃,保持该温度3h后充入氩气冷却到90℃以下,取出样品进行磁性能测试。
实施例3
步骤1、按下列原子百分比进行配料:Nd:15.4%;Cu:0.2%;Al:0.9%;Co:1.6%;Ti:0.3%;B:6.1%;Ga:0.3%,其余为Fe,以上各组分是金属单质。
步骤2、将所有组分混合后在真空感应速凝炉里进行铸片,
具体过程是:抽真空在小于1Pa的条件下,开启加热电源进行加热,充入0.06MPa的氩气保护进行加热融化,在精炼结束后当钢液温度达到1500℃浇钢,钢液顺着导流槽流到通有冷却水的旋转铜锟上迅速冷却,制备出厚度为0.4mm的合金铸片。
步骤3、对步骤2得到的合金铸片用氢碎炉进行氢碎,
具体过程是:首先向氢碎炉中通入氢气,合金铸片吸氢后变成0.3mm粉末,吸氢过程要释放大量的热量,必须在冷却条件下进行,当吸氢结束后,开启真空系统抽气,将炉体加热到600℃使氢原子从材料内部析出,然后使设备冷却到室温取出氢碎粉。吸氢反应的时间为2.5小时,脱氢反应的时间为6.5h。
步骤4、对步骤3得到的氢碎粉用气流磨制成粒度更细的粉末,细粉的平均粒度控制在3μm(气流磨过程要严格控制氧含量,使氧含量控制在2000PPM以内)。
步骤5、对步骤4得到的细粉在磁场下成型,
具体过程是:将细粉称好后,放入压机磨具内,在磁场强度为1.8T的磁场中取向并压制成型,然后退磁,取出生坯,抽真空封装,再将封装好的坯料放入等静压机中加压20Mpa,保压后取出生坯。压制后的毛坯密度为4.2g/cm3
步骤6、对步骤5得到的生坯进行放电等离子烧结,
具体过程是:将生坯放入石墨磨具进行SPS烧结,SPS烧结条件为:烧结温度1050℃,升温速率为50℃/min,压力100Mpa,烧结保温时间为60min。
步骤7、对步骤6得到的生坯在真空炉中进行两级时效处理,得到烧结钕铁硼永磁材料,
具体过程是:第一级时效温度1000℃,保持该温度3h后充入氩气冷却到90℃以下;第二级时效温度600℃,保持该温度5h后充入氩气冷却到90℃以下,再取出样品进行磁性能测试。
在制粉、成型和烧结工序中严格控制氧含量,整个生产过程都是在惰性气体氩气或氮气保护下进行。
实施例4
步骤1、按下列原子百分比进行配料:Nd:15%;Cu:0.3%;Al:0.65%;Co:1.4%;Ti:0.25%;B:6%;Ga:0.25%,其余为Fe,以上各组分是金属单质。
步骤2、将所有组分混合后在真空感应速凝炉里进行铸片,
具体过程是:抽真空在小于1Pa的条件下,开启加热电源进行加热,充入0.04MPa的氩气保护进行加热融化,在精炼结束后当钢液温度达到1500℃浇钢,钢液顺着导流槽流到通有冷却水的旋转铜锟上迅速冷却,制备出厚度为0.25mm的合金铸片。
步骤3、对步骤2得到的合金铸片用氢碎炉进行氢碎,
具体过程是:首先向氢碎炉中通入氢气,合金铸片吸氢后变成0.1mm粉末,吸氢过程要释放大量的热量,必须在冷却条件下进行,当吸氢结束后,开启真空系统抽气,将炉体加热到650℃使氢原子从材料内部析出,然后使设备冷却到室温取出氢碎粉。吸氢反应的时间为2小时,脱氢反应的时间为6h。
步骤4、对步骤3得到的氢碎粉用气流磨制成粒度更细的粉末,细粉的平均粒度控制在3μm(气流磨过程要严格控制氧含量,使氧含量控制在2000PPM以内)。
步骤5、对步骤4得到的细粉在磁场下成型,
具体过程是:将细粉称好后,放入压机磨具内,在磁场强度为1.6T的磁场中取向并压制成型,然后退磁,取出生坯,抽真空封装,再将封装好的坯料放入等静压机中加压18Mpa,保压后取出生坯。压制后的毛坯密度为3.9g/cm3
步骤6、对步骤5得到的生坯进行放电等离子烧结,
具体过程是:将生坯放入石墨磨具进行SPS烧结,SPS条件为:烧结温度1030℃,升温速率为40℃/min,压力80Mpa,烧结保温时间为40min。
步骤7、对步骤6得到的生坯在真空炉中进行两级时效处理,得到烧结钕铁硼永磁材料,
具体过程是:第一级时效温度850℃,保持该温度3h后充入氩气冷却到90℃以下;第二级时效温度450℃,保持该温度4h后充入氩气冷却到90℃以下,取出样品进行磁性能测试。
上述实施例制得的烧结钕铁硼永磁材料在室温下的磁性能如表1所示:
表1、实施例制得的烧结钕铁硼永磁材料的磁性能
Figure BDA0002585978400000111
由表中所列数据可看出,添加Cu后磁体的剩磁(Br)与最大磁能积(BH)max有一定程度的下降,但下降幅度不大,矫顽力随着Cu含量的增加逐渐增加,在Cu含量为0.2时达到最大。磁体矫顽力增加的原因一方面可能是由于等离子烧结技术有效抑制晶粒长大,并形成晶粒细小、致密度高的块状磁体,另一方面Cu进入晶界相形成CuNd、CuNd2等新的晶界相,这些晶界相可以减弱磁交换耦合,提高磁体矫顽力。
上述实施例制得的烧结钕铁硼永磁材料的密度与硬度如表2所示:
表2、各个实施例制得的烧结钕铁硼永磁材料的密度与硬度
Figure BDA0002585978400000121
由表2中所列数据可看出,随着Cu添加量的增加磁体密度和硬度都有明显提高,当Cu的含量为0.2时磁体的密度和硬度达到最大,力学性能最好。

Claims (6)

1.一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法,其特征在于,按照以下步骤实施:
步骤1、按下列原子百分比进行配料:Nd:13.5-15.4%;Cu:0.01-0.5%;Al:0.5-0.9%;Co:1.3-1.6%;Ti:0.1-0.3%;B:5.5-6.1%;Ga:0.1-0.3%,其余为Fe;
步骤2、将所有组分混合后在真空感应速凝炉里进行铸片,得到合金铸片;
步骤3、对合金铸片用氢碎炉进行氢碎,得到氢碎粉;
步骤4、对氢碎粉用气流磨制成细粉;
步骤5、对步骤4得到的细粉在磁场下成型,得到生坯;
步骤6、对步骤5得到的生坯进行放电等离子烧结;
步骤7、对步骤6烧结后的生坯进行两级时效处理,得到烧结钕铁硼永磁材料。
2.根据权利要求1所述的放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法,其特征在于,所述步骤2中,
具体过程是:抽真空在小于1Pa的条件下,开启加热电源进行加热,充入0.04-0.06MPa的氩气保护进行加热融化,在精炼结束后当钢液温度达到1400-1500℃浇钢,钢液顺着导流槽流到通有冷却水的旋转铜锟上迅速冷却,制备出厚度为0.2-0.4mm的合金铸片。
3.根据权利要求1所述的放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法,其特征在于,所述步骤3中,
具体过程是:首先向氢碎炉中通入氢气,合金铸片吸氢后变成0.1-0.3mm粉末,吸氢过程必须在冷却条件下进行,当吸氢结束后,开启真空系统抽气,将炉体加热到500-650℃,然后使设备冷却到室温取出氢碎粉;
氢破分为低温吸氢与高温脱氢两个过程,吸氢反应的时间为2-3小时,脱氢反应的时间为5-6h。
4.根据权利要求1所述的放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法,其特征在于,所述步骤5中,
具体过程是:将细粉称好后,放入压机磨具内,在磁场强度大于1.5T的磁场中取向并压制成型,然后退磁,取出生坯,抽真空封装,再将封装好的坯料放入等静压机中加压15-20Mpa,保压后取出生坯;
压制后的生坯密度应控制在3.8-4.2g/cm3
5.根据权利要求1所述的放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法,其特征在于,所述步骤6中,具体过程是:将生坯放入石墨磨具进行SPS烧结,SPS烧结条件为:烧结温度1025-1050℃,升温速率为30-50℃/min,压力30-100Mpa,烧结保温时间为20-60min。
6.根据权利要求1所述的放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法,其特征在于,所述步骤7中,
具体过程是:第一级时效温度800-1000℃,保持该温度2-3h后充入氩气冷却到90℃以下;第二级时效温度400-600℃,保持该温度3-5h后充入氩气冷却到90℃以下。
CN202010681431.4A 2020-07-15 2020-07-15 一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法 Active CN111968850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010681431.4A CN111968850B (zh) 2020-07-15 2020-07-15 一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010681431.4A CN111968850B (zh) 2020-07-15 2020-07-15 一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法

Publications (2)

Publication Number Publication Date
CN111968850A true CN111968850A (zh) 2020-11-20
CN111968850B CN111968850B (zh) 2022-04-19

Family

ID=73360587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010681431.4A Active CN111968850B (zh) 2020-07-15 2020-07-15 一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法

Country Status (1)

Country Link
CN (1) CN111968850B (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040144449A1 (en) * 2002-11-12 2004-07-29 Munekatsu Shimada Nd-Fe-B type anisotropic exchange spring magnet and method of producing the same
CN101877265A (zh) * 2010-04-28 2010-11-03 天津天和磁材技术有限公司 一种高性能钕铁硼永磁材料的制造方法
CN102534358A (zh) * 2012-01-16 2012-07-04 烟台正海磁性材料股份有限公司 高矫顽力R-Fe-B系烧结永磁材料的制造方法
US20130068992A1 (en) * 2010-05-20 2013-03-21 Kazuhiro Hono Method for producing rare earth permanent magnets, and rare earth permanent magnets
CN103310933A (zh) * 2013-05-10 2013-09-18 安徽大地熊新材料股份有限公司 一种高压制备烧结钕铁硼的方法
CN103646777A (zh) * 2013-12-11 2014-03-19 江苏大学 一种晶界纳米复合强化钕铁硼磁体的制备方法
CN103667920A (zh) * 2013-11-29 2014-03-26 宁波松科磁材有限公司 一种Nd-Fe-B系稀土永磁合金的制备方法
US20140210582A1 (en) * 2011-10-14 2014-07-31 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
CN104575901A (zh) * 2014-11-26 2015-04-29 宁波格荣利磁业有限公司 一种添加铽粉的钕铁硼磁体及其制备方法
CN105761860A (zh) * 2014-11-06 2016-07-13 福特全球技术公司 具有高矫顽力和能量密度的细粒度钕铁硼磁体
CN106128673A (zh) * 2016-06-22 2016-11-16 烟台首钢磁性材料股份有限公司 一种烧结钕铁硼磁体及其制备方法
CN108364736A (zh) * 2018-04-10 2018-08-03 陈亮 一种钕铁硼永磁材料及其制备方法
CN108565086A (zh) * 2018-05-11 2018-09-21 包头稀土研究院 高磁能积高矫顽力烧结钕铁硼磁体的制备方法
CN108962580A (zh) * 2018-06-28 2018-12-07 宁波招宝磁业有限公司 一种渗镝/铽钕铁硼磁体的制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040144449A1 (en) * 2002-11-12 2004-07-29 Munekatsu Shimada Nd-Fe-B type anisotropic exchange spring magnet and method of producing the same
CN101877265A (zh) * 2010-04-28 2010-11-03 天津天和磁材技术有限公司 一种高性能钕铁硼永磁材料的制造方法
US20130068992A1 (en) * 2010-05-20 2013-03-21 Kazuhiro Hono Method for producing rare earth permanent magnets, and rare earth permanent magnets
US20140210582A1 (en) * 2011-10-14 2014-07-31 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
CN102534358A (zh) * 2012-01-16 2012-07-04 烟台正海磁性材料股份有限公司 高矫顽力R-Fe-B系烧结永磁材料的制造方法
CN103310933A (zh) * 2013-05-10 2013-09-18 安徽大地熊新材料股份有限公司 一种高压制备烧结钕铁硼的方法
CN103667920A (zh) * 2013-11-29 2014-03-26 宁波松科磁材有限公司 一种Nd-Fe-B系稀土永磁合金的制备方法
CN103646777A (zh) * 2013-12-11 2014-03-19 江苏大学 一种晶界纳米复合强化钕铁硼磁体的制备方法
CN105761860A (zh) * 2014-11-06 2016-07-13 福特全球技术公司 具有高矫顽力和能量密度的细粒度钕铁硼磁体
CN104575901A (zh) * 2014-11-26 2015-04-29 宁波格荣利磁业有限公司 一种添加铽粉的钕铁硼磁体及其制备方法
CN106128673A (zh) * 2016-06-22 2016-11-16 烟台首钢磁性材料股份有限公司 一种烧结钕铁硼磁体及其制备方法
CN108364736A (zh) * 2018-04-10 2018-08-03 陈亮 一种钕铁硼永磁材料及其制备方法
CN108565086A (zh) * 2018-05-11 2018-09-21 包头稀土研究院 高磁能积高矫顽力烧结钕铁硼磁体的制备方法
CN108962580A (zh) * 2018-06-28 2018-12-07 宁波招宝磁业有限公司 一种渗镝/铽钕铁硼磁体的制备方法

Also Published As

Publication number Publication date
CN111968850B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
CN111243806B (zh) 一种高性能烧结钕铁硼磁体的制备方法
CN102903472A (zh) 一种烧结钕铁硼磁体及其制备方法
CN111430143B (zh) 一种稀土钕铁硼永磁体的制备方法
WO2011082595A1 (zh) 一种微细球形nd-fe-b粉的制备方法
CN110957090A (zh) 一种钐钴1:5型永磁材料及其制备方法
CN113205936B (zh) 一种NdFeB/YCo5型高性能磁体及其制备工艺
CN108806910B (zh) 提高钕铁硼磁性材料矫顽力的方法
CN113838622A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN110491616B (zh) 一种钕铁硼磁性材料及其制备方法
CN113921218B (zh) 一种高剩磁钕铁硼磁体及其制备方法和应用
CN111968850B (zh) 一种放电等离子烧结制备高矫顽力钕铁硼永磁材料的方法
CN113871120B (zh) 一种混合稀土永磁材料及其制备方法
WO2023280259A1 (zh) 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途
CN113205938B (zh) 一种低成本高性能的烧结钕铁硼永磁材料及其制备工艺
CN113539664B (zh) 一种Sm基各向异性复合磁体的制备方法
JP7146029B1 (ja) ネオジム鉄ホウ素永久磁石及びその製造方法と使用
CN109243746A (zh) 一种低温延时烧结而成的超细晶烧结永磁体及其制备方法
US20210280344A1 (en) Method for preparing NdFeB magnet powder
CN114914048A (zh) 一种高剩磁高矫顽力无重稀土烧结钕铁硼磁体及其制备方法
CN113539600A (zh) 一种高磁能积和高矫顽力的含Dy稀土永磁体及制备方法
CN106409456B (zh) 一种提高磁性能的稀土永磁制备工艺
CN115747611B (zh) 一种辅合金铸片和高剩磁高矫顽力钕铁硼永磁体及制备方法
CN113724954B (zh) 一种无重稀土的高矫顽力永磁体及其制备工艺
CN113782290B (zh) 一种高Ce含量双主相高磁能积磁体及其制备方法
CN113724956B (zh) 一种双主相稀土永磁材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant