CN111948410A - 样本架调度方法及样本分析系统 - Google Patents

样本架调度方法及样本分析系统 Download PDF

Info

Publication number
CN111948410A
CN111948410A CN201910410500.5A CN201910410500A CN111948410A CN 111948410 A CN111948410 A CN 111948410A CN 201910410500 A CN201910410500 A CN 201910410500A CN 111948410 A CN111948410 A CN 111948410A
Authority
CN
China
Prior art keywords
sample
controller
sample analyzer
information
analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910410500.5A
Other languages
English (en)
Inventor
张军伟
李学荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Mindray Bio Medical Electronics Co Ltd
Original Assignee
Shenzhen Mindray Bio Medical Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Mindray Bio Medical Electronics Co Ltd filed Critical Shenzhen Mindray Bio Medical Electronics Co Ltd
Priority to CN201910410500.5A priority Critical patent/CN111948410A/zh
Publication of CN111948410A publication Critical patent/CN111948410A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1065Multiple transfer devices

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本发明提供了一种样本架调度方法及样本分析系统。该样本架调度方法包括如下步骤:输送轨道接收新放置的样本架;获取各样本分析仪的设备信息,并反馈给控制器;所述控制器根据所述设备信息选定目标样本分析仪;所述控制器控制所述输送轨道将所述样本架输送至所述目标样本分析仪,并由所述目标样本分析仪对所述样本架中的样本进行检测;其中,所述设备信息至少包括所述样本分析仪的仪器历史信息或预定检测设备的信息。实现样本架可以均衡分配至各个样本分析仪,保证各个样本分析仪检测样本架的数量相差不大,避免其中一个样本分析仪处理大量样本,以降低样本分析仪的故障率,延长易耗品的使用寿命,进而延长样本分析系统的维护周期,降低维护成本。

Description

样本架调度方法及样本分析系统
技术领域
本发明涉及样本检测设备领域,特别是涉及一种样本架调度方法及样本分析系统。
背景技术
对于目前的流水线式样本分分析系统而言,其包括多台仪器和轨道,样本放在试管架上,流水线以试管架为载体,将样本输送到各个仪器,进行测量,并最后再汇总到卸载平台。
通常,流水线按照就近原则和负载最小原则,来调度试管架。比如流水线首次放入1排试管架,则会因为第一仪器比较近且负载为0,首先送入第一仪器;如果同时放入2排试管架,则第一架送入第一仪器,第二架会送入负载为0且比较近的第二仪器。
在医院门急诊科室,病人经常是陆陆续续的来检验,采血也需要一定时间,因此在流水线上的样本架大都以1架或2架方式来样。长此以往,这种不均衡分配,会导致流水线上第一仪器相比第三仪器的测试量会超出很多,造成第一仪器的故障率较高,易耗品寿命比较短。
发明内容
基于此,有必要针对目前其中一个或多个样本分析仪长期处理大量样本导致的故障率高问题,提供一种样本架调度方法及样本分析系统。
上述目的通过下述技术方案实现:
一种样本架调度方法,应用于样本分析系统,所述样本分析系统包括多台样本分析仪、连接各所述样本分析仪的输送轨道以及控制器;
所述样本架调度方法包括如下步骤:
所述输送轨道接收新放置的样本架;
获取各所述样本分析仪的设备信息,并反馈给所述控制器;
所述控制器根据所述设备信息选定目标样本分析仪;
所述控制器控制所述输送轨道将所述样本架输送至所述目标样本分析仪,并由所述目标样本分析仪对所述样本架中的样本进行检测;
其中,所述设备信息至少包括所述样本分析仪的仪器历史信息或预定检测设备的信息。
在其中一个实施例中,所述样本分析系统还包括装载平台以及设置于所述装载平台的感应件,所述感应件用于检测所述装载平台是否存在所述样本架,所述装载平台用于所述样本架输送至所述输送轨道;
在所述输送轨道接收新放置的样本架之前,所述样本架调度方法还包括如下步骤:
所述感应件检测到所述样本架,所述感应件输出第一信号,并反馈给所述控制器;
所述感应件未检测到所述样本架,所述感应件输出第二信号,并反馈给所述控制器;
当所述控制器接收的信号在所述第一信号与所述第二信号之间变化时,所述控制器根据所述设备信息选定目标样本分析仪。
在其中一个实施例中,所述样本架调度方法还包括如下步骤:
所述控制器判断接收所述第一信号与所述第二信号之间变化的变化时间;
若所述变化时间超过预设时间,所述控制器根据所述设备信息选定目标样本分析仪。
在其中一个实施例中,每一所述样本分析包括统计件,所述统计件与所述控制器电连接;
所述获取各所述样本分析仪的设备信息的步骤包括:
所述统计件记录对应所述样本分析仪的仪器历史信息,并反馈给所述控制器;
所述控制器比较各所述样本分析仪的所述仪器历史信息,并将所述仪器历史信息权重低的所述样本分析仪选定为所述目标样本分析仪。
在其中一个实施例中,每一所述样本分析仪还包括存储器,所述存储器与所述统计件及所述控制器电连接;
所述统计件记录对应所述样本分析仪的仪器历史信息的步骤包括:
所述样本分析仪每检测一次样本,所述统计件记录所述样本分析仪的测量次数,并反馈给所述存储器;
所述存储器将所述样本分析仪的测量次数汇总,并形成历史测量次数信息;
所述控制器根据所述历史测量次数信息选择所述目标样本分析仪。
在其中一个实施例中,每一所述样本分析仪还包括存储器,所述存储器与所述统计件及所述控制器电连接;
所述统计件记录对应所述样本分析仪的仪器历史信息的步骤包括:
所述样本分析仪中易损件每使用一次,所述统计件记录所述样本分析仪的使用次数,并反馈给所述存储器;
所述存储器将所述样本分析仪的使用次数汇总,并形成易损件使用次数信息;
所述控制器根据所述易损件使用次数信息选择所述目标样本分析仪。
在其中一个实施例中,所述易损件包括所述样本分析仪中的机械部件、液路部件和光电部件中的至少一种。
在其中一个实施例中,每一所述样本分析仪还包括存储器,所述存储器与所述统计件及所述控制器电连接;
所述统计件记录对应所述样本分析仪的仪器历史信息的步骤包括:
所述统计件记录易损件更换次数,并反馈给所述存储器;
所述控制器根据所述易损件更换次数信息选择所述目标样本分析仪。
在其中一个实施例中,每一所述样本分析仪还包括存储器,所述存储器与所述统计件及所述控制器电连接;
所述统计件记录对应所述样本分析仪的仪器历史信息的步骤包括:
所述样本分析仪中试剂每添加一次,所述统计件记录所述样本分析仪的试剂使用情况,并反馈给所述存储器;
所述存储器将所述样本分析仪的试剂使用情况汇总,并形成试剂余量或试剂更换次数信息;
所述控制器根据所述试剂余量或试剂更换次数信息选择所述目标样本分析仪。
在其中一个实施例中,所述统计件记录对应所述样本分析仪的仪器历史信息的步骤包括:
所述统计件记录对应所述样本分析仪的历史测量次数、易损件使用次数、易损件更换次数、试剂余量和试剂更换次数信息中的至少两个,并反馈给所述控制器;
所述控制器根据所述历史测量次数、所述易损件使用次数、所述易损件更换次数、所述试剂余量或试剂更换次数信息中的至少两个信息,选定所述目标样本分析仪。
在其中一个实施例中,所述获取各所述样本分析仪的设备信息的步骤包括:
获取目标指令,将其中一个或多个所述样本分析仪设定为特定时间段内的预定检测设备;
所述控制器接收所述预定检测设备的信息,在所述特定时间段内将所述预定检测设备选定为所述目标样本分析仪。
在其中一个实施例中,所述获取各所述样本分析仪的设备信息的步骤还包括:
获取周期指令,所述控制器按照所述周期指令定期更换所述预定检测设备。
在其中一个实施例中,每一所述样本分析包括统计件,所述统计件与所述控制器电连接;
所述获取各所述样本分析仪的设备信息的步骤包括:
所述统计件记录对应所述样本分析仪的仪器历史信息与预定检测设备信息,并反馈给所述控制器;其中,所述仪器历史信息包括历史测量次数、易损件使用次数、易损件更换次数、试剂余量或试剂更换次数信息中的至少一个;
所述控制器根据所述历史测量次数、所述易损件使用次数、所述易损件更换次数、所述试剂余量或试剂更换次数信息中的至少一个和所述预定检测设备信息,选定所述目标样本分析仪。
在其中一个实施例中,所述设备信息还包括故障信息、测量模式、测量状态和输送效率中的至少一种;
所述获取各所述样本分析仪的设备信息还包括如下至少一个步骤:
获取各所述样本分析仪的故障信息,并反馈给所述控制器;
获取各所述样本分析仪的测量模式,并反馈给所述控制器;
获取各所述样本分析仪的测量状态,并反馈给所述控制器;
获取各所述样本分析仪的输送效率,并反馈给所述控制器;
所述控制器存储所述故障信息、所述测量模式、所述测量状态以及所述输送效率中的至少一个信息与所述仪器历史信息或所述预定检测设备,选定所述目标样本分析仪。
在其中一个实施例中,所述设备信息还包括仪器负载;所述样本架调度方法还包括如下步骤:
获取各所述样本分析仪的仪器负载,并反馈给所述控制器;
所述控制器根据所述仪器负载与所述仪器历史信息或所述预定检测设备,选定所述目标样本分析仪。
在其中一个实施例中,所述设备信息还包括休眠状态;所述样本架调度方法还包括如下步骤:
获取各样本分析仪的休眠状态,并反馈给所述控制器;
所述控制器还根据所述休眠状态与所述仪器历史信息或所述预定检测设备,选定所述目标样本分析仪。
一种样本分析系统,所述样本分析系统应用于如上述任一技术特征所述的样本架调度方法,所述样本分析系统包括多台样本分析仪、连接所述样本分析仪的输送轨道以及控制器;
所述输送轨道包括主轨道以及连接所述主轨道与各所述样本分析仪的支轨道,所述控制器选定目标样本分析仪后,所述控制器控制所述主轨道将样本架经所述支轨道输送至所述目标样本分析仪。
采用上述技术方案后,本发明至少具有如下技术效果:
本发明的样本架调度方法及样本分析系统,对新放置的样本架进行处理时,获取各个样本分析仪的设备信息,控制器根据各个样本分析仪的设备信息选择目标样本分析仪,然后,控制输送轨道将样本架输送至目标样本分析仪,通过目标样本分析仪对样本架中的样本进行检测。这样可以实现样本架可以均衡分配至各个样本分析仪,保证各个样本分析仪检测样本架的数量相差不大。有效的解决目前其中一个或多个样本分析仪长期处理大量样本导致的故障率高问题,避免其中一个样本分析仪处理大量样本,以降低样本分析仪的故障率,延长易耗品的使用寿命,进而延长样本分析系统的维护周期,降低维护成本。
附图说明
图1为本发明一实施例的样本分析系统的结构框图;
图2为本发明一实施例的样本架调度方法的流程图;
图3为图2所示的样本架调度方法中选取目标样本分析仪的流程图;
图4为图1所示的样本分析系统中样本分析仪的控制框图;
图5为图1所示的样本分析系统的控制框图。
其中:
100-样本分析系统;
110-样本分析仪;
120-输送轨道;
121-主轨道;
122-支轨道;
130-装载平台;
140-卸载平台。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明的样本架调度方法及样本分析系统进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
参见图1至图3,本发明一种样本架调度方法。该样本架调度方法应用于样本分析系统100,用于对样本架进行流水线式检测。具体的,样本分析系统100包括多台样本分析仪110、连接各样本分析仪110的输送轨道120以及控制器。样本分析仪110用于对待测的样本进行分析检测,以得到相应的检测结果,满足使用需求。如图1所示,本实施例的样本分析系统100包括三台样本分析仪110,并通过输送轨道120连接。当然,在本发明的其他实施方式中,样本分析仪110的数量可以为四个、五个甚至更多个。
需要说明的是,待测的样本的具体种类不受限制,在一些实施例中,待测的样本包括固体样本或者液体样本。可以理解,对液体样本进行检测时,需要将液体样本置于样本架上才能进行。进一步的液体样本包括但不限于血液样本如全血样本、末梢血样本等,还可以为体液样本、质控样本、校准物样本等。样本分析仪110可以是凝血分析仪、血球分析仪、生化分析仪、免疫分析仪中的一种或多种的组合。样本分析仪110的结构为现有技术,在此不一一赘述。
样本分析系统100还包括装载平台130与卸载平台140。装载平台130用于承载具有待检测的样本架器,卸载平台140用于承载检测后的样本架。装载平台130与卸载平台140通过输送轨道120连接,并连接至各样本分析仪110。装载平台130具有装载机构,用于推动装载平台130中的样本架至输送轨道120;卸载平台140具有卸载机构,用于将输送轨道120的样本架推送至卸载平台140。装载平台130与卸载平台140为现有结构,在此不一一赘述。呈流水线式的样本分析系统100以样本架为载体,将待测的样本输送至各个样本分析仪110进行检测,并最后汇总至卸载平台140。可以理解的,样本容器承载待测的样本,并通过样本架承载具有待测样本的样本容器。可选的,样本架上可以承载一个或多个样本容器。示例性地,样本架可以承载五个或十个样本容器。
样本分析系统100对样本进行检测时,输送轨道120将装载平台130中的样本架输送至其中一个样本分析仪110进行检测,检测完成后,输送轨道120再将样本架输送至卸载平台140暂存。样本分析系统100的控制器分别与各个样本分析仪110、装载平台130、卸载平台140以及输送轨道120电连接和/或通信连接,用于控制样本分析系统100各个仪器的运行。控制器可以包括中央处理器CPU。
输送轨道120在输送样本架至样本分析仪110进行检测之前,需要对样本架的目的地进行调度分配,选择合适的样本分析仪110进行检测。目的地定好后,控制器对样本架的输送路径进行规划,然后控制输送轨道120将样本架输送至目的地。在本实施例中,样本架调度方法包括步骤S10~S40。
S10:输送轨道120接收新放置的样本架;
S20:获取各样本分析仪110的设备信息,并反馈给控制器;
S30:控制器根据设备信息选定目标样本分析仪;
S40:控制器控制输送轨道120将样本架输送至目标样本分析仪,并由目标样本分析仪110对样本架中的样本进行检测。
可以理解的,上述的目的地即为目标样本分析仪。样本分析系统100还包括统计器,可以一个统计器对应多个样本分析仪110,也可以每个样本分析仪110对应一个统计器。统计器分别与控制器及样本分析仪110电连接,用于采集样本分析仪110的设备信息,并反馈给控制器。控制器根据统计器采集到的设备信息对各个样本分析仪110进行比对判断,选定对样本检测的目标样本分析仪。然后控制器控制输送轨道120将样本架输送至目标样本分析仪进行样本检测操作。
值得说明的是,设备信息至少包括样本分析仪110的仪器历史信息或预定检测设备的信息。当然,设备信息还包括故障信息、测量模式、测量状态或输送效率等,具体在下文详述。
统计器可以采集样本分析仪110的仪器历史信息后反馈给控制器,控制器根据仪器历史信息对各个样本分析仪110进行比对判断,选定对样本检测的目标分析仪,然后控制器控制输送轨道120将样本架输送至目标样本分析仪进行样本检测操作。可以理解的,样本分析仪110的仪器历史信息可以反应样本分析仪110的损耗状态,即控制器根据样本分析仪110的损耗状态选定目标样本分析仪。这样可以样本分析系统100的各个样本分析仪110的损耗基本一致,以延长样本分析系统100的维护周期,可以定期对各个样本分析仪110进行维护操作,降低维护人员的劳动强度,降低维护成本,同时,还能避免其中某一个样本分析仪110的故障率较高,保证样本的检测效率。
统计器也可以采集样本分析仪110的预定检测设备的信息后反馈给控制器,控制器根据预定检测设备的信息对各个样本分析仪110进行比对判断,选定对样本检测的目标分析仪,然后控制器控制输送轨道120将样本架输送至目标样本分析仪110进行样本检测操作。可以理解的,样本分析仪110的预定检测设备的信息可以反应样本分析仪110的使用情况,即控制器根据样本分析仪110的使用情况选定目标样本分析仪。这样可以保证样本分析系统100的各个样本分析仪110的损耗基本一致,以延长样本分析系统100的维护周期,可以定期对各个样本分析仪110进行维护操作,降低维护人员的劳动强度,降低维护成本,同时,还能避免其中某一个样本分析仪110的故障率较高,保证样本的检测效率。
当然,在本发明的其他实施方式中,统计器还可以同时采集样本分析仪110的仪器历史信息以及预定检测设备的信息,这一点在下文详述。
采用上述实施例的样本架调度方法对样本架进行调度分配后,可以实现样本架可以均衡分配至各个样本分析仪110,保证各个样本分析仪110检测样本架的数量相差不大,使得各个样本分析仪110的损耗基本一致。有效的解决目前其中样本分析仪长期处理大量样本导致的故障率高问题,避免其中一个样本分析仪110处理大量样本,以降低样本分析仪110的故障率,延长易耗品的使用寿命,进而延长样本分析系统100的维护周期,降低维护成本。
在一实施例中,样本分析系统100还包括设置于装载平台130的感应件,感应件用于检测装载平台130是否存在样本架,装载平台130用于样本架输送至输送轨道120。示例性地,感应件包括光耦,当然,在本发明的其他实施方式中,感应件还可以为传感器等。
在输送轨道120接收新放置的样本架之前,样本架调度方法还包括如下步骤:
感应件检测到样本架,感应件输出第一信号,并反馈给控制器;
感应件未检测到样本架,感应件输出第二信号,并反馈给控制器;
当控制器接收的信号在第一信号与第二信号之间变化时,控制器根据设备信息选定目标样本分析仪110。
装载平台130将样本架推送至输送轨道120的过程中,感应件可以检测到样本架通过,并反馈给控制器。具体的,当装载平台130推送样本架到感应件处,感应件被遮挡,此时感应件能够检测到样本架并输出第一信号;当装载平台130继续推动样本架,使样本架脱离感应件时,感应件未被遮挡,此时,感应件不能检测到样本架并输出第二信号。控制器接收到的信号在第一信号与第二信号之间变化时,控制器需要根据上述实施例中的设备信息对样本架进行调度分配,以使得各个样本分析仪110的损耗基本一致。当控制器未接收变化的信号,即始终接收第一信号或第二次信号,控制器则根据样本架的检测效率调度分配样本架。
通常,样本分析系统100对样本架的检测可以分为连续不间断的检测以及间隔输送的检测。连续不间断的检测即为样本分析系统100在忙时进行检测,此时,样本分析系统100输送的样本架连续,一架接着一架,间隔周期较短。检测输送的检测即为样本分析系统100在闲时的检测,此时,样本分析系统100输送的样本架断断续续,如一架、两架等等,检测周期较长。
当样本分析系统100处于忙时状态,控制器按照上述实施例中的设备信息将第一个样本架分配至目标样本分析仪后,再控制其余样本架均衡分配至各个样本分析仪110进行检测,以保证样本的检测效率。当样本分析系统100处于闲时状态,控制器根据上述实施例中的设备信息对样本架进行调度,使得各个样本分析仪110的损耗基本一致。也就是说,本发明的样本架调度方法在闲时状态对样本架的调度进行判断,在忙时状态对第一个样本架进行调度,其余样本架均衡调度至各个样本分析仪110;当然,在忙时状态,各个样本架也可按照上述调度方法对样本架的调度进行判断。
可以理解的,样本分析系统100处于忙时状态时,装载平台130连续输送样本架至输送轨道120,此状态下,当感应件处的样本架被推出后,后一样本架就被推送至感应件处。也就是说,样本分析系统100处于忙时状态时,感应件一直可以检测到样本架,即感应件始终输出第一信号,此时,控制器接收的信号不会变化,控制器按照样本分析仪110的检测效率来均衡分配样本架,以保证样本分析系统100的检测效率。
这里的样本分析仪110的检测效率是指样本分析仪110等待检测样本架的数量,即为仪器负载。由于样本分析系统100的流水线输送以样本架为载体,故样本分析仪110的负载是以样本分析仪110前输送轨道120上的样本架的数量为衡量标准。若样本架的数量少,则样本分析仪110的检测效率高,若样本架的数量多,则样本分析仪110的检测效率低。此时,控制器根据样本分析仪110的检测效率调度样本架,以保证样本分析系统100的检测效率。
样本分析系统100处于闲时状态时,感应件处空载,未检测到有样本架;当装载平台130中装载样本架后,装载平台130将样本架推送至感应件处,然后,再将样本架推送至脱离感应件对应的位置,随后,再无其他样本架被推送至感应件处。也就是说,样本分析系统100处于闲时状态时,感应件会输出跳变信号,即为输出的信号在第一信号与第二信号之间变化。此时,控制器会根据设备信息对样本架进行调度分配。
当然,在本发明的其他实施方式中,当样本分析系统100处于忙时状态时,也可各个样本架均根据样本分析仪110的设备信息进行调度分配。具体的,当放入样本架多于一架时,第一个样本架根据设备信息分配到目标样本分析仪中去,第二个会分配到其他样本分析仪110中的目标样本分析仪中,后续的样本架架按照规则继续分配。这样在可以在保证均衡分配样本架的前提下,也保证大批量样本的测试效率。也就是说,样本分析系统100可以不考虑闲时与忙时,直接根据规则调度分配样本架,使得各个样本分析仪110的损耗基本一致。
进一步地,样本架调度方法还包括如下步骤:
控制器判断接收第一信号与第二信号之间变化的变化时间;
若变化时间超过预设时间,控制器根据设备信息选定目标样本分析仪。
装载平台130向输送轨道120输送样本架的过程中,可能会因为一些影响因素导致连续输送的样本架之间存在时间间隔,此时,感应件输出的信号在第一信号与第二信号之间变化。由于此时样本分析系统100连续输送样本架,若按照设备信息对样本架调度分配,可能会存在某一个样本分析仪110处待检测的样本架数量较多,影响检测效率。因此,本申请的样本架调度方法考虑到上述影响因素,增加判断比较变化时间的判断步骤,以使得样本架可以均衡调度分配。
具体的,当控制器接收到感应件输出的跳变信号后,控制器还会采集第一信号与第二信号的发生时间,并计算第一信号与第二信号的间隔时间,即为控制器接收第一信号与第二信号之间变化的变化时间。然后控制器将变化时间与预设时间进行比较,若变化时间超过预设时间,则表明样本分析系统100处于闲时状态,控制器根据设备信息调度分配样本架;若变化时间未超过预设时间,则表明样本分析系统100处于忙时状态,控制器根据检测效率调度分配样本架。
值得说明的,上述的影响因素可以包括向装载平台130装载样本架的时间间隔较长、样本架卡滞等等。通常,向装载平台130装载样本架采用人工方式,这会使得相邻的两个样本架之间存在一定的时间间隔。
可以理解的,预设时间可以为某一个定值或者某个取值范围。示例性地,预设时间的取值范围为3s~7s;当然,预设时间的取值范围还可以为其他范围。当变化时间超过预设时间时,控制器根据设备信息调度分配样本架;当变化时间落入预设时间范围或者小于预设时间范围时,控制器根据检测效率调度分配样本架。这样可以保证样本架合理的调度分配,在保证各个样本分析仪110检测效率的同时,保证样本分析仪110的仪器损耗基本一致。
参见图1至图5,在本发明的第一实施例中,每一样本分析包括统计件,统计件与控制器电连接;
获取各样本分析仪110的设备信息的步骤包括:
统计件记录对应样本分析仪110的仪器历史信息,并反馈给控制器;
控制器比较各样本分析仪110的仪器历史信息,并将仪器历史信息权重低的样本分析仪110选定为目标样本分析仪。
统计件用于记录样本分析仪110的仪器历史信息,仪器历史信息可以反应样本分析仪110检测样本的次数,进而可以得到样本分析仪110的损耗状态,即统计件可以记录样本分析仪110检测样本架的次数。可以每一样本分析仪110对应一个统计件,也可多个样本分析仪110对应一个统计件。通常,样本分析仪110的各个部件的损耗状态对样本分析仪110的故障率影响权重系数不同,统计件记录相应部件的适应次数,并乘以相应的权重系数,得到该样本分析仪110对应的权重值,然后,控制器比较各个样本分析仪110的权重值,选定权重值较低的样本分析仪110作为目标样本分析仪。可以理解的,样本分析仪110的权重值高表明样本分析仪110的检测次数较多,损耗较高;样本分析仪110的权重值低表明样本分析仪110的检测次数较少,损耗较低。
这样,控制器可以根据仪器历史信息对样本架进行调度分配,将样本架分配至检测次数少的样本分析仪110上去,以使各个样本分析仪110的仪器历史信息相差不大,进而使得样本分析系统100的各个样本分析仪110的损耗基本一致,以延长样本分析系统100的维护周期,可以定期对各个样本分析仪110进行维护操作,降低维护人员的劳动强度,降低维护成本,同时,还能避免其中某一个样本分析仪110的故障率较高,保证样本的检测效率。
样本分析仪110包括硬件平台、传感器(计数池/光学系统)、机构与器部件及采样组件等等,并由控制器、硬件平台、传感器(计数池/光学系统)、机构与器部件、统计器、采样组件以及存储器形成测量系统,用于采集样本分析仪110的检测次数。可以理解的,样本分析仪110的硬件平台、传感器(计数池/光学系统)、机构与器部件及采样组件均为现有结构,在此不一一赘述。
值得说明的,这里的仪器历史信息至少包括历史测量次数、易损件使用次数、易损件更换次数以及试剂余量或试剂更换次数中的一种或至少两种。以下分别对各种情况进行说明。
情况1,仪器历史信息包括历史测量信息,控制器根据样本分析仪110的历史测量次数对样本架进行调度分配,以下举例说明。
在一实施例中,每一样本分析仪110还包括存储器,存储器与统计件及控制器电连接;
统计件记录对应样本分析仪110的仪器历史信息的步骤包括:
样本分析仪110每检测一次样本,统计件记录样本分析仪110的测量次数,并反馈给存储器;
存储器将样本分析仪110的测量次数汇总,并形成历史测量次数信息;
控制器根据历史测量次数信息选择目标样本分析仪。
值得说明的,样本分析仪110的测量状态包括自动测量状态和手动测量状态,这里的历史测量次数包括手动测量次数与自动测量次数之和。该次数会影响样本分析仪110的寿命和易损件的寿命,进而导致样本分析仪110存在故障,影响检测。因此,本发明的样本架调度方法根据历史测量次数信息均衡各个样本分析仪110的测量次数,使得各个样本分析仪110的寿命基本一致,以延长样本分析系统100的维护周期,可以定期对各个样本分析仪110进行维护操作,降低维护人员的劳动强度,降低维护成本,同时,还能避免其中某一个样本分析仪110的故障率较高,保证样本的检测效率。
具体的,存储器起到计数以及处理功能,样本分析仪110每对样本进行检测一次,统计件的测量次数加1,并反馈给存储器。存储器将样本分析仪110的测量次数实时汇总,形成样本分析仪110的历史测量信息,并实时反馈给控制器。控制器比较各个样本分析仪110的历史测量信息,并将历史测量信息次数少的样本分析仪110作为目标样本分析仪。同时,存储器还存储样本分析仪110检测样本后的检测结果。
在各个样本分析仪110都空闲时,无论样本分析系统100处于忙时状态还是闲时状态,输送轨道120每次输送新的样本架,控制器根据样本分析仪110的历史测量信息调度分配第一个样本架,将历史测量次数较少的样本分析仪110作为目标样本分析仪,那么第一个样本架会分配到历史测量次数较少的样本分析仪110去。这样从整体时间上来看,各个样本分析仪110的样本架分配数量就会逐步趋于均衡,损耗状态基本一致。
可选地,当放入样本架多于一架时,第一个样本架分配到历史测量次数最小的样本分析仪110中去,第二个会分配到其他样本分析仪110的历史测量次数更小的仪器,后续的样本架架按照规则继续分配。这样在可以在保证均衡分配样本架的前提下,也保证大批量样本的测试效率。
情况2,仪器历史信息包括易损件使用次数,控制器根据样本分析仪110的易损件使用次数对样本架进行调度分配,以下举例说明。
在一实施例中,统计件记录对应样本分析仪110的仪器历史信息的步骤包括:
样本分析仪110中易损件每使用一次,统计件记录样本分析仪110的使用次数,并反馈给存储器;
存储器将样本分析仪110的使用次数汇总,并形成易损件使用次数信息;
控制器根据易损件使用次数信息选择目标样本分析仪。
这里的易损件包括样本分析仪110中的机械部件、液路部件和光电部件中的至少一种。示例性地,机构与器部件中有很多液路器件和机械部件,比如采样针、过滤器、管路、注射器等,这些器件的损耗决定了样本分析仪110的故障率,可以作为易损件的损耗信息进行统计。示例性地,传感器中重要的是光源器件,光源的打开时间决定了其稳定性和寿命,这些器件的损耗可以作为易损件的损耗信息进行统计。具体的,易损件的使用次数可以包括激光器的打开时间或次数、检测光源的工作时间或次数、采样针穿刺次数、过滤器时间等等。
样本分析仪110每检测一次样本,光电部件、液路部件、机械部件就会被使用一次,通过统计件统计光电部件、液路部件、机械部件的使用次数,即可得到样本分析仪110的检测次数,进而得到样本分析仪110的损耗情况。可以理解的,可以统计光电部件、液路部件、机械部件中的一个或多个作为易损件的使用次数,并且,各样本分析仪110采用相同的部件进行易损件使用次数统计,方便控制器对各个样本分析仪110的易损件使用次数进行比较。
具体的,光电部件、液路部件、机械部件等易损件每使用一次,统计件的测量次数加1,并反馈给存储器。存储器将样本分析仪110的使用次数实时汇总,形成样本分析仪110的易损件使用次数信息,并实时反馈给控制器。控制器比较各个样本分析仪110的易损件使用次数信息,并将易损件使用次数信息少的样本分析仪110作为目标样本分析仪。
当采用一个部件作为易损件使用次数统计时,控制器直接比较各个样本分析仪110的易损件使用次数,将易损件使用次数最小的样本分析仪110作为第一个样本架的目标样本分析仪。其余样本架可以按照检测效率或者上述调度方法进行调度分配,这两种方式已经在上文提及,在此不一一赘述。
当采用多个部件共同作为易损件使用次数的统计时,赋予各部件不同的权重系数,并将权重系数乘以对应部件的使用次数得到该部件的权重值,再将样本分析仪110的各部件的权重值相加,记得到该样本分析仪110易损件使用次数的整体权重值。控制器比较各样本分析仪110的整体权重值,将整体权重值低的样本分析仪110作为第一个样本架的目标样本分析仪。其余样本架可以按照检测效率或者上述调度方法进行调度分配。
情况3,仪器历史信息包括易损件更换次数,控制器根据样本分析仪110的易损件更换次数对样本架进行调度分配,以下举例说明。
在一实施例中,统计件记录对应样本分析仪110的仪器历史信息的步骤包括:
统计件记录易损件更换次数,并反馈给存储器;
控制器根据易损件更换次数信息选择目标样本分析仪。
可以理解的,易损件使用预定的次数后需要进行更换,否则会使样本分析仪110产生故障。因此,通过记录统计件的更换次数也可以反应样本分析仪110的检测次数,进而得到样本分析仪110的损耗情况。
具体的,光电部件、液路部件、机械部件等易损件每更换一次,统计件的测量次数加1,并反馈给存储器。存储器将样本分析仪110的使用次数实时汇总,形成样本分析仪110的易损件更换次数信息,并实时反馈给控制器。控制器比较各个样本分析仪110的易损件更换次数信息,并将易损件更换次数信息少的样本分析仪110作为目标样本分析仪。
当采用一个部件作为易损件更换次数统计时,控制器直接比较各个样本分析仪110的易损件更换次数,将易损件更换次数最小的样本分析仪110作为第一个样本架的目标样本分析仪。其余样本架可以按照检测效率或者上述调度方法进行调度分配。
当采用多个部件共同作为易损件更换次数的统计时,赋予各部件不同的权重系数,并将权重系数乘以对应部件的更换次数得到该部件的权重值,再将样本分析仪110的各部件的权重值相加,记得到该样本分析仪110易损件更换次数的整体权重值。控制器比较各样本分析仪110的整体权重值,将整体权重值低的样本分析仪110作为第一个样本架的目标样本分析仪。其余样本架可以按照检测效率或者上述调度方法进行调度分配。
情况4,仪器历史信息包括试剂余量或试剂更换次数信息,控制器根据样本分析仪110的试剂余量或试剂更换次数信息对样本架进行调度分配,以下举例说明。
在一实施例中,统计件记录对应样本分析仪110的仪器历史信息的步骤包括:
样本分析仪110中试剂每添加一次,统计件记录样本分析仪110的试剂使用情况,并反馈给存储器;
存储器将样本分析仪110的试剂使用情况汇总,并形成试剂余量或试剂更换次数信息;
控制器根据试剂余量或试剂更换次数信息选择目标样本分析仪。
样本分析仪110对样本进行检测时,需要向样本中添加相应的试剂,样本分析仪110对混合试剂后的样本进行孵育操作,以使样本与试剂充分反应,便于检测时得到样本的各项参数。试剂可以包括但不限于稀释液、溶血剂、荧光染料等等。并且,每个样本分析仪110可以对其中的试剂进行独立管理,方便获得样本分析仪110的试剂余量或试剂更换次数。试剂余量少、试剂更换次数多,表明该样本分析仪110的试剂使用量大,进而样本分析仪110的液路部件就会出现污染或残渣,导致样本分析仪110不稳定,故障率高。因此,通过计算试剂余量和试剂更换次来获得样本分析仪110的试剂消耗,并将试剂消耗作为判据获得样本分析仪110的损耗情况。
可以理解的,当样本分析仪110的试剂使用完成后,需要更换试剂容器。试剂容器中存储的试剂量是定值,每次向样本添加的试剂量也是定值,进而通过试剂更换次数可以计算出样本分析仪110的试剂消耗。并且,通过控制器对样本分析仪110的试剂进行管理,包括试剂的余量、试剂的报警与更换,并将相关信息存储于存储器中。
具体的,样本分析仪110每添加一次试剂,统计件的测量次数加1,并反馈给存储器。存储器将样本分析仪110的试剂使用情况实时汇总,形成试剂余量或试剂更换次数信息,并实时反馈给控制器。控制器比较各个样本分析仪110的试剂余量或试剂更换次数信息,并将试剂余量或试剂更换次数信息小的样本分析仪110作为目标样本分析仪。
由于样本检测时添加的试剂种类不一,需要对样本分析仪110的各种试剂的试剂余量或试剂更换次数信息进行统计,并赋予各试剂不同的权重系数,并将权重系数乘以对应试剂的试剂余量或试剂更换次数得到该部件的权重值,再将样本分析仪110的各试剂的权重值相加,记得到该样本分析仪110试剂余量或试剂更换次数的整体权重值。控制器比较各样本分析仪110的整体权重值,将整体权重值低的样本分析仪110作为第一个样本架的目标样本分析仪。其余样本架可以按照检测效率或者上述调度方法进行调度分配。
情况4,仪器历史信息包括历史测量次数、易损件使用次数、易损件更换次数以及试剂余量或试剂更换次数中的一种或至少两种,控制器根据样本分析仪110的历史测量次数、易损件使用次数、易损件更换次数以及试剂余量或试剂更换次数中的一种或至少两种信息对样本架进行调度分配,以下举例说明。
在一实施例中,统计件记录对应样本分析仪110的仪器历史信息的步骤包括:
统计件记录对应样本分析仪110的历史测量次数、易损件使用次数、易损件更换次数、试剂余量或试剂更换次数信息中的至少两个,并反馈给控制器;
控制器根据历史测量次数、易损件使用次数、易损件更换次数、试剂余量或试剂更换次数信息中的至少两个信息,选定目标样本分析仪。
由于统计件统计历史测量次数、易损件使用次数、易损件更换次数、试剂余量或试剂更换次数信息的方式已在上文提及,在此仅对控制器根据至少两个信息选定目标样本分析仪进行说明。控制器可以根据其中两个信息选定目标样本分析仪,与此同时,其余两个信息则不会被统计件统计。控制器也可以根据其中三个信息选定目标样本分析仪,与此同时,剩余的一个信息则不会被统计件统计。控制器还可以根据上述的四个信息选定目标样本分析仪。
本实施例仅以控制器根据其中两个信息选定目标样本分析仪为例进行说明。假设,控制器根据历史测量次数以及易损件使用次数选定目标样本分析仪。具体的,赋予历史测量次数的权重系数为第一权重系数,易损件使用次数的权重系数为第二权重系数,统计件统计历史测量次数信息与易损件使用次数信息反馈给控制器后,控制器计算整体权重值,即用历史测量次数乘以第一权重系数得第一权重值,用易损件使用次数信乘以第二权重系数得第二权重值。将第一权重值与第二权重值加和得到样本分析仪110的整体权重值。控制器比较各样本分析仪110的整体权重值,将整体权重值低的样本分析仪110作为第一个样本架的目标样本分析仪。其余样本架可以按照检测效率或者上述调度方法进行调度分配。
值得说明的,控制器其余两个信息或者与上述信息组合后的两个信息选定目标样本分析仪的原理与根据上述实施例的原理实质相同,在此不一一赘述。控制器根据三个信息或四个信息选定目标样本分析仪的原理与根据两个信息选定目标样本分析仪的原理实质相同,在此不一一赘述。
在本发明的第二实施例中,获取各样本分析仪110的设备信息的步骤包括:
获取目标指令,将其中一个或多个样本分析仪设定为特定时间段内的预定检测设备;
控制器接收预定检测设备的信息,在特定时间段内将预定检测设备选定为目标样本分析仪。
本实施例中,可以根据预定检测设备的信息选定目标样本分析仪。也就是说,样本分析系统100对样本架进行流水线式输送之前,操作人员会预先设定其中的一个或某多个如两个等等为预定检测设备,即优先采用预定检测设备对样本进行检测。控制器接收到预定检测设备的信息后,控制器控制输送轨道120将样本架输送至目标样本分析仪110,以对样本进行检测。
预定检测设备在时间段内是作为固定的样本检测设备。输送轨道120可以直接将样本架输送至预定检测设备进行检测。可以理解的,超过时间段后,操作人员输入目标指令后,将其余样本分析仪110中的一个或多个作为设定为再一时间段内的预定检测设备。也就是说,设定更换默认的样本分析仪110,样本分析仪110处于闲时状态时,优先将样本输送至默认的样本分析仪110进行检测。这样,可以在时间段内更换样本分析系统100的目标样本分析仪,避免闲时只使用其中一个或两个样本分析仪110进行检测,使得各个样本分析仪110的损耗基本一致,以延长样本分析系统100的维护周期,可以定期对各个样本分析仪110进行维护操作,降低维护人员的劳动强度,降低维护成本,同时,还能避免其中某一个样本分析仪110的故障率较高,保证样本的检测效率。
在一实施例中,获取各样本分析仪110的设备信息的步骤还包括:
获取周期指令,控制器按照周期指令定期更换预定检测设备。
可以根据用户输入的周期指令按照预定的周期对预定检测设备进行更换,即定期更换预定检测设备,比如以每周或每月等为周期进行更换。当然,在本发明的其他实施方式中,也可不按照预定的周期对预定检测设置进行更换。比如,预定检测设备已经检测较多的样本,此时,操作人员输入目标指令,更换预定检测设备,避免其中一个样本分析仪110的检测次数过多,使得各个样本分析仪110的损耗基本一致。
值得说明的是,控制器可以根据样本分析仪110的仪器历史信息选定目标样本分析仪110,也可以根据预定检测设备选定目标样本分析仪,还可以根据仪器历史信息与预定检测设备的组合选定目标样本分析仪。以下对控制器根据仪器历史信息与预定检测设备的组合选定目标样本分析仪的情况进行详细说明。
在一实施例中,每一样本分析包括统计件,统计件与控制器电连接;
获取各样本分析仪110的设备信息的步骤包括:
所述统计件记录对应所述样本分析仪110的仪器历史信息与预定检测设备信息,并反馈给所述控制器;其中,所述仪器历史信息包括历史测量次数、易损件使用次数、易损件更换次数、试剂余量或试剂更换次数信息中的至少一个;
所述控制器根据所述历史测量次数、所述易损件使用次数、所述易损件更换次数、所述试剂余量或试剂更换次数信息中的至少一个和所述预定检测设备信息,选定所述目标样本分析仪。
也就是说,本发明的样本架调度方法可以结合样本分析仪110的仪器历史信息与预定设备信息选定目标样本分析仪。由于仪器历史信息内的组合已经在上文提及,本实施例中,仅说明仪器历史信息与预定检测设备信息的组合。控制器可以根据仪器历史信息中的一个信息与预定检测设备信息组合选定目标样本分析仪,也可以根据仪器历史信息中的两个、三个甚至四个信息与预定检测设备信息组合选定目标样本分析仪。本实施例中,仅以仪器历史信息中的历史测量次数与预定检测设备信息进行组合进行说明。
在样本分析仪110都空闲时,控制器选定预定检测设备作为目标样本分析仪,直接控制输送轨道120将样本架输送至目标样本分析仪进行检测。当预定检测设备的数量为一个时,控制器直接将预定检测设备作为目标检测设备并输送。当预定检测设备不能对样本进行检测时,控制器根据其余样本分析仪110的历史测量次数选定目标样本分析仪。当预定检测设备的数量为多个时,控制器先将几个预定检测设备作为目标样本分析仪的候选,然后控制器再跟进几个预定检测设备的历史测量次数选定目标样本分析仪。其余样本架可以按照检测效率或者上述调度方法进行调度分配。
在一实施例中,设备信息还包括故障信息、测量模式、测量状态中输送效率中的至少一种;
获取各样本分析仪110的设备信息还包括如下至少一个步骤:
S11,获取各样本分析仪110的故障信息,并反馈给控制器;
S12,获取各样本分析仪110的测量模式,并反馈给控制器;
S13,获取各样本分析仪110的测量状态,并反馈给控制器;
S22,获取各样本分析仪110的输送效率,并反馈给控制器;
控制器存储故障信息、测量模式、测量状态以及输送效率中的至少一个信息与仪器历史信息或预定检测设备,选定目标样本分析仪。
设备信息还包括除仪器历史信息或预定检测设备之外的其他信息,比如故障信息、测量模式、测量状态或输送效率等等。具体的,故障信息是指样本分析仪110仪器或其输送轨道120是否存在问题,能否支持测量,若无法支持,则应该停止向该样本分析仪110调度样本架。测量模式是指不同的样本分析仪110可能配置不同,测量模式也不尽相同,比如各个样本分析仪110中,有的只能做CBC(complete blood count)、有的可以做CBC+DIFF、有的可以做CBC+DIFF+RET、有的可以做CBC+CRP(C-反应蛋白,C-reaction protein),有的分析仪只能做推片等等。在调度时,要结合样本架自身的模式要求,调度到相应的样本分析仪110中。测量状态是在上文提及的自动测量状态和手动测量状态,在自动测量状态时,可以接受样本架调度,进行自动进样测量;而在手动测量状态,为用户手动操作模式,禁止自动进样测量。输送效率是指快速送入某台仪器开始测量,一般是指就近输送,效率最快。
样本分析仪110的故障信息的优先级高于测量模式的优先级,测量模式的优先级高于测量状态的优先级,测量状态的优先级高于仪器历史信息或预定检测设备的优先级,仪器历史信息或预定检测设备的优先级高于输送效率的优先级。即故障信息>测量模式>测量状态>仪器历史信息或预定检测设备>输送效率。值得说明的,仪器历史信息与预定检测设备的优先级不受限制,可以先对预定检测设备进行判断,再对仪器历史信息进行判断,也可以先对仪器历史信息进行判断,然后再对预定检测设备进行判断。并且,仪器历史信息中历史测量次数、易损件使用次数、易损件更换次数以及试剂余量或试剂更换次数的优先级不受限制,可以先对任一信息进行判断。
并且,可以只选定故障信息、测量模式、测量状态以及输送效率中的至少一个信息与仪器历史信息或预定检测设备进行组合,按照上述步骤进行判断,以选择合适的样本分析作为目标样本分析仪。以下仅以故障信息、测量模式、测量状态、输送效率与仪器历史信息或预定检测设备进行组合为例进行说明,具体如下:
本发明的样本分析系统100调度样本架时,控制器先判断各个样本分析仪110是否有故障,若有,排出故障的样本分析仪110,再进行下一步测量模式的判断;若无,则进行下一步测量模式的判断。控制器判断各个样本分析仪110的测量模式,选取合适的样本分析仪110,再进行下一步测量状态的判断。控制器判断各个样本分析仪110的测量状态,选取合适的样本分析仪110,再进行下一步仪器历史信息或预定检测设备的判断。控制器判断各个样本分析仪110的仪器历史信息或预定检测设备,选取合适的样本分析仪110。
在上述判断过程中,若其中一个步骤只有一个样本分析仪110符合样本架的检测要求,控制器停止对其余步骤的判断,选定符合要求的样本分析仪110为目标样本分析仪,直接将样本架输送至目标样本分析仪进行检测。若上述判断过程中始终有至少两个样本分析仪110符合样本架的检测要求,则按照上述步的顺序进行依次判断。可以理解的,若根据仪器历史信息或预定检测设备选取合适的样本分析仪110后,若还有至少两个样本分析仪110符合要求,则控制器进行下一步输送效率的判断,根据输送效率选取目标样本分析仪。
当然,在本发明的其他实施方式中,当确保各个样本分析仪110不存在故障信息、测量模式、测量状态或输送效率问题时,可以只通过判断仪器历史信息或预定检测设备的步骤选定目标样本分析仪。
在一实施例中,设备信息还包括仪器负载;
获取各样本分析仪100的仪器历史信息或预定检测设备信息还包括如下步骤:
S14,获取各样本分析仪110的仪器负载,并反馈给控制器;
控制器根据仪器负载与仪器历史信息或预定检测设备,选定目标样本分析仪。
仪器负载是指在上文提及的样本分析仪110前输送轨道120上样本架的数量,若样本架的数量少,则仪器负载低,样本分析仪110的检测效率高,若样本架的数量多,仪器负载高,则样本分析仪110的检测效率低。
控制器可以根据样本分析仪110的仪器负载以及仪器历史信息或预定检测设备,选定目标样本分析仪。并且,仪器负载的优先级可以高于仪器历史信息或预定检测设备的优先级,此时,控制器先判断各个样本分析仪110的仪器负载,选取合适的样本分析仪110,再进行下一步仪器历史信息或预定检测设备的判断。当然,仪器负载的优先级也可以低于仪器历史信息或预定检测设备,此时,控制器先判断各个样本分析仪110的仪器历史信息或预定检测设备,选取合适的样本分析仪110,再进行下一步仪器负载的判断。也就是说,仪器负载的步骤可以位于仪器历史信息或预定检测设备的步骤之前,也可以位于仪器负载的步骤之后。本实施例中,仪器负载的优先级可以高于仪器历史信息或预定检测设备的优先级,如图3所示。
而且,仪器负载也可以与故障信息、测量模式、测量状态以及输送效率组合,再配合样本分析仪110的仪器历史信息或预定检测设备选取目标样本分析仪。由于上文以及提及各个信息的判断方式,其判断原理实质相同,在此不一一赘述。
在一实施例中,设备信息还包括休眠状态;
获取各样本分析仪100的仪器历史信息或预定检测设备信息还包括如下步骤:
S21,获取各样本分析仪110的休眠状态,并反馈给控制器;
控制器还根据休眠状态与仪器历史信息或预定检测设备,选定目标样本分析仪。
样本分析仪110的休眠状态是指,长时间不使用样本分析仪110时,样本分析仪110会对管路等部件进行自动维护,进入休眠状态;同时样本分析仪110长时间处于休眠静置状态,退出时,也需要对管路等部件进行一次维护,才能进行正常的测量。
值得说明的,样本分析仪110退出休眠状态需要花费一定时间,若将处于休眠状态的样本分析仪110选定为目标样本分析仪,则样本架需要等待一定时间才能进行检测,这样会影响样本的检测效率。当然,若其余样本分析仪110的仪器负载高,样本在其他样本分析仪110等待检测的时间要大于等待样本分析仪110退出休眠状态的时间,则可以将样本分析仪110输送至处于休眠状态的样本分析仪110进行检测;否则可以将样本架输送至其余样本分析仪110等到检测。
控制器可以根据样本分析仪110的休眠状态及仪器历史信息或预定检测设备选定目标样本分析仪。并且,休眠状态的优先级可以高于仪器历史信息或预定检测设备的优先级,此时,控制器先判断各个样本分析仪110的休眠状态,选取合适的样本分析仪110,再进行下一步仪器历史信息或预定检测设备的判断。当然,休眠状态的优先级也可以低于仪器历史信息或预定检测设备,此时,控制器先判断各个样本分析仪110的仪器历史信息或预定检测设备,选取合适的样本分析仪110,再进行下一步休眠状态的判断。也就是说,休眠状态的步骤可以位于仪器历史信息或预定检测设备的步骤之前,也可以位于仪器历史信息或预定检测设备的步骤之后。本实施例中,休眠状态的优先级可以低于仪器历史信息或预定检测设备的优先级,如图3所示。
当控制器根据预定检测设备选定目标样本分析仪时,若预定检测设备处于休眠状态,此时,控制器可以将仪器历史状态对样本架的调配进行判断。并且,休眠状态也可以与故障信息、测量模式、测量状态、仪器负载以及输送效率组合,再配合样本分析仪110的仪器历史信息或预定检测设备选取目标样本分析仪。由于上文以及提及各个信息的判断方式,其判断原理实质相同,在此不一一赘述。
本发明的样本架调度方法结合输送效率、仪器负载、故障信息、测量状态、测量模式中的至少一种与历史测量次数、试剂余量或试剂更换次数、易损件使用次数、易损件更换次数、预定检测设备中的至少一种的调度方法,可以让流水线式样本分析系统100保持效率的同时,每个样本分析仪110的检测次数也做到均衡使用。
参见图1、图4和图5,本发明还提供一种样本分析系统100,样本分析系统100应用于上述任一实施例中的样本架调度方法,样本分析系统100包括多台样本分析仪110、连接样本分析仪110的输送轨道120以及控制器。输送轨道120包括主轨道121以及连接主轨道121与各样本分析仪110的支轨道122,控制器选定目标样本分析仪后,控制器控制主轨道121将样本架经支轨道122输送至目标样本分析仪。主轨道121与支轨道122为可以输送样本架的流水线,其具体结构为现有技术,在此不一一赘述。
本发明的样本分析系统100还包括两条网络系统,一条网路系统基于TCP/IP协议的网络连接PC和各个样本分析仪110,进行数据管理;另一条网络系统是CAN总线网络,将各个主轨道121与支轨道122以及各个样本分析仪110连接在一起,进行流水线调度。
输送轨道120还包括轨道驱动器,控制器包括主控单元,轨道驱动器与主控单元电连接,输送轨道120的整体控制由输送轨道120的主控单元来总体协调。样本架放入装载平台130后,装载平台130首先识别到有样本架放入,并对样本架的ID进行识别,同时通过CAN总线网络上报给主控单元。主控单元收到样本架ID后,对测量模式进行匹配,并经过网络获取每个仪器的测量状态和仪器负载情况,经过优先级的调度策略,对样本架的目的地进行调度分配,选定目标样本分析仪。目标样本分析仪定好之后,主控单元通过CAN总线获取每个轨道的状态和负载,进行路径规划,然后主控单元控制轨道驱动器动作,启动样本架的输送。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书的记载范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (17)

1.一种样本架调度方法,其特征在于,应用于样本分析系统,所述样本分析系统包括多台样本分析仪、连接各所述样本分析仪的输送轨道以及控制器;
所述样本架调度方法包括如下步骤:
所述输送轨道接收新放置的样本架;
获取各所述样本分析仪的设备信息,并反馈给所述控制器;
所述控制器根据所述设备信息选定目标样本分析仪;
所述控制器控制所述输送轨道将所述样本架输送至所述目标样本分析仪,并由所述目标样本分析仪对所述样本架中的样本进行检测;
其中,所述设备信息至少包括所述样本分析仪的仪器历史信息或预定检测设备的信息。
2.根据权利要求1所述的样本架调度方法,其特征在于,所述样本分析系统还包括装载平台以及设置于所述装载平台的感应件,所述感应件用于检测所述装载平台是否存在所述样本架,所述装载平台用于所述样本架输送至所述输送轨道;
在所述输送轨道接收新放置的样本架之前,所述样本架调度方法还包括如下步骤:
所述感应件检测到所述样本架,所述感应件输出第一信号,并反馈给所述控制器;
所述感应件未检测到所述样本架,所述感应件输出第二信号,并反馈给所述控制器;
当所述控制器接收的信号在所述第一信号与所述第二信号之间变化时,所述控制器根据所述设备信息选定目标样本分析仪。
3.根据权利要求2所述的样本架调度方法,其特征在于,所述样本架调度方法还包括如下步骤:
所述控制器判断接收所述第一信号与所述第二信号之间变化的变化时间;
若所述变化时间超过预设时间,所述控制器根据所述设备信息选定目标样本分析仪。
4.根据权利要求1所述的样本架调度方法,其特征在于,每一所述样本分析包括统计件,所述统计件与所述控制器电连接;
所述获取各所述样本分析仪的设备信息的步骤包括:
所述统计件记录对应所述样本分析仪的仪器历史信息,并反馈给所述控制器;
所述控制器比较各所述样本分析仪的所述仪器历史信息,并将所述仪器历史信息权重低的所述样本分析仪选定为所述目标样本分析仪。
5.根据权利要求4所述的样本架调度方法,其特征在于,每一所述样本分析仪还包括存储器,所述存储器与所述统计件及所述控制器电连接;
所述统计件记录对应所述样本分析仪的仪器历史信息的步骤包括:
所述样本分析仪每检测一次样本,所述统计件记录所述样本分析仪的测量次数,并反馈给所述存储器;
所述存储器将所述样本分析仪的测量次数汇总,并形成历史测量次数信息;
所述控制器根据所述历史测量次数信息选择所述目标样本分析仪。
6.根据权利要求4所述的样本架调度方法,其特征在于,每一所述样本分析仪还包括存储器,所述存储器与所述统计件及所述控制器电连接;
所述统计件记录对应所述样本分析仪的仪器历史信息的步骤包括:
所述样本分析仪中易损件每使用一次,所述统计件记录所述样本分析仪的使用次数,并反馈给所述存储器;
所述存储器将所述样本分析仪的使用次数汇总,并形成易损件使用次数信息;
所述控制器根据所述易损件使用次数信息选择所述目标样本分析仪。
7.根据权利要求6所述的样本架调度方法,其特征在于,所述易损件包括所述样本分析仪中的机械部件、液路部件和光电部件中的至少一种。
8.根据权利要求4所述的样本架调度方法,其特征在于,每一所述样本分析仪还包括存储器,所述存储器与所述统计件及所述控制器电连接;
所述统计件记录对应所述样本分析仪的仪器历史信息的步骤包括:
所述统计件记录易损件更换次数,并反馈给所述存储器;
所述控制器根据所述易损件更换次数信息选择所述目标样本分析仪。
9.根据权利要求4所述的样本架调度方法,其特征在于,每一所述样本分析仪还包括存储器,所述存储器与所述统计件及所述控制器电连接;
所述统计件记录对应所述样本分析仪的仪器历史信息的步骤包括:
所述样本分析仪中试剂每添加一次,所述统计件记录所述样本分析仪的试剂使用情况,并反馈给所述存储器;
所述存储器将所述样本分析仪的试剂使用情况汇总,并形成试剂余量或试剂更换次数信息;
所述控制器根据所述试剂余量或试剂更换次数信息选择所述目标样本分析仪。
10.根据权利要求4所述的样本架调度方法,其特征在于,所述统计件记录对应所述样本分析仪的仪器历史信息的步骤包括:
所述统计件记录对应所述样本分析仪的历史测量次数、易损件使用次数、易损件更换次数、试剂余量和试剂更换次数信息中的至少两个,并反馈给所述控制器;
所述控制器根据所述历史测量次数、所述易损件使用次数、所述易损件更换次数、所述试剂余量或试剂更换次数信息中的至少两个信息,选定所述目标样本分析仪。
11.根据权利要求1所述的样本架调度方法,其特征在于,所述获取各所述样本分析仪的设备信息的步骤包括:
获取目标指令,将其中一个或多个所述样本分析仪设定为特定时间段内的预定检测设备;
所述控制器接收所述预定检测设备的信息,在所述特定时间段内将所述预定检测设备选定为所述目标样本分析仪。
12.根据权利要求11所述的样本架调度方法,其特征在于,所述获取各所述样本分析仪的设备信息的步骤还包括:
获取周期指令,所述控制器按照所述周期指令定期更换所述预定检测设备。
13.根据权利要求1所述的样本架调度方法,其特征在于,每一所述样本分析包括统计件,所述统计件与所述控制器电连接;
所述获取各所述样本分析仪的设备信息的步骤包括:
所述统计件记录对应所述样本分析仪的仪器历史信息与预定检测设备信息,并反馈给所述控制器;其中,所述仪器历史信息包括历史测量次数、易损件使用次数、易损件更换次数、试剂余量或试剂更换次数信息中的至少一个;
所述控制器根据所述历史测量次数、所述易损件使用次数、所述易损件更换次数、所述试剂余量或试剂更换次数信息中的至少一个和所述预定检测设备信息,选定所述目标样本分析仪。
14.根据权利要求1至13任一项所述的样本架调度方法,其特征在于,所述设备信息还包括故障信息、测量模式、测量状态和输送效率中的至少一种;
所述获取各所述样本分析仪的仪器历史信息或预定检测设备信息还包括如下至少一个步骤:
获取各所述样本分析仪的故障信息,并反馈给所述控制器;
获取各所述样本分析仪的测量模式,并反馈给所述控制器;
获取各所述样本分析仪的测量状态,并反馈给所述控制器;
获取各所述样本分析仪的输送效率,并反馈给所述控制器;
所述控制器存储所述故障信息、所述测量模式、所述测量状态以及所述输送效率中的至少一个信息与所述仪器历史信息或所述预定检测设备,选定所述目标样本分析仪。
15.根据权利要求14所述的样本架调度方法,其特征在于,所述设备信息还包括仪器负载;
所述获取各所述样本分析仪的仪器历史信息或预定检测设备信息还包括如下步骤:
获取各所述样本分析仪的仪器负载,并反馈给所述控制器;
所述控制器根据所述仪器负载与所述仪器历史信息或所述预定检测设备,选定所述目标样本分析仪。
16.根据权利要求14所述的样本架调度方法,其特征在于,所述设备信息还包括休眠状态;
所述获取各所述样本分析仪的仪器历史信息或预定检测设备信息还包括如下步骤:
获取各样本分析仪的休眠状态,并反馈给所述控制器;
所述控制器还根据所述休眠状态与所述仪器历史信息或所述预定检测设备,选定所述目标样本分析仪。
17.一种样本分析系统,其特征在于,所述样本分析系统应用于如权利要求1至16任一项所述的样本架调度方法,所述样本分析系统包括多台样本分析仪、连接所述样本分析仪的输送轨道以及控制器;
所述输送轨道包括主轨道以及连接所述主轨道与各所述样本分析仪的支轨道,所述控制器选定目标样本分析仪后,所述控制器控制所述主轨道将样本架经所述支轨道输送至所述目标样本分析仪。
CN201910410500.5A 2019-05-17 2019-05-17 样本架调度方法及样本分析系统 Pending CN111948410A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910410500.5A CN111948410A (zh) 2019-05-17 2019-05-17 样本架调度方法及样本分析系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910410500.5A CN111948410A (zh) 2019-05-17 2019-05-17 样本架调度方法及样本分析系统

Publications (1)

Publication Number Publication Date
CN111948410A true CN111948410A (zh) 2020-11-17

Family

ID=73336671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910410500.5A Pending CN111948410A (zh) 2019-05-17 2019-05-17 样本架调度方法及样本分析系统

Country Status (1)

Country Link
CN (1) CN111948410A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113804905A (zh) * 2021-09-13 2021-12-17 广州蓝勃生物科技有限公司 样本检测的分配方法、装置及样本检测系统
CN114324927A (zh) * 2021-12-30 2022-04-12 精匠诊断技术(江苏)有限公司 一种流水线启动方法、系统、电子设备及介质
CN114694823A (zh) * 2020-12-31 2022-07-01 科美诊断技术股份有限公司 测试条件控制方法、装置、电子设备及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114694823A (zh) * 2020-12-31 2022-07-01 科美诊断技术股份有限公司 测试条件控制方法、装置、电子设备及存储介质
CN113804905A (zh) * 2021-09-13 2021-12-17 广州蓝勃生物科技有限公司 样本检测的分配方法、装置及样本检测系统
CN114324927A (zh) * 2021-12-30 2022-04-12 精匠诊断技术(江苏)有限公司 一种流水线启动方法、系统、电子设备及介质

Similar Documents

Publication Publication Date Title
US9097690B2 (en) Sample preprocessing and conveying system
CN111948410A (zh) 样本架调度方法及样本分析系统
JP6132884B2 (ja) 自動分析装置
US10330692B2 (en) Automatic analysis device
US10684298B2 (en) Automated analyzer
US20140100139A1 (en) Method for scheduling samples in a combinational clinical analyzer
CN106896062B (zh) 生物样品用的光学测量装置中的校准和/或检错
WO2012043261A1 (ja) 検体検査自動化システムおよびその制御方法
CN108027381B (zh) 检体检查自动化系统
JP2008039554A (ja) 自動分析装置
US9229017B2 (en) Sample processing apparatus, transport apparatus and non-transitory storage medium
US11340241B2 (en) Automated analyzer
CN107430143B (zh) 样本测定系统和架搬出搬入方法
JP2012122865A (ja) 自動分析システム
CN113295875A (zh) 样本分析系统
JP2019045446A (ja) 自動分析装置
US20130310964A1 (en) Sample transport system and method for controlling the same
JP6550152B2 (ja) 自動分析装置
CN212540428U (zh) 样本分析系统
EP3896454B1 (en) Automated analyzer
JP2010122124A (ja) 自動分析装置
JP6234765B2 (ja) 検体検査自動分析システム
JP2014130025A (ja) 自動分析装置における検体搬送システム
CN113272653B (zh) 自动分析装置、自动分析系统以及检体的自动分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination