CN111936878A - 具有(去)调谐系统的射频(rf)天线元件 - Google Patents
具有(去)调谐系统的射频(rf)天线元件 Download PDFInfo
- Publication number
- CN111936878A CN111936878A CN201980023773.2A CN201980023773A CN111936878A CN 111936878 A CN111936878 A CN 111936878A CN 201980023773 A CN201980023773 A CN 201980023773A CN 111936878 A CN111936878 A CN 111936878A
- Authority
- CN
- China
- Prior art keywords
- light source
- switching element
- tuning system
- antenna element
- radio frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002347 injection Methods 0.000 claims abstract description 25
- 239000007924 injection Substances 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 2
- 230000005415 magnetization Effects 0.000 description 10
- 230000005284 excitation Effects 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000002595 magnetic resonance imaging Methods 0.000 description 2
- 240000003834 Triticum spelta Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/36—Electrical details, e.g. matching or coupling of the coil to the receiver
- G01R33/3642—Mutual coupling or decoupling of multiple coils, e.g. decoupling of a receive coil from a transmission coil, or intentional coupling of RF coils, e.g. for RF magnetic field amplification
- G01R33/3657—Decoupling of multiple RF coils wherein the multiple RF coils do not have the same function in MR, e.g. decoupling of a transmission coil from a receive coil
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/36—Electrical details, e.g. matching or coupling of the coil to the receiver
- G01R33/3628—Tuning/matching of the transmit/receive coil
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/36—Electrical details, e.g. matching or coupling of the coil to the receiver
- G01R33/3642—Mutual coupling or decoupling of multiple coils, e.g. decoupling of a receive coil from a transmission coil, or intentional coupling of RF coils, e.g. for RF magnetic field amplification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/36—Electrical details, e.g. matching or coupling of the coil to the receiver
- G01R33/3664—Switching for purposes other than coil coupling or decoupling, e.g. switching between a phased array mode and a quadrature mode, switching between surface coil modes of different geometrical shapes, switching from a whole body reception coil to a local reception coil or switching for automatic coil selection in moving table MR or for changing the field-of-view
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/36—Electrical details, e.g. matching or coupling of the coil to the receiver
- G01R33/3692—Electrical details, e.g. matching or coupling of the coil to the receiver involving signal transmission without using electrically conductive connections, e.g. wireless communication or optical communication of the MR signal or an auxiliary signal other than the MR signal
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
一种具有(去)调谐系统的射频(RF)天线元件,其具有带有共振导电回路和(去)调谐系统的RF天线元件,所述(去)调谐系统包括光敏开关元件以对所述共振导电回路进行(去)调谐。所述(去)调谐系统包括光耦合到所述光敏开关元件的注入光源。
Description
技术领域
利用磁场与核自旋之间的相互作用以便形成二维或三维图像的磁共振成像(MRI)方法现在广泛使用在尤其是医学诊断的领域中,因为对于对软组织的成像,其在许多方面优于其他成像方法,不要求电离辐射并且通常不是侵入性的。
通常根据MRI方法,要检查的患者的身体被布置在强均匀磁场B0中,其方向同时定义与测量结果有关的坐标系的轴(通常z轴)。磁场B0根据可以通过施加定义频率(所谓的拉莫尔频率或MR频率)的电磁交变场(RF场)激励(自旋共振)的磁场强度而引起针对个体核自旋的不同能级。从宏观的视角来看,个体核自旋的分布产生可以通过施加适当频率的电磁脉冲(RF脉冲)而偏离平衡状态的总体磁化,同时该RF脉冲的对应的磁场B1垂直于z轴延伸,使得磁化执行关于z轴的进动运动。进动运动描述了圆锥的表面,所述圆锥的孔径角被称为翻转角。翻转角的幅度取决于施加的电磁脉冲的强度和持续时间。在所谓的90°脉冲的范例中,磁化从z轴偏转到横向平面(翻转角90°)。
在RF脉冲的终止之后,磁化弛豫回到原始平衡状态,其中,在z方向上的磁化以第一时间常数T1再次建立(自旋晶格或纵向弛豫时间),并且在垂直于z轴的方向上的磁化利用第二且更短的时间常数T2(自旋-自旋或横向弛豫时间)弛豫。横向磁化及其变化可以借助于接收RF天线(线圈阵列)来检测,所述接收RF线圈以这样的以下方式在磁共振检查系统的检查体积内布置和取向:使得在垂直于z轴的方向上测量到磁化的变化。横向磁化的衰变伴随有由局部磁场不均匀性引起的RF激励之后发生的失相,其促进从具有相同信号相位的有序状态到所有相位角均匀分布的状态的转变。可以借助于重新聚焦RF脉冲(例如180°脉冲)来补偿失相。这在接收线圈中产生回波信号(自旋回波)。
为了实现诸如要被检查的患者的被成像的对象中的空间分辨率,沿着三个主轴延伸的磁场梯度被叠加在均匀磁场B0上,从而导致自旋共振频率的线性空间相关性。在接收天线(线圈阵列)中拾取的信号然后包含可以与身体中的不同位置相关联的不同频率的分量。经由所述接收线圈获得的信号数据对应于磁共振信号的波向量的空间频率域,并且被称为k空间数据。k空间数据通常包括所采集的不同相位编码的多条线。通过收集多个样本将每条线进行数字化。借助于傅里叶变换将一组k空间数据转换为MR图像。
横向磁化还在存在磁场梯度的情况下失相。该过程可以通过形成所谓的梯度回波的适当的梯度反转来反转,类似于RF感应的(自旋)回波的形成。然而,在梯度回波的情况下,与RF重新聚焦(自旋)回波相反,主磁场不均匀性的效应、化学位移和其他偏共振效应未被重新聚焦。
本发明涉及一种用于具有(去)调谐系统的磁共振检查系统的射频(RF)天线元件。尤其是,所述(去)调谐系统被布置用于光学去调谐RF天线元件。具有(去)调谐系统的射频(RF)天线元件用于与磁共振检查系统一起使用以拾取磁共振信号。(去)调谐系统用于在磁共振检查系统中的RF激励场的发射期间去调谐RF天线元件并且在磁共振信号的拾取期间将RF天线元件调谐为共振。
背景技术
M.Korn等人的文章“Optically detunable,inductively coupled coil forself-gating in small animal magnetic resonance imaging”(在MRM65(2011)882-888中)公开了一种具有(去)调谐系统的射频(RF)天线元件,所述(去)调谐系统布置为对RF天线元件进行光学去调谐。已知的RF天线元件通过可以通过利用被连接到光电二极管的两个pin二极管分路的电容器动态地去调谐的小的共振表面线圈的单个回路线圈形成。在照射下,光电二极管的光电流将pin二极管切换到导电状态中,从而去调谐表面线圈。
发明内容
本发明的目的是提供一种具有带有经改进的噪声特性的(去)调谐系统的射频(RF)天线元件。
该目的通过具有(去)调谐系统的射频(RF)天线元件实现,其中,
-RF天线元件包括共振导电回路和(去)调谐系统,其包括光敏开关元件以(去)调谐共振导电回路,并且
-所述(去)调谐系统包括注入光源,其光耦合到所述光敏开关元件。
所述(去)调谐系统用于将所述RF天线元件调谐为在拉莫尔频带中共振或者将RF天线元件去调谐为在拉莫尔频带中非共振。所述(去)调谐系统包括在调谐与去调谐之间切换(去)调谐系统的开关元件。即,在其断开或闭合(非导电或导电)中的开关元件对应于RF天线元件的去调谐或调谐(或者反之亦然)。实际上,当强RF场被施加(例如,以激励、反转或重新聚焦自旋)时RF天线元件被去调谐用于接收磁共振信号。以这种方式,所述RF天线元件和其敏感电子器件被保护免受这样的强RF场的影响。当没有强RF场被施加时,使所述RF天线元件在拉莫尔频带中共振并且对接收非常弱的磁共振信号敏感,例如由于较早的RF激励。根据本发明,所述注入光源光耦合到所述光敏开关元件。当来自所述注入光源的光子入射时所述光敏开关元件闭合,并且当没有光子入射时所述光敏开关元件断开。简单的便宜的实施方式是采用(pin)光电二极管作为所述光敏开关元件。通过光子的(直接)注入,所述光敏开关元件从其断开状态改变到其闭合状态,并且停止光子的注入将所述光敏开关元件从其闭合状态改变回到其断开状态。通过将来自所述注入光源的光子注入到所述光敏开关元件中,移动电荷载流子在所述光敏开关元件中生成,使得所述光敏开关元件变为导电。当没有光子入射在所述光敏开关元件上时,例如,当所述注入光源关断时,所述开关元件断开。即,通过对从所述注入光源到所述光敏开关元件中的光子的注入的接通/关断,所述光敏开关元件闭合/断开,并且因此所述RF天线元件在其(非)共振状态之间切换。相应地,通过将所述注入光源接通/关断,所述RF天线元件在其(非)共振状态之间切换。到所述光敏开关元件中的光子的(直接)注入不需要分离的光伏元件以生成电荷载流子以致使所述光敏开关元件导电。
本发明的这些和其他方面将参考从属权利要求中定义的实施例进一步详尽阐述。
在本发明的实施例中,所述(去)调谐系统包括:光电探测器,其与所述光敏开关元件并联;以及偏置光源,其光耦合到所述光电探测器。所述光电探测器响应于来自所述偏置光源的入射辐射而生成所述光敏开关元件上的负偏置电压。当没有来自所述注入光源的光子被注入到所述光敏开关元件中时,然后所述光电探测器由来自所述偏置光源的辐射照射,并且负偏置(光)电压在所述光电二极管中生成并且施加在所述光敏开关元件上。因此,所述开关元件的电阻在断开状态下增加,并且所述开关元件电学上表现为像电容器而不是电阻性导体。这引起在所述RF天线元件中生成的(热)噪声,使得接收到的磁共振信号的信噪比增加。在开关的闭合状态下,没有来自所述偏置光源的辐射入射在所述光电探测器上,并且然后没有负偏置电压被生成并且所述光敏开关元件具有低电阻。这可以通过例如以下来实现:控制所述偏置光源和所述注入光源,使得所述偏置光源在所述注入光源关断时接通,同时所述偏置光源在所述注入光源接通并且所述光敏开关元件闭合时关断。
在本发明的另一实施例中,电学接口电路被提供有与所述光敏开关元件串联的一个或多个电感以及与用于所述偏置光源的光电探测器并联的电阻器。电感充当衰减或者甚至阻挡来自所述(去)调谐系统的射频信号的滤波器。由于所述光敏开关元件的切换,因此所述电阻添加以减少瞬态信号。因此,所述电学接口电路提供对所述磁共振信号的采集的低RF干扰并且还减少磁共振信号的采集的死区时间。电感倾向于在大小方面是大的,因此二者将其二者放置在不同位置处常常是更方便的,有时更对称的设置也是有利的。
例如,所述光敏开关元件由背对背光电二极管形成。所述背对背二极管实现其不能被调谐为通过要被阻挡的RF信号导电,即,针对其,RF天线元件被设置为其非共振状态。单个光电二极管可以在所述RF信号的正半周期期间接通,如果这大于单个光电二极管的所要求的正向电压(添加到负偏置电压)。
在另外的实施例中,所述注入光源和所述偏置光源可以利用与光学开关系统一起布置的公共光源以将所述公共光源耦合到光电探测器和所述光敏开关元件。
本发明的这些和其他方面将参考在下文中描述的实施例并且参考其中的附图来阐述。
附图说明
图1示出了具有本发明的(去)调谐系统的射频(RF)天线元件的实施例的示意性表示;
图2示出了具有本发明的(去)调谐系统的射频(RF)天线元件的另外的实施例的示意性表示。
具体实施方式
图1示出了具有本发明的(去)调谐系统的射频(RF)天线元件的实施例的示意性表示。射频天线元件被形成为导电线圈回路11。(去)调谐系统12包括可切换的共振电路111,其耦合到线圈回路11。可切换的共振电路包括与线圈回路11串联的电容15,以及由与电容15并联并且与电感16串联的光敏开关元件可切换的电感16。通过断开/闭合光敏开关元件(即,在电容性与电阻性之间改变其特性),导电回路在其非共振状态与其共振状态之间切换。为了闭合光敏开关元件,来自注入光源13的光子经由光链路112注入到光敏开关元件中。当没有来自注入光源的光子入射在光敏开关元件上时,光敏开关元件处于其断开状态下。(去)调谐控制器17被提供以控制注入光源17。注入光源的切换使得(去)调谐系统在其共振状态与非共振状态之间切换线圈回路。
光敏开关元件可以是简单的pin(光电)二极管,或者备选地可以使用背对背电路pin(光电)二极管。
图2示出了具有本发明的(去)调谐系统的射频(RF)天线元件的另外的实施例的示意性表示。在图2的实施例中,光电探测器22与光敏开关元件14并联接成电路。偏置光源21光耦合113到光电探测器。偏置光源由(去)调谐控制器接通/关断。当来自偏置光源21的光子入射在光电探测器22上时,然后光电探测器22生成施加在光敏开关元件上的负偏置电压。偏置光源当注入光源被关断时被启用。当光敏元件处于其断开状态下时,负偏置电压被施加在光敏元件上。
代替于将注入光源和偏置光源关断,光链路112、113可以中断。
光电探测器可以是基于GaN的半导体激光器或InGaN蓝色LED,其可以生成达到75V负偏置电压。
Claims (4)
1.一种具有(去)调谐系统的射频(RF)天线元件,其中,
-所述RF天线元件包括共振导电回路(11)和(去)调谐系统(111),所述(去)调谐系统包括光敏开关元件(14),所述光敏开关元件被配置为对所述共振导电回路进行(去)调谐,其中,所述(去)调谐系统包括:
-注入光源(13),其光耦合到所述光敏开关元件;
-光电探测器(22),其与所述光敏开关元件并联;以及
-偏置光源(21),其光耦合到所述光电探测器,其中,所述光电探测器被配置为响应于来自所述偏置光源的入射辐射而生成所述光敏开关元件上的负偏置电压。
2.根据权利要求1所述的具有(去)调谐系统的射频(RF)天线元件,包括电学接口电路,所述电学接口电路具有与所述光敏开关元件串联的至少一个电感以及与所述光电探测器并联的电阻器。
3.根据前述权利要求中的任一项所述的具有(去)调谐系统的射频(RF)天线元件,其中,所述光敏开关元件由背对背电路二极管形成。
4.根据权利要求1所述的具有(去)调谐系统的射频(RF)天线元件,其中,所述注入光源和所述偏置光源由具有光学开关系统的公共光源形成,所述光学开关系统被配置为分别独立地将所述公共光源光耦合到所述注入光源和所述偏置光源。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18164932.8 | 2018-03-29 | ||
EP18164932.8A EP3546971A1 (en) | 2018-03-29 | 2018-03-29 | Radio frequency (rf) antenna element with a (de)tuning system |
PCT/EP2019/057478 WO2019185564A1 (en) | 2018-03-29 | 2019-03-26 | Radio frequency (rf) antenna element with a (de)tuning system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111936878A true CN111936878A (zh) | 2020-11-13 |
Family
ID=61837680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201980023773.2A Pending CN111936878A (zh) | 2018-03-29 | 2019-03-26 | 具有(去)调谐系统的射频(rf)天线元件 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11243279B2 (zh) |
EP (2) | EP3546971A1 (zh) |
JP (1) | JP7057835B6 (zh) |
CN (1) | CN111936878A (zh) |
WO (1) | WO2019185564A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4855680A (en) * | 1987-11-02 | 1989-08-08 | The Regents Of The University Of California | Enhanced decoupling of MRI RF coil pairs during RF tuning of MRI RF transmit coil |
US5126553A (en) * | 1990-11-28 | 1992-06-30 | Bell Communications Research, Inc. | Bistable optically switchable resonant-tunneling device and its use in signal processing |
JP2000231128A (ja) * | 1999-02-10 | 2000-08-22 | Nippon Telegr & Teleph Corp <Ntt> | 非線形光学素子、それを用いた非線形光学装置、及び非線形光学素子の製造方法 |
US6144205A (en) * | 1998-11-19 | 2000-11-07 | General Electric Company | Optical control of radio frequency antennae in a magnetic resonance imaging system |
US20060250135A1 (en) * | 2005-05-06 | 2006-11-09 | General Electric Company | System and methods for testing operation of a radio frequency device |
CN102472807A (zh) * | 2009-07-03 | 2012-05-23 | 皇家飞利浦电子股份有限公司 | 可去调谐的rf接收天线设备 |
CN103547937A (zh) * | 2011-05-23 | 2014-01-29 | 皇家飞利浦有限公司 | 作为用于mri rf线圈的失谐电路的fet开关 |
US20150207015A1 (en) * | 2012-08-04 | 2015-07-23 | Applied Physical Electronics, L.C. | Apparatus and method for optically initiating collapse of a reverse biased P-type-N-type junction |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2807281B2 (ja) | 1989-09-18 | 1998-10-08 | 株式会社東芝 | Mri装置用受信コイル装置 |
US5545999A (en) * | 1995-03-21 | 1996-08-13 | General Electric Company | Preamplifier circuit for magnetic resonance system |
GB9600145D0 (en) | 1996-01-05 | 1996-03-06 | Royal Brompton Hospital | Radio frequency coil switching |
DE19755782A1 (de) * | 1997-12-16 | 1999-06-17 | Philips Patentverwaltung | MR-Anordnung mit einem medizinischen Instrument und Verfahren zur Positionsbestimmung des medizinischen Instruments |
US20040124838A1 (en) | 2001-03-30 | 2004-07-01 | Duerk Jeffrey L | Wireless detuning of a resonant circuit in an mr imaging system |
DE10149955A1 (de) | 2001-10-10 | 2003-04-24 | Philips Corp Intellectual Pty | MR-Anordnung zur Lokalisierung eines medizinischen Instrumentes |
US6925322B2 (en) * | 2002-07-25 | 2005-08-02 | Biophan Technologies, Inc. | Optical MRI catheter system |
WO2005024447A1 (en) | 2003-09-09 | 2005-03-17 | Koninklijke Philips Electronics, N.V. | Catheter tip tracking for interventional procedures monitored by magnetic resonance imaging |
JP2005270304A (ja) | 2004-03-24 | 2005-10-06 | Ge Medical Systems Global Technology Co Llc | 磁気共鳴イメージング装置および磁気共鳴信号受信装置 |
JP2009519729A (ja) | 2005-03-16 | 2009-05-21 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 磁気共鳴コイルの光学的デカップリング及び同調 |
US7345485B2 (en) * | 2006-01-18 | 2008-03-18 | Koninklijke Philips Electronics N.V. | Optical interface for local MRI coils |
US7508213B2 (en) | 2006-10-26 | 2009-03-24 | General Electric Company | Integrated optical link for MR system |
WO2008078270A1 (en) | 2006-12-21 | 2008-07-03 | Koninklijke Philips Electronics N.V. | Detuning circuit and detuning method for an mri system |
DE102011086561B4 (de) | 2011-11-17 | 2013-06-13 | Siemens Aktiengesellschaft | MRT-System, Empfangsvorrichtung für ein MRT-System sowie Verfahren zum Gewinnen eines MR-Signals in einem MRT-System |
US10481228B2 (en) | 2014-12-04 | 2019-11-19 | Koninklijke Philips N.V. | Light data communication link device for use in magnetic resonance examination systems |
-
2018
- 2018-03-29 EP EP18164932.8A patent/EP3546971A1/en not_active Withdrawn
-
2019
- 2019-03-26 EP EP19712777.2A patent/EP3775954B1/en active Active
- 2019-03-26 US US17/042,276 patent/US11243279B2/en active Active
- 2019-03-26 CN CN201980023773.2A patent/CN111936878A/zh active Pending
- 2019-03-26 WO PCT/EP2019/057478 patent/WO2019185564A1/en active Application Filing
- 2019-03-26 JP JP2020552774A patent/JP7057835B6/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4855680A (en) * | 1987-11-02 | 1989-08-08 | The Regents Of The University Of California | Enhanced decoupling of MRI RF coil pairs during RF tuning of MRI RF transmit coil |
US5126553A (en) * | 1990-11-28 | 1992-06-30 | Bell Communications Research, Inc. | Bistable optically switchable resonant-tunneling device and its use in signal processing |
US6144205A (en) * | 1998-11-19 | 2000-11-07 | General Electric Company | Optical control of radio frequency antennae in a magnetic resonance imaging system |
JP2000231128A (ja) * | 1999-02-10 | 2000-08-22 | Nippon Telegr & Teleph Corp <Ntt> | 非線形光学素子、それを用いた非線形光学装置、及び非線形光学素子の製造方法 |
US20060250135A1 (en) * | 2005-05-06 | 2006-11-09 | General Electric Company | System and methods for testing operation of a radio frequency device |
CN102472807A (zh) * | 2009-07-03 | 2012-05-23 | 皇家飞利浦电子股份有限公司 | 可去调谐的rf接收天线设备 |
CN103547937A (zh) * | 2011-05-23 | 2014-01-29 | 皇家飞利浦有限公司 | 作为用于mri rf线圈的失谐电路的fet开关 |
US20150207015A1 (en) * | 2012-08-04 | 2015-07-23 | Applied Physical Electronics, L.C. | Apparatus and method for optically initiating collapse of a reverse biased P-type-N-type junction |
Non-Patent Citations (1)
Title |
---|
MATTHIAS KORN 等: "Optically Detunable, Inductively Coupled Coil for Self-Gating in Small Animal Magnetic Resonance Imaging", 《AGNETIC RESONANCE IN MEDICINE》, 3 November 2010 (2010-11-03), pages 1 - 2 * |
Also Published As
Publication number | Publication date |
---|---|
US11243279B2 (en) | 2022-02-08 |
JP7057835B6 (ja) | 2022-06-02 |
JP2021519183A (ja) | 2021-08-10 |
JP7057835B2 (ja) | 2022-04-20 |
EP3546971A1 (en) | 2019-10-02 |
US20210055363A1 (en) | 2021-02-25 |
WO2019185564A1 (en) | 2019-10-03 |
EP3775954A1 (en) | 2021-02-17 |
EP3775954B1 (en) | 2021-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030088181A1 (en) | Method of localizing an object in an MR apparatus, a catheter and an MR apparatus for carrying out the method | |
US6747452B1 (en) | Decoupling circuit for magnetic resonance imaging local coils | |
US6850067B1 (en) | Transmit mode coil detuning for MRI systems | |
JPH0351173B2 (zh) | ||
Caverly | MRI fundamentals: RF aspects of magnetic resonance imaging (MRI) | |
US11243279B2 (en) | Radio frequency (RF) antenna element with a (de) tuning system | |
Omar et al. | A microwave engineer's view of MRI | |
Han et al. | Dual-Tuned monopole/loop coil array for concurrent RF excitation and reception capability for MRI | |
Nikulin et al. | Reconfigurable dipole receive array for dynamic parallel imaging at ultra‐high magnetic field | |
US5280245A (en) | Magnetic resonance apparatus employing delayed self-refocusing RF excitation | |
Zhang et al. | Design of a four‐coil surface array for in vivo magnetic resonance microscopy at 600 MHz | |
JP7324223B2 (ja) | チューニングシステムを有する無線周波数(rf)アンテナ素子 | |
EP3775952B1 (en) | Radio frequency antenna element with an optical back-end | |
EP4253980A1 (en) | Tunable radio frequency coil assembly and magnetic resonance system comprising the rf coil assembly | |
WO2008091712A2 (en) | Low field electron paramagnetic resonance imaging with squid detection | |
Özen et al. | Detection of MR signal during RF excitation using a transmit array system | |
JP3170771B2 (ja) | 磁気共鳴イメージング装置用受信コイル | |
Asutkar et al. | Design and Analysis of Four Channel Phased Array RF Coil for Spine Scan Using 1.5 T MR System | |
JP2001178702A (ja) | Rf信号受信装置、磁気共鳴信号獲得装置および磁気共鳴撮影装置 | |
Zhang et al. | Design of a coil array for mouse imaging at 14.1 T | |
Ip et al. | Evaluation of receive-only single coil and four-element phased array for rodent brain imaging at 11.7 T | |
Raghunathan et al. | NMR imaging: Mathematical modelling and spectrometer design considerations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |