CN111926307A - 石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法 - Google Patents

石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法 Download PDF

Info

Publication number
CN111926307A
CN111926307A CN202010745877.9A CN202010745877A CN111926307A CN 111926307 A CN111926307 A CN 111926307A CN 202010745877 A CN202010745877 A CN 202010745877A CN 111926307 A CN111926307 A CN 111926307A
Authority
CN
China
Prior art keywords
catalyst layer
porous material
metal catalyst
pores
material powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010745877.9A
Other languages
English (en)
Other versions
CN111926307B (zh
Inventor
夏玉明
卓恩宗
李伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HKC Co Ltd
Beihai HKC Optoelectronics Technology Co Ltd
Original Assignee
HKC Co Ltd
Beihai HKC Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HKC Co Ltd, Beihai HKC Optoelectronics Technology Co Ltd filed Critical HKC Co Ltd
Priority to CN202010745877.9A priority Critical patent/CN111926307B/zh
Publication of CN111926307A publication Critical patent/CN111926307A/zh
Priority to US17/382,292 priority patent/US12049692B2/en
Application granted granted Critical
Publication of CN111926307B publication Critical patent/CN111926307B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本申请公开了一种石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法,所述石墨烯薄膜的制作方法,包括以下步骤:提供一多孔材料粉末;在原子层沉积装置中放入多孔材料粉末;在原子层沉积装置中沉积金属催化层;使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末;使用孔内有金属催化层的多孔材料粉末,形成孔内有金属催化层的多孔材料模板;在多孔材料模板上制备石墨烯薄膜,这种制作方法产出的石墨烯薄膜孔隙率高,比表面积大,易于控制且致密度高,适合工业化使用。

Description

石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法
技术领域
本申请涉及显示技术领域,尤其涉及一种石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法。
背景技术
显示面板近年来得到了飞速地发展和广泛地应用。就主流市场上的TFT-LCD(ThinFilm Transistor-LCD,薄膜晶体管液晶显示屏)而言,包括阵列基板和彩膜基板,在阵列基板上形成薄膜晶体管,薄膜晶体管控制像素电极的开关,薄膜晶体管打开时,像素电极产生电压,使得液晶分子发生偏转,显示画面。
像素电极等透明导电层一般使用ITO(Indium tin oxide)铟锡氧化物材料,而ITO材料导电率较低,可见光范围内表现出不均匀光吸收,而石墨烯薄膜是最合适代替ITO的一种材料,石墨烯薄膜透明性及导电性都优于ITO材料,并且具有ITO在柔性领域所不具备的特性,如何生产石墨烯薄膜并提高其性能成了越来越多的人需要关注的问题。
发明内容
本申请的目的是提供一种石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法,以制得性能更好的透明导电层,替代ITO材料在显示面板中的作用。
本申请公开了一种石墨烯薄膜的制作方法,包括步骤:
提供一多孔材料粉末;
在原子层沉积装置中放入多孔材料粉末;
在原子层沉积装置中沉积金属催化层;使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末;
使用孔内有金属催化层的多孔材料粉末,形成孔内有金属催化层的多孔材料模板;以及
在多孔材料模板上制备石墨烯薄膜。
可选的,所述提供一多孔材料粉末的步骤中:
所述多孔材料粉末包括分级多孔二氧化硅粉末。
可选的,所述在原子层沉积装置中沉积金属催化层,使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末的步骤中:
所述金属催化层包括铜催化层或镍催化层。
可选的,所述在原子层沉积装置中沉积金属催化层,使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末的步骤中包括:
在原子层沉积装置中持续通入预设时间的铜前驱体或镍前驱体,停留预设时间,持续通入预设时间的惰性气体吹扫;
在原子层沉积装置中持续通入预设时间的还原气体,停留预设时间,持续通入预设时间的惰性气体吹扫;以及
重复执行上述两个步骤直至达到预设重复次数,形成所述铜催化层或镍催化层。
可选的,所述铜催化层或镍催化层的厚度为10-30nm。
可选的,所述铜前驱体或镍前驱体的持续通入预设时间为0.01s-0.2s,停留预设时间为2s-20s;所述还原性气体的持续通入预设时间为0.01s-0.5s,停留预设时间为2s-20s。
可选的,所述铜前驱体包括:N,N-二异丙基乙酸铜、1,5-环辛二烯(六氟-2,4-戊二酮)铜、乙酰丙酮铜中的至少一种。
可选的,所述在在多孔材料模板上制备石墨烯薄膜的步骤中包括以下步骤:
将多孔材料模板放入化学气相淀积腔室内,通入Ar/H2混合气体,加热至预设温度;
通入碳源前驱体,生长预设时间后冷却降温,形成带有多孔材料模板的石墨烯薄膜;以及
将带有二氧化硅模板的石墨烯薄膜浸入到剥离液中形成石墨烯薄膜。
本申请还公开了一种孔内含金属催化层的多孔二氧化硅粉末的制作方法,包括步骤:
A:在原子层沉积装置中放入多孔二氧化硅粉末;
B:在原子层沉积装置中持续通入预设时间的金属前驱体,停留预设时间,持续通入预设时间的惰性气体吹扫;
C:在原子层沉积装置中持续通入预设时间的还原气体,停留预设时间,持续通入预设时间的惰性气体吹扫;以及
D:循环重复所述步骤B和C预设次数,得到孔内有金属催化层的多孔二氧化硅粉末。
本申请还公开了一种显示面板的透明导电层的制作方法,包括以下步骤:
提供一多孔材料粉末;
在原子层沉积装置中放入多孔材料粉末;
在原子层沉积装置中沉积金属催化层,使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末;
使用孔内有金属催化层的多孔材料粉末,形成孔内有金属催化层的多孔材料模板;以及
在多孔材料模板上制备得到石墨烯薄膜,作为显示面板的基板的透明导电层。
本申请突破性的使用原子层沉积技术在多孔材料粉末的孔中沉积金属催化层,粉末状的多孔材料不仅在外表面会沉积形成金属催化层,同时,在粉末状的多孔材料的孔道内这一相对于外表面很难生长出金属催化层的位置来说,也会沉积形成金属催化层,使得生产出的多孔材料模板的孔隙率和比表面积更高,可以吸附的金属催化层更多,为后续沉积石墨烯提供更多的可能沉积的空间,其产出的石墨烯薄膜孔隙率高,易于控制且致密度高,导电性、透明度等性能优良,适合在大小各尺寸面板中工业化应用。
附图说明
所包括的附图用来提供对本申请实施例的进一步的理解,其构成了说明书的一部分,用于例示本申请的实施方式,并与文字描述一起来阐释本申请的原理。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请的一实施例的一种石墨烯薄膜的制作方法的步骤示意图;
图2是本申请的一实施例的一种分级多孔二氧化硅粉末的制作方法的步骤示意图;
图3是本申请的一实施例的一种多孔二氧化硅粉末的制作方法的步骤示意图;
图4是本申请的另一实施例的一种石墨烯薄膜的制作方法的步骤示意图;
图5是本申请的另一实施例的一种石墨烯薄膜的制作方法的步骤示意图;
图6是本申请的一实施例的一种显示面板的透明电极层的制作方法的步骤示意图;
图7是本申请的另一实施例的一种多孔二氧化硅粉末的制作方法的步骤示意图。
具体实施方式
需要理解的是,这里所使用的术语、公开的具体结构和功能细节,仅仅是为了描述具体实施例,是代表性的,但是本申请可以通过许多替换形式来具体实现,不应被解释成仅受限于这里所阐述的实施例。
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示相对重要性,或者隐含指明所指示的技术特征的数量。由此,除非另有说明,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征;“多个”的含义是两个或两个以上。术语“包括”及其任何变形,意为不排他的包含,可能存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
另外,“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系的术语,是基于附图所示的方位或相对位置关系描述的,仅是为了便于描述本申请的简化描述,而不是指示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,或是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下面参考附图和可选的实施例对本申请作详细说明。
原子层沉积(atomic layer deposition,ALD)技术是一种特殊的化学气相沉积技术,是通过将气相前驱体脉冲交替通入原子层沉积装置的反应室并在沉积基体表面发生化学吸附反应形成薄膜的一种方法。当前驱体分子达到沉积基体表面,它们会在其表面化学吸附并发生表面反应,原子层沉积的表面反应具有自限制性,即化学吸附自限制性和顺次反应自限制性,这种自限制性特征是原子层沉积的基础,通过不断重复这种自限制性反应形成纳米颗粒或薄膜,生产极好的三维保形性化学计量薄膜。
本申请公开了一种利用ALD技术制作石墨烯薄膜的制作方法,如图1所示,包括以下步骤:
S1:提供一多孔材料粉末;
S2:在原子层沉积装置中放入多孔材料粉末;
S3:在原子层沉积装置中沉积金属催化层;使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末;
S4:使用孔内有金属催化层的多孔材料粉末,形成孔内有金属催化层的多孔材料模板;
S5:在多孔材料模板上制备石墨烯薄膜。
本申请使用原子层沉积技术在多孔材料粉末的孔中沉积金属催化层,因为原子层沉积的表面具有自吸附特性,粉末状的多孔材料不仅在外表面会沉积形成金属催化层,同时,在粉末状的多孔材料的孔道内,相对于外表面很难生长出金属催化层的位置来说,也会沉积形成金属催化层,使得生产出的多孔材料模板的孔隙率和比表面积更高,可以吸附的金属催化层更多,为后续沉积石墨烯提供更多的可能沉积的空间,其产出的石墨烯薄膜孔隙率高,比表面积大,易于控制且致密度高,导电性、透明度等性能优良,适合在大小各尺寸面板中工业化应用。
其中,所述的多孔材料粉末可选用分级多孔二氧化硅粉末,而所述金属催化层可以包括铜催化层或镍催化层甚至两者混合,以二氧化硅材料作模板,以铜或镍作催化剂,在大规模生产中,生产成本较低,其原材料容易获得,且制得的石墨烯薄膜的效果优良。
在一具体的实施例中,所述分级多孔二氧化硅可以使用溶胶-凝胶制备分级多孔二氧化硅(HPSi)粉末。如图2所示,在所述提供一分级多孔二氧化硅的步骤中包括:
S101:按比例添加水和有机溶剂的混合液;
S102:添加硅前驱体源和表面活性剂;
S103:添加催化剂;
S104:在20-50℃下,400-800rpm(转每分)快速分散4-10小时;离心分离得到分级多孔二氧化硅。
其中,水/有机溶剂的比例范围为0.3-0.5;催化剂的PH范围在8-10,有机溶剂可以为乙醇、异丙醇、丁醇等,硅前驱体源可以为正硅酸乙酯(TEOS,Si(OC2H5)4),表面活性剂可以为CTAB(Hexadecyl trimethyl ammonium Bromide,十六烷基三甲基溴化铵)、CTAC(Hexadecyl trimethyl ammonium Chloride,十六烷基三甲基氯化铵);催化剂可以为氨水。
如图3所示,在另一个具体的实施例中,所述在原子层沉积装置中沉积金属催化层;使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末的步骤包括:
S301:在原子层沉积装置中持续通入预设时间的铜前驱体或镍前驱体,停留预设时间,持续通入预设时间的惰性气体吹扫;
S302:在原子层沉积装置中持续通入预设时间的还原气体,停留预设时间,持续通入预设时间的惰性气体吹扫;
S303:重复循环执行上述S301和S302两个步骤直至达到预设重复次数,形成所述铜催化层或镍催化层。
通过控制各种前驱体通入预设时间和停留预设时间,进而控制反应程度,适合控制在多孔二氧化硅粉末这种复杂的孔道内沉积铜催化层或镍催化层的厚度。比如,所述铜前驱体或镍前驱体的持续通入预设时间为0.01s-0.2s,停留预设时间为2s-20s;所述还原性气体的持续通入预设时间为0.01s-0.5s,停留预设时间为2s-20s。所述铜前驱体或镍前驱体、还原性气体的持续通入速率在5标准毫升/分钟至30标准毫升/分钟之间而根据实验数据证明,在设置范围为0.01s-0.2s的通入预设时间,可以满足足够一个循环使用的量,因为各种前驱体的材料价格较贵,通过控制通入预设时间,控制通入的量,防止浪费原材料,而停留预设时间设置为2s-20s,足够满足当前通入量的反应时间,其中,还原气体的停留预设时间越长,与铜前驱体或镍前驱体反应越充分,停留预设时间越短,生产效率越高;对应铜前驱体或镍前驱体的停留预设时间控制该前驱体的吸附程度,对应的停留预设时间越长,吸附量越多,对应的停留预设时间越短,生产效率越高。
具体的,所述铜催化层或镍催化层的厚度可选的控制为10-30nm,对应的,所述循环上述步骤的预设次数在50次至200次,需要说明的是,根据需要形成的铜催化层或镍催化层的厚度,可以对应设置不同循环预设次数。
所述铜前驱体可选用N,N-二异丙基乙酸铜、1,5-环辛二烯(六氟-2,4-戊二酮)铜、乙酰丙酮铜中的至少一种,对应的还原气体为氢气;这几种前驱体的原材料活性较高,反应速度较快,有利于节省原材料,同时有利于提高上生产效率。本申请选择的铜前驱体和还原气体在ALD装置的反应腔无需设置太高温度即可满足需求,所述原子层沉积装置的压强设置为0.05-10torr,温度150-300℃。低温的工作环境对于开发柔性显示设备和在OLED中应用产生带来了有利条件,便于铟镓锌氧化物在开发柔性显示设备和在OLED中应用的广泛使用,提高显示面板的稳定性等。
具体的,在所述使用孔内有金属催化层的多孔材料粉末,形成孔内有金属催化层的多孔材料模板的步骤中,通过将沉积有铜催化层或镍催化层的多孔二氧化硅粉末分散在有机醇溶液中,压制成二氧化硅模板,其中,有机醇溶液可以为乙醇、丙三醇、正丁醇等,该方法相较于直接成膜工艺,可以使得二氧化硅模板为后续沉积石墨烯提供更多的孔道空间。
如图4所示,在另一个具体的实施例中,所述在在多孔材料模板上制备石墨烯薄膜的步骤可包括以下步骤:
S501:将二氧化硅模板放入化学气相淀积腔室内,通入氩气(Ar)和氢气(H2)混合气体,加热至预设温度;其中,氢气通入速率为80-120标况毫升每分;
S502:通入碳源前驱体,生长预设时间后冷却降温,形成带有多孔二氧化硅模板的石墨烯薄膜;其中,碳源前驱体通入速率可选为10-30标况毫升每分,加热至800-1200℃,碳源前驱体包括:CH4、C2H2和C2H6等,生长预设时间设置为1-5分钟;
S503:将带有二氧化硅模板的石墨烯薄膜浸入到剥离液中形成石墨烯薄膜。所述剥离液可以为FeCl3溶液和氢氟酸溶液的混合液,也可以为FeCl3溶液和氢氟酸溶液的混合液,也可以依次将石墨烯薄膜浸入到FeCl3溶液和氢氧化钠溶液,或FeCl3溶液和氢氟酸溶液中。FeCl3溶液可以去除带有二氧化硅模板的石墨烯薄膜中的铜催化层,氢氟酸溶液和氢氟酸溶液可以去除带有二氧化硅模板的石墨烯薄膜中的二氧化硅模板。
如图5所示,作为本申请的一具体的实施例,公开了一种石墨烯薄膜的制作方法,包括步骤:
S11:按比例添加水和有机溶剂(如乙醇、异丙醇、丁醇)的混合液;
S21:添加硅前驱体源(如正硅酸乙酯)和表面活性剂(如CTAB、CTAC);
S31:添加催化剂(如氨水);
S41:在20-50℃下,400-800rpm(转每分)快速分散4-10小时;离心分离得到分级多孔二氧化硅;
S51:在原子层沉积装置中放入分级多孔二氧化硅;
S61:在原子层沉积装置中持续通入0.02s时间的铜前驱体(如N,N-二异丙基乙酸铜、1,5-环辛二烯(六氟-2,4-戊二酮)铜、乙酰丙酮铜中的至少一种)或镍前驱体,停留10s的时间,持续通入5时间的惰性气体(如氩气)吹扫;
S71:在原子层沉积装置中持续通入0.03s时间的还原气体(氢气),停留10s时间,持续通入5时间的惰性气体(如氩气)吹扫;
S81:重复执行上述S61和S71的步骤直至达到预设次数(如50次),形成铜催化层或镍催化层;
S91:将沉积有铜催化层或镍催化层的分级多孔二氧化硅分散在有机醇溶液中,压制成二氧化硅模板;
S101:将二氧化硅模板放入化学气相淀积腔室内,通入Ar/H2混合气体,加热至预设温度;
S111:通入碳源前驱体,生长预设时间后冷却降温,形成带有二氧化硅模板的石墨烯薄膜。
S121:将带有二氧化硅模板的石墨烯薄膜浸入到剥离液中形成石墨烯薄膜。
作为本申请一具体的实施例,如图6所示,本申请还公开了一种显示面板的制作方法,包括形成石墨烯薄膜作为显示面板的透明导电层的步骤;所述显示面板的透明导电层制作方法包括:
S12:提供一多孔材料粉末;
S22:在原子层沉积装置中放入多孔材料粉末;
S32:在原子层沉积装置中沉积金属催化层;使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末;
S42:使用孔内有金属催化层的多孔材料粉末,形成孔内有金属催化层的多孔材料模板;
S52:在多孔材料模板上制备得到石墨烯薄膜,作为显示面板的基板的透明导电层。
同时,本申请还公开了一种孔内含金属催化层的多孔二氧化硅粉末的制作方法,如图7所示,包括以下步骤:
A:在原子层沉积装置中放入多孔二氧化硅粉末;
B:在原子层沉积装置中持续通入预设时间的金属前驱体,停留预设时间,持续通入预设时间的惰性气体吹扫;
C:在原子层沉积装置中持续通入预设时间的还原气体,停留预设时间,持续通入预设时间的惰性气体吹扫;
D:循环重复上述步骤B和C预设次数,形成孔内有金属催化层的多孔二氧化硅粉末。
通过本方法制得的孔内含金属催化层的多孔二氧化硅粉末的金属催化层的分布更多更广,上述孔内含金属催化层的多孔二氧化硅粉末除可用于制作多孔二氧化硅模板以用于进一步制作石墨烯薄膜外,还可以根据需要用于制备碳纳米管、碳纤维等材料的制备。
需要说明的是,本方案中涉及到的各步骤的限定,在不影响具体方案实施的前提下,并不认定为对步骤先后顺序做出限定,写在前面的步骤可以是在先执行的,也可以是在后执行的,甚至也可以是同时执行的,只要能实施本方案,都应当视为属于本申请的保护范围。
本申请的技术方案可以广泛用于各种显示面板的透明导电层的制作,如TN(Twisted Nematic,扭曲向列型)显示面板、IPS(In-Plane Switching,平面转换型)显示面板、VA(Vertical Alignment,垂直配向型)显示面板、MVA(Multi-Domain VerticalAlignment,多象限垂直配向型)显示面板,当然,也可以是其他类型的显示面板,如OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板,均可适用上述方案。
以上内容是结合具体的可选实施方式对本申请所作的进一步详细说明,不能认定本申请的具体实施只局限于这些说明。对于本申请所属技术领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本申请的保护范围。

Claims (10)

1.一种石墨烯薄膜的制作方法,其特征在于,包括以下步骤:
提供一多孔材料粉末;
在原子层沉积装置中放入多孔材料粉末;
在原子层沉积装置中沉积金属催化层,使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末;
使用孔内有金属催化层的多孔材料粉末,形成孔内有金属催化层的多孔材料模板;以及
在多孔材料模板上制备得到石墨烯薄膜。
2.如权利要求1所述的一种石墨烯薄膜的制作方法,其特征在于,所述提供一多孔材料粉末的步骤中:
所述多孔材料粉末为分级多孔二氧化硅粉末。
3.如权利要求1所述的一种石墨烯薄膜的制作方法,其特征在于,所述在原子层沉积装置中沉积金属催化层,使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末的步骤中:
所述金属催化层包括铜催化层或镍催化层。
4.如权利要求3所述的一种石墨烯薄膜的制作方法,其特征在于,所述铜催化层或镍催化层的厚度为10-30nm。
5.如权利要求3所述的一种石墨烯薄膜的制作方法,其特征在于,所述在原子层沉积装置中沉积金属催化层,使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末的步骤包括:
在原子层沉积装置中持续通入预设时间的铜前驱体或镍前驱体,停留预设时间,持续通入预设时间的惰性气体吹扫;
在原子层沉积装置中持续通入预设时间的还原气体,停留预设时间,持续通入预设时间的惰性气体吹扫;以及
重复执行上述两个步骤直至达到预设重复次数,形成所述铜催化层或镍催化层。
6.如权利要求5所述的一种石墨烯薄膜的制作方法,其特征在于,所述铜前驱体或镍前驱体的持续通入预设时间为0.01s-0.2s,停留预设时间为2s-20s;所述还原性气体的持续通入预设时间为0.01s-0.5s,停留预设时间为2s-20s。
7.如权利要求5所述的一种石墨烯薄膜的制作方法,其特征在于,所述铜前驱体包括:N,N-二异丙基乙酸铜、1,5-环辛二烯铜、六氟-2,4-戊二酮铜、乙酰丙酮铜中的至少一种。
8.如权利要求1所述的一种石墨烯薄膜的制作方法,其特征在于,所述在在多孔材料模板上制备石墨烯薄膜的步骤包括以下步骤:
将多孔材料模板放入化学气相淀积腔室内,通入氩气(Ar)和氢气(H2)混合气体,加热至预设温度;
通入碳源前驱体,生长预设时间后冷却降温,形成带有多孔材料模板的石墨烯薄膜;以及
将带有多孔材料模板的石墨烯薄膜浸入到剥离液中形成石墨烯薄膜。
9.一种孔内含金属催化层的多孔二氧化硅粉末的制作方法,其特征在于,包括以下步骤:
A:在原子层沉积装置中放入多孔二氧化硅粉末;
B:在原子层沉积装置中持续通入预设时间的金属前驱体,停留预设时间,持续通入预设时间的惰性气体吹扫;
C:在原子层沉积装置中持续通入预设时间的还原气体,停留预设时间,持续通入预设时间的惰性气体吹扫;以及
D:循环重复所述步骤B和C预设次数,得到孔内有金属催化层的多孔二氧化硅粉末。
10.一种显示面板的透明导电层的制作方法,其特征在于,包括以下步骤:
提供一多孔材料粉末;
在原子层沉积装置中放入多孔材料粉末;
在原子层沉积装置中沉积金属催化层,使金属催化层沉积在所述多孔材料粉末的孔内,形成孔内有金属催化层的多孔材料粉末;
使用孔内有金属催化层的多孔材料粉末,形成孔内有金属催化层的多孔材料模板;以及
在多孔材料模板上制备得到石墨烯薄膜,作为显示面板的基板的透明导电层。
CN202010745877.9A 2020-07-29 2020-07-29 石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法 Active CN111926307B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010745877.9A CN111926307B (zh) 2020-07-29 2020-07-29 石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法
US17/382,292 US12049692B2 (en) 2020-07-29 2021-07-21 Manufacturing method for graphene film, porous silica powder and transparent conductive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010745877.9A CN111926307B (zh) 2020-07-29 2020-07-29 石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法

Publications (2)

Publication Number Publication Date
CN111926307A true CN111926307A (zh) 2020-11-13
CN111926307B CN111926307B (zh) 2023-04-07

Family

ID=73314967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010745877.9A Active CN111926307B (zh) 2020-07-29 2020-07-29 石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法

Country Status (2)

Country Link
US (1) US12049692B2 (zh)
CN (1) CN111926307B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538611A (zh) * 2020-12-02 2021-03-23 北海惠科光电技术有限公司 石墨烯碳纳米管复合膜及其制备方法以及薄膜晶体管阵列
CN112680719A (zh) * 2020-12-02 2021-04-20 北海惠科光电技术有限公司 石墨烯薄膜及其制备方法、以及薄膜晶体管阵列
CN112885895A (zh) * 2021-01-25 2021-06-01 北海惠科光电技术有限公司 石墨烯导电薄膜的制备方法、以及薄膜晶体管和显示装置
CN113066950A (zh) * 2021-03-23 2021-07-02 北海惠科光电技术有限公司 量子点层及其制备方法和电致发光二极管

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261819A (zh) * 2022-07-25 2022-11-01 天津师范大学 琴弦表面沉积改性石墨烯保护膜的制备及分析评估方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070265159A1 (en) * 2006-03-06 2007-11-15 Elam Jeffrey W Method of preparing size-selected metal clusters
US20140255500A1 (en) * 2013-03-11 2014-09-11 Samsung Electronics Co., Ltd. Method for preparing graphene
CN106611859A (zh) * 2015-10-23 2017-05-03 通用汽车环球科技运作有限责任公司 抗腐蚀催化剂
CN110029324A (zh) * 2019-05-30 2019-07-19 邱越 一种贵金属纳米复合材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939218B2 (en) * 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
US10612137B2 (en) * 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070265159A1 (en) * 2006-03-06 2007-11-15 Elam Jeffrey W Method of preparing size-selected metal clusters
US20140255500A1 (en) * 2013-03-11 2014-09-11 Samsung Electronics Co., Ltd. Method for preparing graphene
CN106611859A (zh) * 2015-10-23 2017-05-03 通用汽车环球科技运作有限责任公司 抗腐蚀催化剂
CN110029324A (zh) * 2019-05-30 2019-07-19 邱越 一种贵金属纳米复合材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈义万: "《大学物理下》", 31 January 2019, 华中科技大学出版社 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538611A (zh) * 2020-12-02 2021-03-23 北海惠科光电技术有限公司 石墨烯碳纳米管复合膜及其制备方法以及薄膜晶体管阵列
CN112680719A (zh) * 2020-12-02 2021-04-20 北海惠科光电技术有限公司 石墨烯薄膜及其制备方法、以及薄膜晶体管阵列
CN112885895A (zh) * 2021-01-25 2021-06-01 北海惠科光电技术有限公司 石墨烯导电薄膜的制备方法、以及薄膜晶体管和显示装置
CN113066950A (zh) * 2021-03-23 2021-07-02 北海惠科光电技术有限公司 量子点层及其制备方法和电致发光二极管

Also Published As

Publication number Publication date
US12049692B2 (en) 2024-07-30
US20220056578A1 (en) 2022-02-24
CN111926307B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN111926307B (zh) 石墨烯薄膜、多孔二氧化硅粉末和透明导电层的制作方法
CN103151101B (zh) 掺杂石墨烯柔性透明电极及其制备方法
Huan et al. Vertical 1T‐TaS2 synthesis on Nanoporous gold for high‐performance electrocatalytic applications
US20190256356A1 (en) Single-walled Carbon Nanotube Flexible Transparent Conductive Thin Film with Carbon Welded Structure and Preparation Method Therefor
Sato et al. Conductivity of ruthenate nanosheets prepared via electrostatic self-assembly: characterization of isolated single nanosheet crystallite to mono-and multilayer electrodes
CN111986834A (zh) 一种碳纳米管导电薄膜的制作方法、显示面板和显示装置
CN104505509B (zh) 一种碳包覆多孔氮化钒纳米线薄膜及其制备方法
CHEN et al. Graphene glass: direct growth of graphene on traditional glasses
Park et al. Shaping microcrystals of metal–organic frameworks by reaction–diffusion
CN103303912A (zh) 一种高比表面积多孔氮掺杂石墨化纳米碳材料的制备方法
CN103922388B (zh) 一种石墨烯/掺铝氧化锌导电复合材料的制备方法
CN103469299B (zh) 掺杂氧化镓膜的制备方法及掺杂氧化镓膜
CN104134806A (zh) 一种自下而上制备掺氮石墨烯/金属复合物的方法及其产品和应用
CN107275006A (zh) 还原氧化石墨烯/SnO2复合透明导电薄膜及其制备方法
KR101500192B1 (ko) 그래핀층을 포함하는 투명전극 및 이의 제조방법
CN112808030A (zh) 一种电化学制备自支撑MXene-ZIF-8复合膜的方法
CN104570534B (zh) 全固态无机电致变色器件及其制备方法
WO2013123804A1 (zh) 掺杂在封框胶中的导电型隔垫物及其制备方法和应用
Martinez-Luevanos et al. Effect of cobalt on the electrochromic properties of NiO films deposited by spray pyrolysis
CN111362369B (zh) 一种二氧化铅-碳纳米管吸附性亚微米电化学反应器及其制备方法和应用
CN106653696B (zh) 一种用于制作阵列基板的方法
CN110316726B (zh) 石墨烯纳米线薄膜及其制备方法、以及薄膜晶体管阵列
Dai et al. Temperature-controlled vapor deposition of highly conductive p-type reduced molybdenum oxides by hydrogen reduction
Tolstoy et al. Low temperature synthesis of Сu0. 3IrOx· nH2O nanocrystals by successive ionic layer deposition and their electrocatalytic properties in oxygen evolution reaction during water splitting in acidic medium
Peng et al. Highly Stable Vertically Oriented 2H‐NbS2 Nanosheets on Carbon Nanotube Films toward Superior Electrocatalytic Activity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant