CN103922388B - 一种石墨烯/掺铝氧化锌导电复合材料的制备方法 - Google Patents

一种石墨烯/掺铝氧化锌导电复合材料的制备方法 Download PDF

Info

Publication number
CN103922388B
CN103922388B CN201410143022.3A CN201410143022A CN103922388B CN 103922388 B CN103922388 B CN 103922388B CN 201410143022 A CN201410143022 A CN 201410143022A CN 103922388 B CN103922388 B CN 103922388B
Authority
CN
China
Prior art keywords
graphene
preparation
composite material
doped zno
conducing composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410143022.3A
Other languages
English (en)
Other versions
CN103922388A (zh
Inventor
姚超
左士祥
马建锋
刘文杰
张�林
李霞章
罗士平
孔泳
毛辉麾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201410143022.3A priority Critical patent/CN103922388B/zh
Publication of CN103922388A publication Critical patent/CN103922388A/zh
Application granted granted Critical
Publication of CN103922388B publication Critical patent/CN103922388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于新型微纳材料制备领域,涉及一种导电复合材料,具体涉及一种石墨烯/掺铝氧化锌导电复合涂料的制备方法。具体操作为,首先对氧化石墨进行冷剥离制备氧化石墨烯;再在氧化石墨烯表面负载含铝碱式碳酸锌;最后氮气条件下,高温处理制得石墨烯/掺铝氧化锌(石墨烯/ZAO)导电复合材料。制备方法简便,产品导电性能优异。

Description

一种石墨烯/掺铝氧化锌导电复合材料的制备方法
技术领域
本发明涉及一种导电复合材料,具体涉及一种石墨烯/掺铝氧化锌导电复合涂料的制备方法,属于新型微纳材料和材料制备领域。
背景技术
导电粉体常被添加到工程塑料、橡胶和涂料等高分子材料中,使之具有抗静电、电磁屏蔽以及防腐等特殊功能。目前,市场上使用的导电填料主要为金属系、碳系以及金属氧化物等。金属系填料具有导电性强,但除银外,铝、铜等易被氧化,耐腐蚀性差,而银粉又受价格高的制约。另外,金属粉末由于比重大易沉底结块,在实际应用中分散性难控制。金属氧化物由于其导电性能优异、颜色浅,弥补了金属导电填料抗腐蚀性能差的缺陷,典型的有锑掺杂氧化锡(ATO)、锡掺杂氧化铟(ITO)等,其中使用ATO的领域最多,而这些掺杂型导电氧化物粉体的不足是生产成本高。碳系粉体主要为石墨和炭黑,由于具有成本低、质轻、耐腐蚀等优点而被广泛应用,其中炭黑应用最广,然而由于炭黑表面含有大量的极性基团,存在难分散、易絮凝等缺点。石墨导电性能不如炭黑优良,需加入量较大才能满足要求;而添加量过大会造成材料力学性能降低,成本增加。
石墨烯是近年新发现的由单层碳原子紧密堆积成的具有二维片层结构(<1nm)的一种碳质材料,其强度高和导电性好。氧化锌(ZnO)是一种常用的化工产品,白色或乳白色,具有特别的电子结构,价格便宜。石墨烯/氧化锌导电复合材料兼具石墨烯和氧化锌的双重导电特性,将其添加到高分子材料中不仅可以起到良好的导电性能,而且其特殊的片状结构还可以增强材料的力学等性能。中国专利CN102654474A提出了一种石墨烯掺杂氧化锌纳米薄膜的制作方法,其技术方案是将石墨烯与氧化锌溶于乙二醇溶液制得混合液,滴涂在器件敏感膜上,真空80℃干燥制得石墨烯掺杂氧化锌纳米薄膜。但是,低温下石墨烯掺杂氧化锌效果并不理想。中国专利CN103199126A公开了一种石墨烯-氧化锌透明导电薄膜及其制备方法,首先分别将石墨烯和氧化锌分散于乙二醇甲醚中形成溶胶-凝胶,制备石墨烯-氧化锌溶液,然后利用反复旋涂石墨烯-氧化锌溶液于衬底,并在无氧条件下高温退火处理制得石墨烯-氧化锌透明导电薄膜。然而,上述两种方法都用水合肼还原氧化石墨制备石墨烯,此外,都采用有机试剂乙二醇(醚)作为分散介质,生产成本昂贵。
发明内容
针对背景技术中存在的问题,本发明目的在于提供一种石墨烯/掺铝氧化锌导电复合材料制备方法,制备方案为:
首先,在氧化石墨烯表面负载含铝碱式碳酸锌;然后在氮气条件下,高温处理制得石墨烯/掺铝氧化锌(石墨烯/ZAO)导电复合材料,
作为优选,上述氧化石墨烯是通过对氧化石墨进行冷剥离制备而成的。
具体的制备步骤为:
本发明所述的氧化石墨是通过Hummers法来制得(但绝不局限于该制备方法),具体包括:在冰浴中,将石墨、无水硝酸钠与浓硫酸均匀混合,搅拌中加入高锰酸钾得到混合物,将该混合物转移至40℃水浴中反应30分钟,逐步加入去离子水,保持反应温度98℃,继续反应40分钟,加入30%H2O2(质量百分数)至不产生气泡为止,过滤,用5%(质量百分数)的盐酸溶液反复洗涤,最后用去离子水洗涤至中性,真空干燥,制得氧化石墨,
本发明中作为优选,所用的氧化石墨烯是通过对氧化石墨进行冷剥离制备而成的,具体制备操作为:将氧化石墨均匀分散到去离子水中,其中氧化石墨与去离子水质量之比为0.01~0.05:1,在温度为-15~-1℃条件下冷冻12~24小时,加热(加热至冰块基本熔化即可),在频率为20KHz~40KHz条件下超声处理30~60分钟,制得氧化石墨烯分散液,
利用上述制备的氧化石墨烯分散液,来制备石墨烯/掺铝氧化锌导电复合粉体的操作步骤如下:
(1)向上述制备的氧化石墨烯分散液中加入可溶性锌盐和铝盐,在温度为60~80℃条件下,搅拌均匀后,向体系中滴加碳酸钠溶液至体系pH值为6~8,熟化(熟化时间为30~60分钟,熟化温度为60~80℃)、过滤、洗涤,得到石墨烯/掺铝氧化锌导电复合材料的前驱体复合物,
其中,可溶性锌盐为硫酸锌(ZnSO4·7H2O)、氯化锌(ZnCl2)、硝酸锌(Zn(NO3)2·6H2O)或醋酸锌(Zn(CH3COO)2),加入量为:按ZnO与石墨烯质量比为0.3~1.0:1计算,
可溶性铝盐为硫酸铝(Al2(SO4)3·18H2O)或氯化铝(AlCl3·6H2O),加入量为:按Al元素与ZnO质量比为0.005~0.02:1来计算,
步骤(1)中,碳酸钠溶液的浓度为0.5~3.0摩尔/升;
(2)将步骤(1)中得到的前驱体复合物,在氮气气氛下,于800~900℃下煅烧1~5小时后,粉碎,制得石墨烯/掺铝氧化锌导电复合粉体。
本发明有益效果是:
1、本发明采用冷剥离的方法制备氧化石墨烯,具有处理效果好、工艺简单、成本低等优势;
2、本发明在氧化石墨烯片上负载纳米掺铝ZnO粒子,在一定程度上可以防止石墨烯片层之间的团聚;
3、在高温处理过程中,碳酸根离子和氧化石墨烯中的含氧基团会发生分解,产生还原性气体一氧化碳,从而还原氧化石墨烯,使其转变成石墨烯;同时使得铝元素掺入到ZnO晶格中,提高了ZnO的导电性;从而制得石墨烯/掺铝氧化锌双组分导电复合材料。
附图说明
图1:本发明实施例1中,制备的氧化石墨烯干燥后的红外光谱图。
图2:本发明实施例1中,制备的氧化石墨烯干燥后的透射电镜TEM图。
具体实施方式
下面结合实施例和比较例,以具体说明一种石墨烯//ZAO导电复合材料的制备方法,但不限制本发明的范围。实施例和比较例中的体积电阻率按以下方法进行测定:在带刻度的聚丙烯酸酯玻璃管内,放入5.00g粉体,用9.81×105Pa的压力把复合材料粉体压在2个金属片之间,用扬子直流低电阻测试仪(YD2511A型,深圳市源恒通科技有限公司)测出2个金属片间的电阻,根据Rsp=R×A/L(其中:Rsp为体积电阻率,Ω·cm;R为实测电阻,Ω;A为玻璃管的内径截面积,cm2;L为粉体层的高度,cm)计算粉体的体积电阻率。
实施例1
1.将10.0克氧化石墨分散到1000毫升去离子水中,在温度为-15℃条件下冷冻12小时后,80℃加热至冰块基本熔化即可,在频率为20KHz条件下超声处理30分钟,制得氧化石墨烯分散液;
2.向步骤1所制得的氧化石墨烯分散液中加入10.6克硫酸锌和1.5克硫酸铝,在温度为60℃条件下搅拌40分钟,然后逐滴滴加0.5摩尔/升的碳酸铵溶液至体系pH值为6,熟化60分钟,过滤,洗涤,制得氧化石墨烯/ZAO前驱体复合物;氮气气氛下,将所得的前驱体复合物在800℃下煅烧5小时,粉碎,制得石墨烯/ZAO导电复合粉体;测其体积电阻率为9.71×10-2Ω·cm。
为了对步骤1中得到的氧化石墨烯产品进行验证,还可以直接将该步骤中得到的氧化石墨烯分散液抽滤,并将样品放入50℃鼓风干燥箱中干燥6h,得到干燥的氧化石墨烯,具体实验验证如图1、图2所示。
实施例2
1.将25克氧化石墨分散到500毫升去离子水中,在温度为-1℃条件下冷冻24小时后,75℃加热至冰块基本熔化即可,在频率为40KHz条件下超声处理60分钟,制得氧化石墨烯分散液;
2.向步骤1所制得的氧化石墨烯分散液中加入41.9克氯化锌和1.1克氯化铝,在温度为80℃条件下搅拌20分钟,然后逐滴滴加3.0摩尔/升的碳酸铵溶液至体系pH值为8,熟化30分钟,过滤,洗涤,制得氧化石墨烯/ZAO前驱体复合物;氮气气氛下,将所得的前驱体复合物在900℃下煅烧1小时,粉碎,制得石墨烯/ZAO导电复合粉体;测其体积电阻率为2.79×10-2Ω·cm。
实施例3
1.将12.5克氧化石墨分散到500毫升去离子水中,在温度为-10℃条件下冷冻18小时后,80℃加热至冰块基本熔化即可,在频率为30KHz条件下超声处理45分钟,制得氧化石墨烯分散液;
2.向步骤1所制得的氧化石墨烯分散液中加入29.7克硝酸锌和0.7克氯化铝,在温度为75℃条件下搅拌30分钟,然后逐滴滴加1.75摩尔/升的碳酸铵溶液至体系pH值为7.5,熟化45分钟,过滤,洗涤,制得氧化石墨烯/ZAO前驱体复合物;氮气气氛下,将所得的前驱体复合物在870℃下煅烧3小时,粉碎,制得石墨烯/ZAO导电复合粉体;测其体积电阻率为4.72×10-2Ω·cm。
实施例4
1.将10.0克氧化石墨分散到500毫升去离子水中,在温度为-5℃条件下冷冻20小时后,70℃加热至冰块基本熔化即可,在频率为40KHz条件下超声处理40分钟,制得氧化石墨烯分散液;
2.向步骤1所制得的氧化石墨烯分散液中加入11.3克醋酸锌和1.9克硫酸铝,在温度为70℃条件下搅拌30分钟,然后逐滴滴加1.0摩尔/升的碳酸铵溶液至体系pH值为6.5,熟化35分钟,过滤,洗涤,制得氧化石墨烯/ZAO前驱体复合物;氮气气氛下,将所得的前驱体复合物在850℃下煅烧4小时,粉碎,制得石墨烯/ZAO导电复合粉体;测其体积电阻率为8.51×10-3Ω·cm。
比较例1
在比较例1中,将实施例4中的冷冻工序去除,其他操作与实施例4相同,具体操作步骤如下:
将10.0克氧化石墨分散到500毫升去离子水中,在频率为40KHz条件下超声处理40分钟,制得氧化石墨分散液;向得的氧化石墨分散液中加入11.3克醋酸锌和1.9克硫酸铝,在温度为70℃条件下搅拌30分钟,然后逐滴滴加1.0摩尔/升的碳酸铵溶液至体系pH值为6.5,熟化35分钟,过滤,洗涤,制得氧化石墨/ZAO前驱体复合物;氮气气氛下,将所得的前驱体复合滤物在850℃下煅烧4小时,粉碎,制得石墨/ZAO导电复合粉体;测其体积电阻率为0.58Ω·cm。
比较例2
在比较例2中,将实施例4中的石墨烯载体工序去掉,直接制备掺铝氧化锌导电粉体,具体操作步骤如下:
向500毫升去离子水中加入11.3克醋酸锌和1.9克硫酸铝,在温度为70℃条件下搅拌30分钟,然后逐滴滴加1.0摩尔/升的碳酸铵溶液至体系pH值为6.5,熟化35分钟,过滤,洗涤,制得ZAO前驱体复合物;氮气气氛下,将所得的前驱体复合物在850℃下煅烧4小时,粉碎,制得ZAO导电复合粉体;测其体积电阻率为10.6Ω·cm。
比较例3
在比较例3中,将实施例4中的“加入可溶性铝盐”的工序去除,其他操作与实施例4相同,具体操作步骤如下:
1.将10.0克氧化石墨分散到500毫升去离子水中,在温度为-5℃条件下冷冻20小时后,70℃加热至冰块基本熔化即可,在频率为40KHz条件下超声处理40分钟,制得氧化石墨烯分散液;
2.向步骤1所制得的氧化石墨烯分散液中加入11.3克醋酸锌,在温度为70℃条件下搅拌30分钟,然后逐滴滴加1.0摩尔/升的碳酸铵溶液至体系pH值为6.5,熟化35分钟,过滤,洗涤,制得氧化石墨烯/ZnO前驱体复合物;氮气气氛下,将所得的前驱体复合物在850℃下煅烧4小时,粉碎,制得石墨烯/ZnO导电复合粉体;测其体积电阻率为0.21Ω·cm。

Claims (7)

1.一种石墨烯/掺铝氧化锌导电复合材料的制备方法,其特征在于:
所述的制备方法为,首先,在氧化石墨烯表面负载含铝碱式碳酸锌;然后在氮气条件下,高温处理制得石墨烯/掺铝氧化锌导电复合材料,
所述制备方法的具体步骤为,
(1)向氧化石墨烯分散液中加入可溶性锌盐和铝盐,在温度为60~80℃条件下,搅拌均匀后,向体系中滴加碳酸钠溶液至体系pH值为6~8,熟化、过滤、洗涤,得到石墨烯/掺铝氧化锌导电复合材料的前驱体复合物;
(2)将步骤(1)中得到的前驱体复合物,在氮气气氛下,于800~900℃下煅烧1~5小时后,粉碎,制得石墨烯/掺铝氧化锌导电复合粉体。
2.如权利要求1所述的石墨烯/掺铝氧化锌导电复合材料的制备方法,其特征在于:步骤(1)中的氧化石墨烯分散液通过如下方法制备,
将氧化石墨分散到去离子水中,其中氧化石墨与去离子水质量之比为0.01~0.05:1,在温度为-15~-1℃条件下冷冻12~24小时,加热,超声处理30~60分钟,制得氧化石墨烯分散液。
3.如权利要求1所述的石墨烯/掺铝氧化锌导电复合材料的制备方法,其特征在于:步骤(1)中,可溶性锌盐的加入量为,按ZnO与石墨烯质量比为0.3~1.0:1计算;可溶性铝盐的加入量为,按Al元素与ZnO质量比为0.005~0.02:1来计算。
4.如权利要求1所述的石墨烯/掺铝氧化锌导电复合材料的制备方法,其特征在于:步骤(1)中,所述的碳酸钠溶液的浓度为0.5~3.0摩尔/升。
5.如权利要求1所述的石墨烯/掺铝氧化锌导电复合材料的制备方法,其特征在于:步骤(1)中,所述的熟化操作中,熟化时间为30~60分钟,熟化温度为60~80℃。
6.如权利要求1所述的石墨烯/掺铝氧化锌导电复合材料的制备方法,其特征在于:步骤(1)中,所述的可溶性锌盐为,硫酸锌、氯化锌、硝酸锌或醋酸锌。
7.如权利要求1所述的石墨烯/掺铝氧化锌导电复合材料的制备方法,其特征在于:步骤(1)中,所述的可溶性铝盐为硫酸铝或氯化铝。
CN201410143022.3A 2014-04-10 2014-04-10 一种石墨烯/掺铝氧化锌导电复合材料的制备方法 Active CN103922388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410143022.3A CN103922388B (zh) 2014-04-10 2014-04-10 一种石墨烯/掺铝氧化锌导电复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410143022.3A CN103922388B (zh) 2014-04-10 2014-04-10 一种石墨烯/掺铝氧化锌导电复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN103922388A CN103922388A (zh) 2014-07-16
CN103922388B true CN103922388B (zh) 2015-09-16

Family

ID=51140823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410143022.3A Active CN103922388B (zh) 2014-04-10 2014-04-10 一种石墨烯/掺铝氧化锌导电复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN103922388B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106168515A (zh) * 2015-05-18 2016-11-30 宝峰时尚国际控股有限公司 一种压力传感器及其制备方法
CN105047421B (zh) * 2015-06-15 2017-11-10 昆明理工大学 一种石墨烯/碱式碳酸盐纳米复合材料的制备方法
CN105185606A (zh) * 2015-09-14 2015-12-23 南京大学 一种新型碱式碳酸钴-掺氮石墨烯复合电极材料的制备方法
CN105349017B (zh) * 2015-12-10 2017-09-08 常州大学 一种添加石墨烯复合材料的防腐涂料及制备方法
CN105778905B (zh) * 2016-03-31 2018-05-22 南京大学 一种石墨烯氧化物量子点-布里扬石配位复合物的制备
CN106442642B (zh) * 2016-08-30 2019-05-14 安徽师范大学 一种氧化锌/石墨烯复合材料的制备方法、电阻型气体传感器
CN109650386B (zh) * 2019-01-22 2021-01-22 南开大学 石墨烯复合材料、石墨烯氧化铝复合材料及石墨烯氧化铝复合粉体材料的制备方法及其应用
CN110492088B (zh) * 2019-09-16 2021-02-09 安徽师范大学 一种zif-8@还原氧化石墨烯负载硫复合材料及其制备方法及锂硫电池正极和锂硫电池
CN111876007A (zh) * 2020-07-07 2020-11-03 北京环境特性研究所 一种轻质高性能导电涂料及其制备方法
CN112391076B (zh) * 2020-10-29 2022-03-22 淮阴工学院 一种凹土复合纳米材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103252228A (zh) * 2013-06-08 2013-08-21 江苏悦达墨特瑞新材料科技有限公司 纳米ZnO和石墨烯纳米片的复合纳米材料的制备方法
CN103706349A (zh) * 2014-01-21 2014-04-09 中国计量学院 一种纳米ZnO微球/石墨烯光催化剂及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5062978B2 (ja) * 2005-08-30 2012-10-31 旭化成ケミカルズ株式会社 無機物膜の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103252228A (zh) * 2013-06-08 2013-08-21 江苏悦达墨特瑞新材料科技有限公司 纳米ZnO和石墨烯纳米片的复合纳米材料的制备方法
CN103706349A (zh) * 2014-01-21 2014-04-09 中国计量学院 一种纳米ZnO微球/石墨烯光催化剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
掺铝氧化锌/还原石墨烯复合材料的制备及性能;张霞等;《电池》;20130401;第43卷(第2期);第94页左栏第1段-第95页左栏第1段 *
氧化石墨烯与氧化锌复合材料的制备及室温NOx气敏性能研究;柴丽雅等;《人工晶体学报》;20130831;第42卷(第8期);第1612页第2.1节 *

Also Published As

Publication number Publication date
CN103922388A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
CN103922388B (zh) 一种石墨烯/掺铝氧化锌导电复合材料的制备方法
CN104992752B (zh) 一种纳米银线透明导电薄膜的生产方法
CN103094540B (zh) 石墨烯与金属氧化物/金属化合物的复合方法及其复合材料
CN104319012B (zh) 一种基于石墨烯的柔性电极制备方法
CN105338799B (zh) 以磁性金属掺杂多壁碳纳米管/二氧化锡的纳米复合材料
CN104538639B (zh) 一种石墨烯包覆氧化铝及其制备方法
CN103523773B (zh) 一种高导电石墨烯和石墨烯导电膜及其制备方法
CN105293565B (zh) 一种浅色掺杂纳米导电氧化锌粉体的制备方法
CN107275006A (zh) 还原氧化石墨烯/SnO2复合透明导电薄膜及其制备方法
CN102718250A (zh) 一种碳材料负载二氧化锡纳米片复合材料的制备方法
CN105498773A (zh) 一种掺杂氧化铁纳米棒催化剂的制备方法
CN103769602A (zh) 一种超声辅助制备纳米铜/石墨烯复合微粒的方法
CN104401980A (zh) Fe2O3-SnO2/石墨烯三元复合纳米材料的水热制备方法
CN109003826A (zh) N和s双掺杂石墨烯-石墨烯纳米带气凝胶的制备方法
CN103198886B (zh) 一种柔性基底表面透明导电薄膜的制备方法
CN102558553B (zh) 一种一维导电聚苯胺/凹凸棒纳米复合材料的制备方法
CN106986331B (zh) 一种石墨烯-氧化锡锑复合导电材料及其制备方法
CN106847364B (zh) 一种铜锌锡硫和三维石墨烯的复合薄膜的制备方法及应用
Yuan et al. High surface area ZnO/rGO aerogel for sensitive and selective NO2 detection at room temperature
CN107673328A (zh) 一种石墨烯/纳米银线透明导电膜及其制备方法和应用
Liu et al. Conducting antimony-doped tin oxide films derived from stannous oxalate by aqueous sol–gel method
CN104292456A (zh) 一种制备聚苯胺/石墨烯/四氧化三铁复合材料的方法
DAR et al. Enhanced supercapacitor performance of Mg-doped SnO2 nanorods synthesized through the solvothermal method
CN109524170A (zh) 一种石墨烯和氟共掺杂氧化锡透明导电薄膜的制备方法
CN104497645B (zh) 氧化铝溶胶复合料浆

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant