CN111909169A - 一种以苯并二噻吩二酮为核心的空穴传输材料与合成方法及在钙钛矿太阳能电池中的应用 - Google Patents

一种以苯并二噻吩二酮为核心的空穴传输材料与合成方法及在钙钛矿太阳能电池中的应用 Download PDF

Info

Publication number
CN111909169A
CN111909169A CN202010797480.4A CN202010797480A CN111909169A CN 111909169 A CN111909169 A CN 111909169A CN 202010797480 A CN202010797480 A CN 202010797480A CN 111909169 A CN111909169 A CN 111909169A
Authority
CN
China
Prior art keywords
hole transport
benzodithiophene
transport material
diketone
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010797480.4A
Other languages
English (en)
Other versions
CN111909169B (zh
Inventor
苗亚伟
程明
陈承
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Haichuang New Energy Research Institute Co ltd
Original Assignee
Taizhou Haichuang New Energy Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Haichuang New Energy Research Institute Co ltd filed Critical Taizhou Haichuang New Energy Research Institute Co ltd
Priority to CN202010797480.4A priority Critical patent/CN111909169B/zh
Publication of CN111909169A publication Critical patent/CN111909169A/zh
Application granted granted Critical
Publication of CN111909169B publication Critical patent/CN111909169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/152Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising zinc oxide, e.g. ZnO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种以苯并二噻吩二酮为核心的空穴传输材料,以苯并二噻吩二酮为核心结构,两端直接与4,4‑二甲氧基三苯胺连接,或选用不同的芳香类衍生物作为桥基基团,再与4,4‑二甲氧基三苯胺端基基团连接,构建一类新型的具有对称结构的空穴传输材料。此类材料具有合成简单、能级可调、高空穴迁移率和导电性、热稳定性和化学稳定性良好等优点,将其应用于钙钛矿太阳能电池中,有助于提升其光电转换效率、增强器件稳定性、降低器件制备成本。

Description

一种以苯并二噻吩二酮为核心的空穴传输材料与合成方法及 在钙钛矿太阳能电池中的应用
技术领域
本发明属于有机半导体功能材料领域,涉及一种以苯并二噻吩二酮为核心的空穴传输材料及其合成方法及在钙钛矿太阳能电池中的应用。
背景技术
近年来,钙钛矿太阳能电池(Perovskite Solar Cells, PSCs)的研究取得了突飞猛进的发展,使其成为光伏市场中硅太阳能电池的有力竞争者之一,吸引了广大学者的普遍关注。Miyasaka课题组首次将钙钛矿CH3NH3PbX3(X = Br, I)作为光吸收层应用于染料敏化太阳能电池中,并获得了3.8%的光电转换效率(A.Kojima,K.Teshima,Y.Shirai,T.Miyasaka,J.Am.Chem.Soc.2009,131,6050.)。随后,Park课题组通过对二氧化钛(TiO2)表面的修饰,将电池的光电转换效率进一步提升至6.5J.-H. Im,C.-R.Lee,J.-W.Lee,S.-W.Park,N.-G.Park,Nanoscale2011,3, 4088。尽管如此,由于液体电解质可以快速分解钙钛矿光吸收层,这种电池极不稳定。直到2012年,Kanatzidis课题组采用一种具有直接带隙的P型半导体材料CsSnI2.95F0.05作为空穴传输材料来替代传统的液态电解质,制备了一种高效的全固态染料敏化太阳能电池,此研究为太阳能电池的研究开辟了一个全新的道路(I.Chung,B.Lee,J.He,R.P.H.Chang,M.G.Kanatzidis,Nature2012, 485, 486.)。受此研究结果的启发,Snaith课题组首次提出了采用2, 2', 7, 7'-四[N, N-二(4-甲氧基苯基)氨基]-9, 9'-螺二芴(Spiro-OMeTAD)作为空穴传输材料应用于全固态的钙钛矿太阳能电池,大幅度提升了电池的光电转换效率(M.M. Lee,J.Teuscher,T.Miyasaka,T.N.Murakami,H.J.Snaith,Science 2012, 338,643; H.-S. Kim,C.-R.Lee,J.-H.Im,K.-B.Lee,T.Moehl,A.Marchioro,S.-J.Moon,R. Humphry-Baker,J.-H.Yum,J.E.Moser,M.Grätzel,N.-G.Park,Sci.Rep. 2012, 2, 591.)。空穴传输材料方面的重大突破,使得钙钛矿太阳能电池领域取得了快速的发展,经过短短几年的时间,已认证的最高光电转换效率已快速提升至25.2%,使其成为具有广阔应用前景的新一代太阳能电池。
目前,经典的空穴传输材料是Spiro-OMeTAD及聚[双(4-苯基)(2, 4, 6-三甲基苯基)胺](PTAA),此类空穴传输材料具有能级匹配、空穴传输性能优异等优点(J. Burschka,N.Pellet,S.J.Moon,R.Humphry-Baker,P.Gao,M.K.Nazeeruddin,M. Grätzel,Nature2013,499,316;N.J.Jeon,J.H.Noh,W.S.Yang,Y.C.Kim,S.Ryu,J.Seo,S.I.eok,Nature2015,517,476;G.Xing,N.Mathews,S.Sun,S.S.Lim,Y.M.Lam,M.Grätzel,S.Mhaisalkar,T.C. Sum,Science2013, 342, 344.)。但是,由于其合成提纯步骤复杂,使得此类材料的合成成本较高;同时,PTAA及Spiro-OMeTAD自身的导电性较差,需要使用P型掺杂剂和添加剂,如叔丁基吡啶(TBP),双三氟甲磺酰亚胺锂(LiTFSI)等,来提高空穴传输层的导电性。而这些掺杂剂和添加剂的使用不仅降低了电池的稳定性,进一步增加了电池的制作成本,限制了其在工业生产中的实用性。因此,为实现高效且稳定的钙钛矿太阳能电池的大规模商业化生产,亟需开发高效且低成本的非掺杂空穴传输材料。
发明内容
针对经典空穴传输材料的缺点,本发明的目的在于开发一类高效、经济且稳定的非掺杂空穴传输材料,并将其应用于钙钛矿太阳能电池中。所述的空穴传输材料以苯并二噻吩二酮为核心结构,以4, 4-二甲氧基三苯胺为端基基团,直接连接或选用不同的芳香类衍生物作为桥基连接,构建具有对称结构的空穴传输材料。此类材料具有合成简单、能级可调、高空穴迁移率和导电性、热稳定性和化学稳定性良好等优点,将其应用于钙钛矿太阳能电池中,有助于提升其光电转换效率、增强器件稳定性、降低器件制备成本。
本发明采用的技术方案为:
一种以苯并二噻吩二酮为核心结构的空穴传输材料,以苯并二噻吩二酮为核心结构,两端直接与4, 4-二甲氧基三苯胺连接,或选用不同的芳香类衍生物作为桥基基团,再与4,4-二甲氧基三苯胺端基基团连接,构建一类新型的具有对称结构的空穴传输材料。所述空穴传输材料具有如下的化学结构通式I:
Figure DEST_PATH_IMAGE001
式I中,R为五元杂环化合物、苯、噻二唑或三氮唑基团,具体为下列结构中的一种:
Figure 406124DEST_PATH_IMAGE002
其中,X为O、S或Se;
其中,R1为C1 ~ C8烷烃基的任意一种。
式I中,n为0~ 1。
所述的以苯并二噻吩二酮为核心结构的空穴传输材料的合成方法为:化合物1与4,4’-二甲氧基三苯胺-4’’-硼酸频哪醇酯发生碳碳偶联反应,得到以苯并二噻吩二酮为核心结构的空穴传输材料BDD,其具体步骤如下:
在干燥的反应容器中加入化合物1、4,4’-二甲氧基三苯胺-4’’-硼酸频哪醇酯、四(三苯基膦)钯、饱和碳酸钾水溶液和溶剂四氢呋喃,在氮气保护条件下搅拌均匀,并升温加热至80-100 ℃反应16-24小时,反应结束后,将反应液冷却至室温并用二氯甲烷溶液萃取分离反应液数遍,收集有机层,减压移去溶剂,将所得固体进行分离提纯,真空干燥,得到以苯并二噻吩二酮为核心结构的空穴传输材料BDD。
合成流程为:
Figure DEST_PATH_IMAGE003
所述的化合物1:4,4’-二甲氧基三苯胺-4’’-硼酸频哪醇酯:四(三苯基膦)钯:碳酸钾的摩尔比为1: 2.2: 1: 10-40;反应浓度为0.002 ~ 0.015 mol/L。
将本发明中做合成的以苯并二噻吩二酮为核心结构的非掺杂空穴传输材料应用于钙钛矿太阳能电池中。所述的钙钛矿太阳能电池由透明导电基底、电子传输层、钙钛矿吸收层、空穴传输层和金属电极构成,所述钙钛矿太阳能电池的具体步骤如下:
(1)将透明导电基底切割成固定尺寸,并进行刻蚀处理,将刻蚀好的导电基底分别在不同溶剂中超声清洗,随后将其进行紫外臭氧杀菌处理;
(2)在步骤(1)处理后的透明导电基底上通过喷雾热解法或旋涂法,制备电子传输层;
(3)将涂有电子传输层的导电基底移至手套箱中,通过旋涂法将钙钛矿前驱液旋涂到电子传输层上,形成钙钛矿吸收层;
(4)通过旋涂法将以苯并二噻吩二酮为核心结构的空穴传输材料溶液旋涂到钙钛矿吸收层之上,形成空穴传输层;
(5)通过真空蒸镀的方法将金属电极沉积到空穴传输层上。
所述透明导电基底为FTO导电玻璃、ITO导电玻璃或透明柔性导电基底中的一种;
所述的电子传输层为二氧化钛、二氧化锡、氧化锌或五氧化二铌等金属氧化物中的一种;
所述的钙钛矿吸收层为CH3NH3PbI3、CH3NH3PbI3-xBrx、CH3NH3PbI3-xClx(0≤x≤3)或全无机钙钛矿CsPbI3、CsPbBr3中的一种;
所述的空穴传输层是通过将30-60 mg空穴传输材料溶解于1 mL氯苯中,并利用旋涂法或真空蒸镀法将其沉积到钙钛矿吸收层之上;
所述金属电极为金、银或铜中的一种。
由于采用了上述技术方案,与现有技术相比,本发明的优点是:本发明所提供的空穴传输材料与钙钛矿吸收层能级匹配,具有较高的空穴迁移率和导电性。最重要的是,此类材料可以仅通过一步化学反应合成,反应步骤和提纯简单易操作,大幅度降低了此类材料的合成成本;同时,此类空穴传输材料应用于钙钛矿太阳能电池中,无需使用掺杂剂和添加剂,不仅降低了电池的制备成本,还提升了电池的稳定性。基于此类材料的电池器件具有出色的光电性能及稳定性,为钙钛矿太阳能电池的商业化应用提供了一类新的空穴传输材料。
附图说明
图1为本发明实例1、2合成的空穴传输材料BDD-1和BDD-2的分子结构。
图2为基于本发明实例1、2所合成的空穴传输材料BDD-1和BDD-2的空穴迁移率测试图。
图3为基于本发明实例1、2所合成的空穴传输材料BDD-1和BDD-2的导电性测试图。
图4为以本发明实施例1、2所合成化合物BDD-1和BDD-2为空穴传输材料的钙钛矿太阳能电池的J-V曲线图。
图5为以本发明实施例1、2所合成化合物BDD-1、BDD-2及Spiro-OMeTAD为空穴传输材料的钙钛矿太阳能电池的稳定性测试。
具体实施方式
下面结合具体实施实例对本发明做进一步说明,以使本领域技术人员更好地理解本发明,但本发明的保护范围并不局限于以下实施例,本发明的权利范围应以权利要求书阐述的为准。
实施例1:
空穴传输材料BDD-1的合成及其在钙钛矿太阳能电池中的应用:
Figure 260948DEST_PATH_IMAGE004
在干燥的反应容器中加入化合物1(0.382 g, 0.5 mmol)、4,4’-二甲氧基三苯胺-4’’-硼酸频哪醇酯(0.474 g, 1.1 mmol)、四(三苯基膦)钯(0.057 g, 0.05 mmol)、饱和碳酸钾水溶液(10 mL)和溶剂四氢呋喃(100 mL),在氮气保护条件下搅拌均匀,并升温加热至80℃反应16小时,反应结束后,将反应液冷却至室温,并用二氯甲烷溶液(150 mL)萃取分离反应液三遍,收集有机层,减压移去溶剂,收集物用硅胶层析柱分离提出,石油醚/二氯甲烷(1.5:1 vol/vol)为洗脱剂,真空干燥,得到黄色固体空穴传输材料BDD-1(0.378 g, 产率:62.3%)。1H NMR (400 MHz, Chloroform-d) δ 7.79 (d, J = 7.8 Hz, 2H), 7.49 (d, J= 8.7 Hz, 4H), 7.20 (d, J = 4.0 Hz 2H), 7.11 (d, J = 8.9 Hz, 8H), 6.94 (d, J= 8.7 Hz, 4H), 6.87 (d, J = 8.9 Hz, 8H), 3.83 (s, 12H), 3.34 (d, J = 7.0 Hz,4H), 1.84 – 1.74 (m, 2H), 1.48 – 1.23 (m, 16H), 0.92 (dt, J = 13.9, 7.2 Hz,12H).HR-MS: (ESI) m/z:C74H74N2O6S4, 计算值1214.4430;实测值1214.4403。
将上述合成的空穴传输材料BDD-1,应用于钙钛矿太阳能电池中,其制备过程为:
将FTO(氟掺杂的二氧化锡)导电玻璃切割成25 mm x 15 mm大小的玻璃基底,并使用锌粉和盐酸化学进行刻蚀。将刻蚀好的玻璃基底分别在去离子水、丙酮及乙醇中超声清洗15min,然后将其置于紫外臭氧机中处理15 min。利用喷雾热解法,将0. 2 M四异丙醇钛和2 M乙酰丙酮的异丙醇溶液喷涂在加热至500℃的FTO玻璃基底上,形成一层很薄的TiO2致密层;将150 mg/ml 纳米TiO2的乙醇溶液旋涂在TiO2致密层之上,控制转数为4000 rpm,旋涂时间为30 s,然后将其置于125℃的加热平板上烘干15 min,在将其加热至500 ℃烧结30分钟。以下操作步骤(除减压蒸发步骤外)均在充满氮气的手套箱中完成。将碘化铅(PbI2),甲脒基碘化铅(FAI),溴化铅(PbBr2),甲基溴化氨(MABr)(摩尔比为1.1: 1: 0.2: 0.2)在室温搅拌下,溶解在N, N-二甲基甲酰胺和二甲基亚砜(体积比为4:1)的混合溶剂中。利用旋涂仪,将制备好的75 μL钙钛矿溶液旋涂在TiO2薄膜上,控制转数为1000 rpm,旋涂时间为10 s,随后控制转数为4000 rpm,旋涂时间为30 s,在此过程中,将200 μL氯苯滴加到膜上,再将钙钛矿薄膜在100 ℃退火煅烧30分钟。随后,通过旋涂法将空穴传输材料BDD-1溶液(40 mg BDD-1溶解于1mL氯苯中)旋涂到钙钛矿薄膜表面,控制转数为4000 rpm,旋涂时间为30 s。最后将100 nm的Au通过真空蒸镀的方法沉积到器件膜上,并通过特定模具使Au的蒸镀面积为20 mm2
实施例2:
空穴传输材料BDD-2的合成及其在钙钛矿太阳能电池中的应用:
Figure DEST_PATH_IMAGE005
在干燥的反应容器中加入化合物1(0.300 g, 0.5 mmol)、4,4’-二甲氧基三苯胺-4’’-硼酸频哪醇酯(0.474 g, 1.1 mmol)、四(三苯基膦)钯(0.057 g, 0.05 mmol)、饱和碳酸钾水溶液(10 mL)和溶剂四氢呋喃(100 mL),在氮气保护条件下搅拌均匀,并升温加热至80℃反应16小时,反应结束后,将反应液冷却至室温,并用二氯甲烷溶液(150 mL)萃取分离反应液三遍,收集有机层,减压移去溶剂,收集物用硅胶层析柱分离提出,石油醚/二氯甲烷(1.5:1 vol/vol)为洗脱剂,真空干燥,得到黄色固体空穴传输材料BDD-2(0.337g, 产率:64.2%)。1H NMR (400 MHz, Chloroform-d) δ 7.51 – 7.44 (m, 4H), 7.22 – 7.13 (m,8H), 6.95 – 6.85 (m, 12H), 3.87 – 3.80 (m, 12H), 3.29 (t, J = 8.0 Hz, 4H),1.79 – 1.66 (m, 2H), 1.44 – 1.22 (m, 16H), 0.90 (q, J = 7.3 Hz, 12H).HR-MS:(ESI) m/z:C66H70N2O6S2, 计算值1050.4675;实测值1050.4635。
将上述合成的空穴传输材料BDD-2,应用于钙钛矿太阳能电池中,其制备过程为:
将FTO(氟掺杂的二氧化锡)导电玻璃切割成25 mm x 15 mm大小的玻璃基底,并使用锌粉和盐酸化学进行刻蚀。将刻蚀好的玻璃基底分别在去离子水、丙酮及乙醇中超声清洗15min,然后将其置于紫外臭氧机中处理15 min。利用喷雾热解法,将0. 2 M四异丙醇钛和2 M乙酰丙酮的异丙醇溶液喷涂在加热至500 ℃的FTO玻璃基底上,形成一层很薄的TiO2致密层;将150 mg/ml 纳米TiO2的乙醇溶液旋涂在TiO2致密层之上,控制转数为4000 rpm,旋涂时间为30 s,然后将其置于125℃的加热平板上烘干15 min,在将其加热至500 ℃烧结30分钟。以下操作步骤(除减压蒸发步骤外)均在充满氮气的手套箱中完成。将碘化铅(PbI2),甲脒基碘化铅(FAI),溴化铅(PbBr2),甲基溴化氨(MABr)(摩尔比为1.1: 1: 0.2: 0.2)在室温搅拌下,溶解在N, N-二甲基甲酰胺和二甲基亚砜(体积比为4:1)的混合溶剂中。利用旋涂仪,将制备好的75 μL钙钛矿溶液旋涂在TiO2薄膜上,控制转数为1000 rpm,旋涂时间为10 s,随后控制转数为4000 rpm,旋涂时间为30 s,在此过程中,将200 μL氯苯滴加到膜上,再将钙钛矿薄膜在100 ℃退火煅烧30分钟。随后,通过旋涂法将空穴传输材料BDD-2溶液(40 mg BDD-2溶解于1mL氯苯中)旋涂到钙钛矿薄膜表面,控制转数为4000 rpm,旋涂时间为30 s。最后将100 nm的Au通过真空蒸镀的方法沉积到器件膜上,并通过特定模具使Au的蒸镀面积为20 mm2
图1为本发明实例1、2合成的空穴传输材料BDD-1和BDD-2的分子结构。
图2为基于本发明实例1、2所合成的空穴传输材料BDD-1和BDD-2的空穴迁移率测试图。由图可知,空穴传输材料BDD-1具有更高的空穴迁移率。
图3为基于本发明实例1、2所合成的空穴传输材料BDD-1和BDD-2的导电性测试图。由图可知,空穴传输材料BDD-1具有更高的导电性。
图4为以本发明实施例1、2所合成化合物BDD-1和BDD-2为空穴传输材料的钙钛矿太阳能电池的J-V曲线图。由图可知,基于空穴传输材料BDD-1和BDD-2的钙钛矿太阳能电池分别获得了18.10%和16.29%,且空穴传输材料BDD-1的迟豫效应更小。
图5为以本发明实施例1、2所合成化合物BDD-1、BDD-2及Spiro-OMeTAD为空穴传输材料的钙钛矿太阳能电池的稳定性测试。由图可知,与空穴传输材料BDD-2及Spiro-OMeTAD相比,基于空穴传输材料BDD-1的钙钛矿太阳能电池具有更好的稳定性,500 h后仍然维持原始效率的95%继续工作。

Claims (7)

1.一种以苯并二噻吩二酮为核心的空穴传输材料,其特征在于:以苯并二噻吩二酮为核心结构,两端直接与4, 4-二甲氧基三苯胺连接,或选用不同的芳香类衍生物作为桥基基团,再与4, 4-二甲氧基三苯胺端基基团连接,构建的具有对称结构的空穴传输材料,所述空穴传输材料具有如下的化学结构通式I:
Figure 521740DEST_PATH_IMAGE001
式I中,R为五元杂环化合物、苯、噻二唑或三氮唑基团,具体为下列结构中的一种:
Figure 103462DEST_PATH_IMAGE002
其中,X为O、S或Se;
其中,R1为C1 ~ C8烷烃基的任意一种;
式I中,n为0~ 1。
2.根据权利要求1所述的一种以苯并二噻吩二酮为核心的空穴传输材料的合成方法,其特征在于:化合物1与4,4’-二甲氧基三苯胺-4’’-硼酸频哪醇酯发生碳碳偶联反应,得到以苯并二噻吩二酮为核心结构的空穴传输材料BDD,其步骤如下:
在干燥的反应容器中加入化合物1、4,4’-二甲氧基三苯胺-4’’-硼酸频哪醇酯、四(三苯基膦)钯、饱和碳酸钾水溶液和溶剂四氢呋喃,在氮气保护条件下搅拌均匀,并升温加热至80-100 ℃反应16-24小时,反应结束后,将反应液冷却至室温并用二氯甲烷溶液萃取分离反应液数遍,收集有机层,减压移去溶剂,将所得固体进行分离提纯,真空干燥,得到以苯并二噻吩二酮为核心结构的空穴传输材料BDD;
合成流程如下:
Figure 414357DEST_PATH_IMAGE003
上式为合成流程式。
3.根据权利要求2所述的一种以苯并二噻吩二酮为核心结构的空穴传输材料的合成方法,其特征在于:所述的化合物1:4,4’-二甲氧基三苯胺-4’’-硼酸频哪醇酯:四(三苯基膦)钯:碳酸钾的摩尔比为1: 2.2: 1: 10-40;反应浓度为0.002 ~ 0.015 mol/L。
4.根据权利要求3所述的一种以苯并二噻吩二酮为核心的空穴传输材料的合成方法的应用,其特征在于:将上述步骤合成的以苯并二噻吩二酮为核心结构的非掺杂空穴传输材料应用于钙钛矿太阳能电池中。
5.根据权利要求4所述的一种以苯并二噻吩二酮为核心的空穴传输材料的合成方法的应用,其特征在于:所述钙钛矿太阳能电池由透明导电基底、电子传输层、钙钛矿吸收层、空穴传输层和金属电极构成。
6.根据权利要求4所述的一种以苯并二噻吩二酮为核心的空穴传输材料的合成方法应用于钙钛矿太阳能电池的制造方法,其特征在于:包括以下步骤:
S1、将透明导电基底切割成固定尺寸,并进行刻蚀处理,将刻蚀好的导电基底分别在不同溶剂中超声清洗,随后将其进行紫外臭氧杀菌处理;
S2、在处理后的透明导电基底上通过喷雾热解法或旋涂法,制备电子传输层;
S3、将涂有电子传输层的导电基底移至手套箱中,通过旋涂法将钙钛矿前驱液旋涂到电子传输层上,形成钙钛矿吸收层;
S4、通过旋涂法将以苯并二噻吩二酮为核心结构的空穴传输材料溶液旋涂到钙钛矿吸收层之上,形成空穴传输层;
S5、通过真空蒸镀的方法将金属电极沉积到空穴传输层上。
7.根据权利要求4所述的一种以苯并二噻吩二酮为核心的空穴传输材料的合成方法应用于钙钛矿太阳能电池的制造方法,其特征在于:
所述透明导电基底为FTO导电玻璃、ITO导电玻璃或透明柔性导电基底中的一种;
所述的电子传输层为二氧化钛、二氧化锡、氧化锌或五氧化二铌等金属氧化物中的一种;
所述的钙钛矿吸收层为CH3NH3PbI3、CH3NH3PbI3-xBrx、CH3NH3PbI3-xClx(0≤x≤3)或全无机钙钛矿CsPbI3、CsPbBr3中的一种;
所述的空穴传输层是通过将30-60 mg空穴传输材料溶解于1 mL氯苯中,并利用旋涂法或真空蒸镀法将其沉积到钙钛矿吸收层之上;
所述金属电极为金、银或铜中的一种。
CN202010797480.4A 2020-08-10 2020-08-10 一种以苯并二噻吩二酮为核心的空穴传输材料与合成方法及在钙钛矿太阳能电池中的应用 Active CN111909169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010797480.4A CN111909169B (zh) 2020-08-10 2020-08-10 一种以苯并二噻吩二酮为核心的空穴传输材料与合成方法及在钙钛矿太阳能电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010797480.4A CN111909169B (zh) 2020-08-10 2020-08-10 一种以苯并二噻吩二酮为核心的空穴传输材料与合成方法及在钙钛矿太阳能电池中的应用

Publications (2)

Publication Number Publication Date
CN111909169A true CN111909169A (zh) 2020-11-10
CN111909169B CN111909169B (zh) 2022-08-30

Family

ID=73283641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010797480.4A Active CN111909169B (zh) 2020-08-10 2020-08-10 一种以苯并二噻吩二酮为核心的空穴传输材料与合成方法及在钙钛矿太阳能电池中的应用

Country Status (1)

Country Link
CN (1) CN111909169B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173923A (zh) * 2021-03-09 2021-07-27 嘉兴学院 一种自组装单分子层型非掺杂空穴传输材料及其合成方法和应用
CN113173936A (zh) * 2021-03-09 2021-07-27 嘉兴学院 一种基于稠环吸电子母核的非掺杂空穴传输材料及其合成方法和应用
CN113173930A (zh) * 2021-03-09 2021-07-27 嘉兴学院 一种基于苯并二噻吩二酮的非掺杂空穴传输材料及其合成方法和应用
CN113512073A (zh) * 2021-03-12 2021-10-19 云南大学 新型无参杂镍基金属有机配合物空穴传输材料的合成及其在钙钛矿型太阳能电池中的应用
JP7245400B1 (ja) * 2022-09-20 2023-03-24 株式会社奥本研究所 電子ドナー性化合物、および該化合物を用いた光電変換素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108250222A (zh) * 2018-01-30 2018-07-06 常州大学 基于苯并二噻吩-4,8-二酮的(D-A)n+1D型齐聚物光伏供体材料的合成及应用
CN110028520A (zh) * 2019-05-15 2019-07-19 杭州师范大学 一种光伏小分子给体及其制备方法与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108250222A (zh) * 2018-01-30 2018-07-06 常州大学 基于苯并二噻吩-4,8-二酮的(D-A)n+1D型齐聚物光伏供体材料的合成及应用
CN110028520A (zh) * 2019-05-15 2019-07-19 杭州师范大学 一种光伏小分子给体及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PING LI等: "Systematic Study of the Effect of Auxiliary Acceptors in D−A′−π−A Sensitizers Used on Dye-Sensitized Solar Cells", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173923A (zh) * 2021-03-09 2021-07-27 嘉兴学院 一种自组装单分子层型非掺杂空穴传输材料及其合成方法和应用
CN113173936A (zh) * 2021-03-09 2021-07-27 嘉兴学院 一种基于稠环吸电子母核的非掺杂空穴传输材料及其合成方法和应用
CN113173930A (zh) * 2021-03-09 2021-07-27 嘉兴学院 一种基于苯并二噻吩二酮的非掺杂空穴传输材料及其合成方法和应用
CN113173936B (zh) * 2021-03-09 2022-03-08 嘉兴学院 一种基于稠环吸电子母核的非掺杂空穴传输材料及其合成方法和应用
CN113173930B (zh) * 2021-03-09 2022-04-19 嘉兴学院 一种基于苯并二噻吩二酮的非掺杂空穴传输材料及其合成方法和应用
CN113173923B (zh) * 2021-03-09 2022-04-22 嘉兴学院 一种自组装单分子层型非掺杂空穴传输材料及其合成方法和应用
CN113512073A (zh) * 2021-03-12 2021-10-19 云南大学 新型无参杂镍基金属有机配合物空穴传输材料的合成及其在钙钛矿型太阳能电池中的应用
CN113512073B (zh) * 2021-03-12 2024-01-12 云南大学 无掺杂镍基金属有机配合物空穴传输材料的合成及其在钙钛矿型太阳能电池中的应用
JP7245400B1 (ja) * 2022-09-20 2023-03-24 株式会社奥本研究所 電子ドナー性化合物、および該化合物を用いた光電変換素子

Also Published As

Publication number Publication date
CN111909169B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN111909169B (zh) 一种以苯并二噻吩二酮为核心的空穴传输材料与合成方法及在钙钛矿太阳能电池中的应用
CN107359246B (zh) 一种甲胺铅碘钙钛矿太阳能电池的制作方法
CN107302055B (zh) 一种钙钛矿薄膜的制备方法
CN109776449B (zh) 一种以吩噻嗪二氧化物为核心结构的空穴传输材料及其合成方法和应用
CN108807694B (zh) 一种超低温稳定的平板钙钛矿太阳能电池及其制备方法
CN106025085A (zh) 基于Spiro-OMeTAD/CuXS复合空穴传输层的钙钛矿太阳能电池及其制备方法
CN109265410B (zh) 一种以吩噁嗪为核心结构的空穴传输材料及其合成方法和应用
CN106206951B (zh) 聚乙烯胺的新用途、钙钛矿薄膜、钙钛矿太阳能电池及其制备方法
EP3156408A1 (en) Organic-inorganic hybrid perovskite compound, method for preparing same, and solar cell comprising same
CN111333654B (zh) 一种以吡咯并吡咯为核心结构的有机小分子功能材料的制备方法及其用途
CN108232017B (zh) 一种低温高效的钙钛矿太阳能电池及其制备方法
Li et al. Tetra‐ammonium Zinc Phthalocyanine to Construct a Graded 2D–3D Perovskite Interface for Efficient and Stable Solar Cells
CN104036963A (zh) 全固态有机-无机杂化钙钛矿太阳电池的制备方法
CN111525038B (zh) 一种掺杂有多功能添加剂的钙钛矿太阳电池及其制备方法
CN108676003B (zh) 一种离子型苝二酰亚胺类电子传输材料及其合成方法和用途
CN110311012A (zh) 基于无机钙钛矿纳米晶界面层的全无机钙钛矿太阳能电池及其制备方法和应用
CN110246971A (zh) 基于前氧化空穴传输层的无机钙钛矿太阳能电池及制备方法
CN111138440B (zh) 一种以三蝶烯并三吡嗪为核的有机空穴传输材料的制备及应用
JP2016516013A (ja) 太陽電池における使用のためのiv族金属のアリールオキシ−フタロシアニン
CN109336852B (zh) 一种非富勒烯电子传输材料及其合成方法和用途
CN109851571B (zh) 一种共轭有机小分子界面修饰材料、制备方法及其构成的有机太阳电池
CN108123045A (zh) 一种无铅钙钛矿太阳能电池及其制备方法
CN110311042B (zh) 一种自组装单分子层和钙钛矿太阳能电池的制备方法及钙钛矿太阳能电池
CN113421970A (zh) 一种HCl改性二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN114725291B (zh) 一种高质量稳定的全无机钙钛矿太阳能电池的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant