CN111886343A - 使用闭合端dna(cedna)载体控制转基因的表达 - Google Patents

使用闭合端dna(cedna)载体控制转基因的表达 Download PDF

Info

Publication number
CN111886343A
CN111886343A CN201980019861.5A CN201980019861A CN111886343A CN 111886343 A CN111886343 A CN 111886343A CN 201980019861 A CN201980019861 A CN 201980019861A CN 111886343 A CN111886343 A CN 111886343A
Authority
CN
China
Prior art keywords
transgene
itrs
expression
itr
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980019861.5A
Other languages
English (en)
Inventor
D·A·科尔
M·G·斯坦顿
M·基奥科
M·D·安格里诺
R·M·科廷
P·萨马约亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Generational Biology Co
Generation Bio Co
Original Assignee
Generational Biology Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Generational Biology Co filed Critical Generational Biology Co
Publication of CN111886343A publication Critical patent/CN111886343A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0083Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the administration regime
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • A61K48/0041Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid the non-active part being polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14111Nucleopolyhedrovirus, e.g. autographa californica nucleopolyhedrovirus
    • C12N2710/14141Use of virus, viral particle or viral elements as a vector
    • C12N2710/14144Chimeric viral vector comprising heterologous viral elements for production of another viral vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/50Vectors for producing vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Dermatology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本文提供了包含闭合端DNA的方法和构建体(ceDNA载体),用于使转基因表达水平在预定水平或范围保持或维持预定义的时间,或增加细胞或受试者中的转基因表达水平,其中初次预致敏施用之后的一次或多次后续施用(例如加打或增强施用)能够调节(例如增加)转基因表达水平。提供了个性化定制个体一生中的基因疗法以便在满足个体需求的水平上表达转基因的方法,其通过初次预致敏施用(例如在0时)之后的一次或多次施用、递增地或以逐步方式调节ceDNA载体表达转基因的表达水平,借此能够将所述转基因的表达水平滴定到所期望的预定表达水平或所期望的表达水平范围。

Description

使用闭合端DNA(CEDNA)载体控制转基因的表达
相关申请的交叉引用
本申请依据35U.S.C.§119(e)要求美国临时申请第62/633,882号(2018年2月22日提交);第62/633,757号(2018年2月22日提交);第62/633,795号(2018年2月22日提交);和第62/746,762号(2018年10月17日提交)的权益,其各自的内容以全文引用的方式并入本文中。
本申请含有序列表,其已经以ASCII格式电子提交并在此通过全文引用的方式并入。2019年2月21日创建的所述ASCII拷贝命名为080170-091190-WOPT_SL.txt并且具有116,872个字节的大小。
技术领域
本发明涉及基因疗法领域,包括用于控制转基因或经分离的多核苷酸在受试者或细胞中表达的无衣壳载体。本文所述的技术涉及体内利用闭合端(ceDNA)载体控制转基因从无衣壳DNA载体中表达的方法,其中在一次或多次后续施用(例如增强施用或加打)的情况下,能够使表达水平在所期望的水平维持预定的时间或提高。
背景技术
基因疗法旨在改善患有因基因表达谱畸变引起的基因突变或获得性疾病的患者的临床结局。基因疗法包括治疗或预防由能够引起病症、疾病、恶性疾病等的缺陷基因或异常调控或表达(例如表达不足或过度表达)所致的医学病状。举例来说,由缺陷基因引起的疾病或病症可以通过向患者递送矫正性遗传物质或者通过改变或静默缺陷基因或递送治疗抗体、从而使得例如患者内的遗传物质产生治疗性表达来治疗、预防或改善。
基因疗法的基础是向转录盒提供活性基因产物(有时称为转基因),例如能够产生正向功能获得效应、负向功能丧失效应或另一结果的活性基因产物。基因疗法也可以用于治疗由其它因素引起的疾病或恶性疾病。人类单基因病症可以通过将正常基因递送给靶细胞并表达来治疗。矫正基因在患者靶细胞中的递送和表达能够通过多种方法进行,包括使用工程化病毒和病毒基因递送载体。在许多可用的病毒来源载体(例如重组逆转录病毒、重组慢病毒、重组腺病毒等)当中,重组腺相关病毒(rAAV)作为基因疗法中的多用途载体越来越受到欢迎。
腺相关病毒(AAV)属于细小病毒科,并且更具体地说,组成依赖病毒属。源自于AAV的载体(即重组AAV(rAVV)或AAV载体)对于递送遗传物质具有吸引力,因为(i)它们能够感染(转导)多种多样的非分裂和分裂细胞类型,包括肌细胞和神经元;(ii)它们缺乏病毒结构基因,从而减弱了宿主细胞对病毒感染的应答,例如干扰素介导的应答;(iii)野生型病毒被认为在人类中是非致病性的;(iv)与能够整合到宿主细胞基因组中的野生型AAV相比,复制缺陷型AAV载体缺乏rep基因,并且通常作为附加体存留,从而限制了插入诱变或基因毒性的风险;以及(v)与其它载体系统相比,AAV载体通常被认为是相对较弱的免疫原,因此不会触发明显的免疫应答(参见ii),从而获得了载体DNA的持久性以及治疗性转基因的潜在长期表达。
然而,使用AAV颗粒作为基因递送载体存在几个主要缺陷。与rAAV相关的一个主要缺点是其对异源DNA的约4.5kb的病毒封装容量有限(Dong等人,1996;Athanasopoulos等人,2004;Lai等,2010),因此AAV载体的使用已限于小于150,000Da蛋白质编码容量。第二个缺点是,由于人群中野生型AAV感染盛行,所以必须筛查rAAV基因疗法候选者中从患者消除该载体的中和抗体的存在。第三个缺点与衣壳的免疫原性有关,这种免疫原性阻止了对未从初始治疗中排除的患者进行再施用。患者的免疫系统可以对有效充当“强化”注射的该载体作出应答,刺激免疫系统产生高滴度的抗AAV抗体,从而杜绝了进一步治疗。最近的一些报告指出在高剂量情况下对免疫原性的顾虑。另一个值得注意的缺点是,鉴于在异源基因表达之前必须将单链AAV DNA转化为双链DNA,所以AAV介导的基因表达的启动相对较慢。
另外,通过引入含有AAV基因组、rep基因和cap基因的质粒,产生有衣壳的常规AAV病毒体(Grimm等人,1998)。然而,发现这种衣壳化AAV病毒载体不能有效地转导某些细胞和组织类型,并且衣壳还诱导免疫应答。
另外,用于递送转基因的传统基因疗法载体(例如腺相关病毒(AAV)、腺病毒、慢病毒载体等)部分地由于患者对病毒蛋白的免疫应答而典型地局限于单次施用载体于患者。另外,为了使转基因持续长期表达,典型地需要在初次施用时进行高效价施用,这会导致有害副作用。因此,用于基因疗法的传统病毒载体由于缺乏持续的长期转基因表达而缺乏效用。另外,适于此类病毒载体递送的转基因遗传物质的范围局限于病毒衣壳蛋白的病毒封装容量(例如AAV为约4.5kb),由此排除较大转基因的递送用于疗法。就基因疗法用的常规腺相关病毒(AAV)载体来说,它们的用途由于以下原因而受到限制:单次施用于患者(由于患者的免疫应答)、适于AAV载体递送的转基因遗传物质的范围因最小病毒封装容量(约4.5kb)而受限,以及AAV介导的基因表达缓慢。
另外,已有许多报道提出了关于使用过高的病毒载体剂量的问题。大部分病毒载体还受困于关于AAV所产生的免疫原性问题。
因此,本领域中对允许将多次剂量的载体用于基因疗法的技术存在着需求。另外,本领域中需要控制基因疗法载体的基因表达、同时脱靶效应最小的方法,并且对于生产和/或表达特性改进的可控重组DNA载体存在着未满足的重大需求。另外,如熟练的医师将了解,希望能够滴定转基因的表达/剂量,以便基于受试者的特定症状集合和/或疾病的严重程度来定制基因疗法治疗,并且进一步使副作用或毒性最小化。
发明内容
本文所述的发明是具有共价闭合端的无衣壳DNA载体(在本文中称为“闭合端DNA载体”或“ceDNA载体”),其用于控制转基因在细胞中的表达,例如为了治疗疾病。具体地说,本文所述的技术涉及无衣壳闭合端DNA(ceDNA)载体,其用于控制转基因的表达,包括(但不限于)以下中的任一种:转基因的持续表达、转基因的长期可控表达、转基因的剂量依赖性和/或可滴定表达,以及使用本文所述的载体重复给予转基因。因此,本文公开的方法能够个性化定制个体一生中的基因疗法,以使转基因按照满足个体需求的水平表达,这是通过使转基因表达水平在预定水平维持预定的时间或替代地以剂量依赖性方式增强转基因的表达、通过在初次预致敏施用之后进行一次或多次施用,由此基于ceDNA载体在加打施用时的浓度将转基因表达水平控制在所期望的表达水平或所期望的表达水平范围,从而使转基因在细胞或受试者中的表达出现可控且特定的增强。
因此,在一些实施方案中,如本文所公开的ceDNA载体能够再施用(在本文中也称为“加打”或“增强”施用),以使转基因表达水平在预定水平持续预定的时间,或使转基因的表达水平增加而高于之前的表达水平,之前的表达水平是在第一次或之前的ceDNA载体施用时达成,其中第二次施用或增强施用因对影响转基因表达的载体本身不产生免疫应答而不产生妨碍转基因表达的免疫反应,或其中免疫反应小于包含病毒蛋白的病毒载体(包括(但不限于)包含衣壳的病毒载体,例如细小病毒或慢病毒)的再施用。
不希望受理论限制,研究表明使用常规AAV病毒载体的长期转基因表达随时间衰退。确保使用常规AAV载体达成长期转基因表达的一种方式在传统上是在初次施用时增加所递送的AAV载体的效价和剂量。然而,已知过高的AAV载体效价或剂量会导致多种副作用。另外,如上文所论述,AAV病毒载体的再施用在传统上因免疫应答而不可行。规避AAV载体再施用引起免疫应答的方式典型地需要再施用AAV载体,所述AAV载体的衣壳构型不同于任何此前施用时所施用的AAV载体。然而,此类策略因诱导针对AAV载体的免疫应答而仍然会对受试者带来显著风险并且潜在地带来有害影响。
本文中,本发明提供了一种用于控制转基因表达的方法,包括使用闭合端DNA(ceDNA)载体的长期表达。本文表明,为了增加转基因表达水平,能够滴定ceDNA载体,例如通过重复或再施用ceDNA载体。另外,能够长期维持转基因表达水平,并且如果观察到表达水平出现任何下降,则能够利用ceDNA载体的再施用来维持所期望水平或甚至增加转基因表达水平(如果待治疗的受试者和/或疾病或病症期望这样)。
因此,本文提供了施用ceDNA载体以便维持和/或增加来自ceDNA载体的转基因在细胞或受试者中的表达水平的方法,且其中一次或多次后续施用(例如加打或增强施用)能够维持或增加表达水平。在递送ceDNA的转基因表达因任何原因而减少的情况下,ceDNA载体的加打能够建立或维持转基因在所期望水平的所期望表达。本文还提供了个性化定制基因疗法的方法,使得ceDNA载体所表达的转基因的表达水平在初次预致敏施用(例如在0时)之后的一次或多次施用的情况下能够递增地或逐步地增加,由此根据受试者的需求,将转基因的表达水平定制(例如滴定)到所期望的表达水平或在所期望的表达水平范围内。
因此,在一些实施方案中,本文公开的ceDNA载体和方法能够用于滴定或实现ceDNA载体对转基因的表达水平的增加,并且其中转基因的表达水平能够在一次或多次后续施用的情况下以剂量依赖性方式滴定(例如剂量依赖性加打或增强施用)。因此,本文公开的方法能够个性化定制个体一生中的基因疗法,以使转基因按照满足个体需求的水平表达,这是通过使转基因表达水平维持在预定水平或替代地以剂量依赖性方式增强转基因的表达、通过在初次预致敏施用(例如在0时)之后进行一次或多次施用,由此基于ceDNA载体在加打施用时的浓度将转基因表达水平控制在所期望的表达水平或所期望的表达水平范围,从而使转基因在细胞或受试者中的表达出现可控且特定的增强。
因此,在一些实施方案中,如本文所公开的ceDNA载体能够再施用(在本文中也称为“加打”或“增强”施用),以使转基因表达水平在预定水平持续预定的时间,或增加转基因表达水平而高于之前的表达水平,之前的表达水平是在第一次或之前的ceDNA载体施用时达成。
相应地,本文所述技术的一个方面涉及ceDNA载体在控制转基因表达的方法(例如调节转基因表达水平或控制转基因表达水平增加或使转基因在细胞或受试者中表达水平具有剂量依赖性的方法)中的用途,其中ceDNA载体包含至少一个异源核苷酸序列(例如转基因),所述异源核苷酸序列可操作地连接到启动子且位于两个反向末端重复序列之间,其中ITR序列可以是不对称或对称或基本对称的,这些术语如本文所定义,其中至少一个ITR包含功能末端解析位点和Rep结合位点,并且任选地,所述异源核酸序列编码转基因,且其中载体不存在于病毒衣壳中。
在一些实施方案中,如本文所述的ceDNA载体是由具有共价闭合端的互补DNA的连续链(线性、连续和非衣壳化结构)形成的无衣壳线性双链DNA分子,其包含两个与转基因侧接的反向末端重复(ITR)序列,所述转基因可操作地连接到启动子或如本文所述的其它调控开关。5'ITR和3'ITR相对于彼此能够具有相同的对称三维组构(即,对称或基本对称的),或替代地,5'ITR和3'ITR相对于彼此能够具有不同的三维组构(即,不对称ITR),这些术语如本文所定义。另外,ITR能够来自相同或不同的血清型。在一些实施方案中,ceDNA载体能够包含ITR序列,所述ITR序列具有对称的三维空间组构,以便其结构在几何空间中呈相同形状,或在3D空间中具有相同的A、C-C'和B-B'环(即,它们是相同的或相对于彼此呈镜像)。在一些实施方案中,一个ITR可以来自一种AAV血清型,而另一个ITR可以来自不同的AAV血清型。
相应地,本文所述技术的一些方面涉及一种用于控制转基因表达的ceDNA载体,包括(但不限于)转基因的持续或长期表达、转基因的剂量依赖性或可滴定表达,或转基因的重复给予,其中ceDNA载体包含选自以下任一种的ITR序列:(i)至少一个WT ITR和至少一个经修饰的AAV反向末端重复序列(ITR)(例如不对称的经修饰ITR);(ii)两个经修饰的ITR,其中mod-ITR对相对于彼此具有不同的三维空间组构(例如不对称的经修饰ITR);或(iii)对称或基本对称的WT-WT ITR对,其中每个WT-ITR具有相同的三维空间组构;或(iv)对称或基本对称的经修饰ITR对,其中每个mod-ITR具有相同的三维空间组构。本文公开的ceDNA载体可以在真核细胞中产生,因此在昆虫细胞中没有原核DNA修饰和细菌内毒素污染。
在一些实施方案中,如本文所述的方法和ceDNA载体允许个性化定制基因药物方案进行,即,通过以浓度依赖性方式加打施用对转基因表达水平的增加进行滴定。设想转基因表达的增强能够利用加打施用、以剂量依赖性逐步方式达成,从而通过每次加打施用而使转基因表达水平增加定义或一定的量。由此能够以剂量依赖性方式控制转基因表达水平的增加,并且能够递增地进行。相应地,为了使转基因表达水平每次增加定义的量,以达成所期望的水平或所期望的表达水平范围(高于之前施用或此加打施用之前所达成的表达水平),能够施用1、2、3、4、5或6次或超过6次加打的定义量的ceDNA。
相应地,在一些实施方案中,一种调控转基因在宿主中表达的方法包含:(i)向宿主施用足量的如本文所公开的ceDNA载体以表达可测量水平的转基因,所述ceDNA载体包含含有至少一个转基因的核酸盒,所述转基因可操作地连接到启动子且介于侧接的反向末端重复序列(ITR)之间,其中所述转基因编码所期望的蛋白质;和(ii)施用至少第二剂量的ceDNA载体,所述ceDNA载体包含至少一个转基因或经修饰的转基因,所述转基因介于侧接的ITR之间,以(i)使所期望的蛋白质的表达在预定水平持续预定的时间或(ii)将所期望的蛋白质的表达调节到预定水平,其中ceDNA载体的第二次施用不产生妨碍所期望的蛋白质表达的免疫反应。
本文所述技术的一个方面涉及ceDNA载体在维持转基因于细胞中的所期望表达水平的方法中的用途,方法包含:(a)在第一时间点向细胞施用第一剂量的ceDNA载体,以达成ceDNA载体对转基因的表达;以及和(b)在第二时间点向细胞施用另一剂量的相同或不同ceDNA载体,以使转基因的表达水平增加到所期望水平,或补偿初次ceDNA载体施用之后的转基因表达水平的任何降低。应了解,转基因表达的此类递增式增加容许将受试者的剂量滴定到此类受试者的所期望水平。在一些实施方案中,在维持转基因于细胞中的表达水平的方法中使用ceDNA载体使转基因在所期望的表达水平表达至少42天。在一些实施方案中,ceDNA载体按照所期望的表达水平表达转基因至少84天。在一些实施方案中,ceDNA载体按照所期望的表达水平表达转基因至少132天。
在一些实施方案中,本文所述方法(例如用于维持转基因在细胞中的表达和/或用于治疗患有疾病的受试者的方法)中使用的ceDNA载体与药学上可接受的载剂和/或赋形剂组合施用。在一些实施方案中,ceDNA载体在第二时间点施用,即在第一时间点之后的至少30天或至少60天,或60到90天,或90到120天,或约3到6个月,或6到12个月,或1到2年,或2到3年施用。
除加打施用ceDNA载体以仅仅增加转基因表达水平(如果表达水平已随时间降低)(例如使转基因表达持续处于所期望的预定水平)之外,在一些实施方案中,再施用ceDNA载体的方法和组合物能够使转基因水平以剂量依赖性方式增加,即,加打施用定义量的ceDNA载体能够使转基因的表达水平实现定义的增加。换句话说且使用任意单位(仅出于说明性目的),加打施用1个单位剂量的ceDNA将使转基因表达水平相对于之前水平达成10%增幅,且2个单位剂量的cDNA载体将使转基因水平相对于之前水平达成20%增幅,并且0.5个单位剂量的ceDNA将使转基因表达水平相对于之前水平达成5%增幅。
相应地,在一个实施例中,如本文所公开的用于控制转基因表达的ceDNA载体能够用于以可控方式增加转基因在细胞或受试者中的表达水平。举例来说,ceDNA载体的一次或多次后续施用(例如加打或增强施用)能够增加转基因的表达水平。
本文中的所述技术的另一方面涉及一种用于增加转基因于细胞中的表达(例如增加转基因的表达水平而高于之前ceDNA施用所达成的之前表达水平)的方法,所述方法包含:(a)在第一时间点向细胞施用预致敏剂量的ceDNA载体以达成转基因的表达;和(b)在第二时间点向细胞施用一定剂量的ceDNA载体,以使转基因表达水平相较于在第一时间点施用ceDNA载体之后所达成的转基因表达水平增加,或增加转基因表达水平以达成所期望的表达水平。
在本文所述的所有方面中,ceDNA载体在任何时间点(例如第一、第二、第三时间点等)施用,与药学上可接受的载剂组合施用,并且能任选地与载剂(例如颗粒、脂质体或脂质纳米颗粒(LNP))一起施用。在本文的所有方面中,在第一、第二或任何后续时间点中的任一时间点施用的ceDNA载体与药学上可接受的载剂组合施用。
在本文所述的所有方面中,如本文所述用于控制转基因表达的方法(例如用于维持转基因表达或用于控制转基因表达增加或用于转基因剂量依赖性表达的方法,和/或用于治疗患有疾病的受试者的方法)中使用的ceDNA载体,在第一、第二或任何后续时间点中的任一时间点所施用的ceDNA载体,与药学上可接受的载剂和/或赋形剂组合施用。
在一些实施方案中,在施用的ceDNA(例如在第二或任何后续时间点)超过一次施用的情况下,第二时间点或任何后续时间点是在第一时间点或此前时间点施用ceDNA载体之后的至少10天,或10到30天,或至少30天,或30到60天,至少60天,或60到90天,或90到120天,或约3到6个月,或6到12个月,或至少一年。
在一些实施方案中,第一、第二或任何后续时间点施用的ceDNA载体是包含相同转基因或经修饰的转基因的相同ceDNA载体,并且在替代性实施方案中,第一、第二或任何后续时间点施用的ceDNA载体是包含相同转基因或经修饰的转基因的不同ceDNA载体,例如具有不同启动子的不同ceDNA载体,所述不同启动子可操作地连接到相同转基因或经修饰的转基因。在一些实施方案中,启动子是诱导型或可抑制型启动子。转基因还能够是调控开关的一部分,如本文所公开。
在一些实施方案中,本文所述用于控制转基因表达的方法中使用的ceDNA载体,在第一、第二或任何后续时间点施用的ceDNA载体是包含相同转基因或经修饰的转基因的相同ceDNA载体。在替代性实施方案中,第一、第二或任何后续时间点施用的ceDNA载体是包含相同转基因或经修饰的转基因的不同ceDNA载体,例如(但不限于)其中不同ceDNA载体具有可操作地连接到相同转基因或经修饰的转基因或不同转基因的不同启动子。仅出于说明目的,第一时间点施用的ceDNA载体能够包含转基因和第一启动子或调控开关,且第二或后续时间点施用的ceDNA能够包含相同或经修饰的转基因和第二启动子或调控开关,其中第一和第二启动子(或调控开关)是不同启动子或不同调控开关。示例性调控开关在本文中定义。
在一些实施方案中,ceDNA载体在如本文所述的控制转基因表达的方法(例如用于维持转基因表达或用于控制转基因表达的增加或用于转基因的剂量依赖性表达的方法,和/或用于治疗患有疾病的受试者的方法)中的用途能够任选地包含在第二时间点之后的一个或多个时间点向细胞施用另一剂量的ceDNA载体的步骤,以使转基因表达水平相较于在第二时间点或此前时间点施用ceDNA载体之后所达成的转基因表达水平增加,或增加转基因表达水平以维持所期望的的持续表达水平,其中在第二时间点之后的一个或多个时间点施用的组合物包含如本文所述的ceDNA载体。
在一些实施方案中,适用于本文公开的用于控制转基因表达的方法中的ceDNA载体允许转基因以治疗有效量表达。
在一些实施方案中,增加在第二时间点或任何后续时间点施用的ceDNA载体的预定剂量使转基因在细胞和/或受试者中的表达水平增加。在一些实施方案中,利用剂量依赖关系来确定在第二时间点或后续时间点施用于细胞或受试者的ceDNA载体的预定剂量以便ceDNA载体使转基因在细胞或受试者中达成所期望的表达水平。
在一些实施方案中,在第二或任何后续时间点施用的ceDNA载体的预定剂量介于在第一时间点施用的ceDNA载体的剂量的2倍与10倍之间。在一些实施方案中,在第二或任何后续时间点施用的ceDNA载体的预定剂量是使转基因表达相较于在第一时间点或此前时间点施用ceDNA之后所达成的转基因表达增加至少3倍或至少5倍或至少10倍或介于2到15倍或介于2到20倍或超过20倍的量。在一些实施方案中,在第二时间点之后的一个或多个时间点施用组合物之后所达成的转基因的期望表达水平是转基因的治疗有效量。
本发明的方面涉及产生ceDNA载体的方法,所述ceDNA载体用于如本文所述控制转基因表达的方法中,例如维持转基因表达的方法,或控制转基因表达的增加的方法,或转基因的剂量依赖性表达的方法,和/或治疗患有疾病的受试者的方法。在所有方面中,用于控制转基因表达的无衣壳非病毒DNA载体(ceDNA载体)获自包含多核苷酸表达构建体模板的质粒(在本文中称为“ceDNA质粒”),所述模板按照此次序包含:第一5'反向末端重复序列(例如AAV ITR);异源核酸序列;和3'ITR(例如AAV ITR),其中5'ITR和3'ITR相对于彼此可以是不对称的,或对称的(例如WT-ITR或经修饰的对称ITR),如本文所定义。
适用于如本文所述控制转基因表达的方法(例如维持转基因表达水平的方法,和/或控制转基因表达水平增加的方法,或剂量依赖性转基因表达水平的方法)中的ceDNA载体可通过许多方式获得,所属领域的普通技术人员在阅读本公开之后会知道这些方式。举例来说,用于产生本发明的ceDNA载体的多核苷酸表达构建体模板可以是ceDNA质粒(参见例如图4B)、ceDNA杆粒,和/或ceDNA杆状病毒。在一个实施方案中,ceDNA质粒包含可操作地定位于ITR之间的限制性克隆位点(例如SEQ ID NO:123和/或124),其中能够插入包含例如启动子的表达盒,所述启动子可操作地连接到转基因,例如报道基因和/或治疗基因。在一些实施方案中,ceDNA载体是由多核苷酸模板(例如ceDNA质粒、ceDNA杆粒、ceDNA杆状病毒)产生,所述多核苷酸模板含有对称或不对称的ITR(经修饰的ITR或WT ITR)。
在允许的宿主细胞中,具有至少两个ITR的多核苷酸模板在例如Rep存在下复制而产生ceDNA载体。ceDNA载体产生经历两个步骤:第一,通过Rep蛋白从模板主链(例如ceDNA质粒、ceDNA杆粒、ceDNA杆状病毒基因组等)中切除(“拯救”)模板;和第二,Rep介导所切除的ceDNA载体复制。各种AAV血清型的Rep蛋白和Rep结合位点是本领域普通技术人员众所周知的。普通技术人员了解基于至少一种功能性ITR从血清型中选择结合并复制核酸序列的Rep蛋白。例如,如果有复制能力的ITR来自AAV血清型2,那么相应的Rep将来自与该血清型一起工作的AAV血清型,例如AAV2ITR与AAV2或AAV4 Rep一起,但不是AAV5 Rep,它不行。复制后,共价闭合端ceDNA载体继续在许可细胞中蓄积,并且ceDNA载体在Rep蛋白存在下在标准复制条件下优选随时间足够稳定,例如,蓄积达至少1pg/细胞、优选至少2pg/细胞、优选至少3pg/细胞、更优选至少4pg/细胞、更加优选至少5pg/细胞的量。
相应地,本发明的一个方面涉及一种产生ceDNA载体的方法,所述载体适用于如本文所述控制转基因表达的方法中,所述方法包含以下步骤:a)在诱导宿主细胞内产生ceDNA载体的有效条件和充足时间下,在Rep蛋白存在下,培育含有缺乏病毒衣壳编码序列的多核苷酸表达构建体模板(例如ceDNA质粒、ceDNA杆粒,和/或ceDNA杆状病毒)的宿主细胞群(例如昆虫细胞),且其中宿主细胞不包含病毒衣壳编码序列;和b)从宿主细胞中收获且分离出ceDNA载体。Rep蛋白的存在诱导具有修饰ITR的载体多核苷酸复制,从而在宿主细胞中产生ceDNA载体。但是,没有表达病毒颗粒(例如AAV病毒体)。因此,没有病毒体所施加的大小限制。
从宿主细胞中分离出的适用于如本文所述控制转基因表达的ceDNA载体的存在能够如下确认:使用对ceDNA载体具有单个识别位点的限制酶消化从宿主细胞中分离出的DNA,并且在变性和非变性凝胶上分析所消化的DNA物质以确认线性和连续DNA的特征色带相较于线性和非连续DNA的存在。
在本文提供的这个方面和所有其它方面的另一个实施方案中,以可控方式从ceDNA载体中表达的转基因是治疗转基因,例如所关注的蛋白质,包括(但不限于)受体、毒素、激素、酶,或细胞表面蛋白质。在本文提供的这个方面和所有其它方面的另一个实施方案中,所关注的蛋白质是受体。在本文提供的这个方面和所有其它方面的另一个实施方案中,所关注的蛋白质是酶。所靶向的示例性基因和所关注的蛋白质详细地描述于本文的使用方法和治疗方法章节中。
在一些实施方案中,本申请可以根据以下段落中的任一段来限定:
一种调控转基因在受试者中的表达的方法包含:(a)向受试者施用足量的非病毒无衣壳闭合端DNA(ceDNA)载体以表达可测量水平的转基因,所述载体包含含有至少一个转基因的核酸盒,所述转基因可操作地连接到介于侧接的反向末端重复序列(ITR)之间的启动子,其中所述转基因编码所期望的蛋白质以治疗疾病;和(b)通过向所述受试者施用至少第二剂量的所述ceDNA载体来滴定所述ceDNA载体以使得所期望的蛋白质的转基因表达在预定水平维持预定的时间或使所期望的蛋白质的转基因表达增加到预定水平,所述ceDNA载体包含至少一个介于侧接的ITR之间的转基因。
在一些实施方案中,在步骤(a)之后的预定时间,例如步骤(a)之后的至少30天或至少60天,或60到90天之间,或长于90天,评估受试者以确定滴定剂量。举例来说,在一些实施方案中,在步骤(a)之后,评估受试者以确定受试者的疾病状态,和/或ceDNA载体在受试者中表达所期望的蛋白质的水平。在一些实施方案中,评估疾病状态是评估受试者的疾病的至少一种症状。在一些实施方案中,如果受试者的疾病状态已保持在稳定状态或尚未改善,或在受试者的疾病状态相较于例如第一次施用ceDNA载体时或步骤(a)之后的任何时间的疾病状态已经下降的情况下,根据步骤(b)向受试者施用第二剂量的ceDNA载体。任何指定疾病的疾病状态能够由所属领域中的医师或熟练技术人员确定,并且包括评估疾病的一种或多种临床症状和/或生物标志物,包括蛋白质生物标志物、miRNA和mRNA生物标志物等等。在一些实施方案中,如果受试者中的转基因表达水平相对于预定水平已经下降或相对于治疗有效量已经下降,则根据步骤(b)向受试者施用第二剂量的ceDNA载体。在一些实施方案中,通过在获自受试者的生物样品中测量ceDNA载体表达转基因的水平(例如测量蛋白质水平或mRNA水平)来测定转基因表达水平。在一些实施方案中,生物样品是选自血液样品、血浆、滑液、CSF、唾液或组织活检样品。在其中ceDNA载体表达编码所期望的蛋白质的转基因或治疗基因和报道蛋白的一些实施方案中,使用所属领域的一般技术人员通常已知的方法、通过测量ceDNA载体在体内表达的所期望报道蛋白能够测定转基因水平。在一些实施方案中,滴定ceDNA载体是测定ceDNA载体表达转基因的水平和向受试者施用第二剂量的ceDNA载体以将转基因表达调整或调节到预定的期望水平。
本文所述技术的另一方面涉及一种调控转基因在受试者中的表达的方法,包含:(a)向受试者施用足量的非病毒无衣壳闭合端DNA(ceDNA)载体以表达可测量水平的转基因,所述载体包含含有至少一个转基因的核酸盒,所述转基因可操作地连接到介于侧接的反向末端重复序列(ITR)之间的启动子,其中转基因编码所期望的蛋白质;和(b)向受试者施用至少第二剂量的ceDNA载体,所述ceDNA载体包含介于侧接的ITR之间的至少一个转基因或经修饰的转基因,以(i)使所期望的蛋白质在预定水平持续表达预定的时间或(ii)将所期望的蛋白质的表达调节到预定水平。
在本文的所有方面中,向受试者第二次施用ceDNA载体不产生足以妨碍所期望的蛋白质达成预定表达水平的免疫反应。
在一些实施方案中,第一次施用或第二次施用或任何后续的施用时,将ceDNA载体与药学上可接受的载剂组合施用于受试者。
在一些实施方案中,ceDNA载体的第二次施用是在转基因表达水平相对于所期望的预定水平降低时,例如在一些实施方案中,第二次施用是在第一次施用之后的至少约30天或至少约60天或至少约90天。当向受试者施用超过两次剂量的ceDNA载体时,在转基因表达水平相对于此前施用所达成的期望预定水平降低或下降时施用每次加打剂量(例如第3次、第4次、第5次、第6次和后续加打剂量),例如在一些实施方案中,每次再施用是在此前ceDNA载体施用之后的至少约30天或至少约60天或至少约90天。
在一些实施方案中,方法包含向受试者施用至少三次或更多次施用ceDNA载体,且在施用ceDNA载体的至少三次施用的情况下,无一次施用针对ceDNA载体产生妨碍所期望的蛋白质达成预定表达水平的免疫应答。
在一些实施方案中,将ceDNA载体定期(例如每2个月、每3个月、每6个月、每12个月、每18个月等等)施用于受试者。
在一些实施方案中,第二次施用是增加所期望的蛋白质的表达水平,例如延长所期望的蛋白质在预定表达水平的表达。
在本文的所有方面中,转基因编码治疗蛋白并且转基因的期望表达水平是治疗蛋白的治疗有效量。在一些实施方案中,转基因是选自以下任一种的基因药物:核酸、抑制剂、肽或多肽、抗体或抗体片段、融合蛋白、抗原、拮抗剂、激动剂、RNAi分子等。在一些实施方案中,所期望的蛋白质或治疗蛋白是抑制蛋白质,例如(但不限于)抗体或抗原结合片段或融合蛋白。在一些实施方案中,所期望的蛋白质或治疗蛋白替换缺陷蛋白质或不被表达或低水平表达的蛋白质。在一些实施方案中,转基因处于调控开关的控制下,如本文所定义。
在一些实施方案中,ceDNA载体包含启动子,所述启动子是诱导型或可抑制型启动子。
在一些实施方案中,第一、第二或任何后续时间点施用的ceDNA载体是包含相同转基因或经修饰的转基因的相同类型的ceDNA载体。例如,换句话说,将相同的ceDNA载体多次施用于受试者并且类似于将相同血清型的病毒载体多次施用于受试者。
在一些实施方案中,相较于在较早时间点或较早施用时施用的ceDNA载体中的启动子,随后在第二次施用或任何后续施用(例如加打施用)时施用于受试者的ceDNA载体具有可操作地连接到相同转基因或经修饰的转基因的不同启动子。
在一些实施方案中,第一次施用或随后第二次施用或任何后续施用时施用的ceDNA载体包含两个反向末端重复序列(ITR),所述反向末端重复序列是AAV ITR并且可以是例如AAV-2,或选自表1的任何ITR,或AAV1、AAV3、AAV4、AAV5、AAV 5、AAV7、AAV8、AAV9、AAV10、AAV 11、AAV12、AAVrh8、AAVrh10、AAV-DJ和AAV-DJ8。在一些实施方案中,至少一个ITR包含功能末端解析位点和Rep结合位点。在一些实施方案中,第一次施用或随后第二次施用或任何后续施用时所施用的ceDNA载体中的侧接ITR是对称或基本对称或不对称的,如本文所定义。在一些实施方案中,ITR中的一个或两个是野生型,或其中两个ITR均是野生型。在一些实施方案中,侧接ITR来自不同病毒血清型。在其中侧接ITR均是野生型的一些实施方案中,它们能够选自如表1所示的任何AAV血清型。
在一些实施方案中,第一次施用或随后第二次施用或任何后续施用时的ceDNA载体中的侧接ITR能够包含选自本文表2、4A、4B或5中的序列的序列。
在一些实施方案中,在第一次施用或随后第二次施用或任何后续施用时所施用的ceDNA载体中的至少一个ITR是由野生型AAV ITR序列通过影响ITR的整体三维构象的缺失、添加或取代改变而成。在一些实施方案中,第一次施用或随后第二次施用或任何后续施用时所施用的ceDNA载体中的一个或两个ITR衍生自选自以下的AAV血清型:AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11和AAV12。
在一些实施方案中,第一次施用或随后第二次施用或任何后续施用时所施用的ceDNA载体中的一个或两个ITR是合成的。在一些实施方案中,ITR中的一个或两个不是野生型ITR,或其中两个ITR均不是野生型。
在一些实施方案中,第一次施用或随后第二次施用或任何后续施用时所施用的ceDNA载体中的一个或两个ITR是通过在选自A、A'、B、B'、C、C'、D和D'的至少一个ITR区域中进行缺失、插入和/或取代来修饰。在一些实施方案中,缺失、插入和/或取代使得通常由A、A'、B、B'、C或C'区域形成的茎-环结构的全部或一部分发生缺失。在一些实施方案中,所述ITR中的一个或两个是通过缺失、插入和/或取代而经修饰,所述缺失、插入和/或取代使得通常由B和B'区域形成的茎-环结构的全部或一部分发生缺失。在一些实施方案中,所述ITR中的一个或两个是通过缺失、插入和/或取代而经修饰,所述缺失、插入和/或取代使得通常由C和C'区域形成的茎-环结构的全部或一部分发生缺失。在一些实施方案中,所述ITR中的一个或两个是通过缺失、插入和/或取代而经修饰,所述缺失、插入和/或取代使得通常由B和B'区域形成的茎-环结构的一部分和/或通常由C和C'区域形成的茎-环结构的一部分发生缺失。在一些实施方案中,所述ITR中的一个或两个在通常包含由B和B'区域形成的第一茎-环结构以及由C和C'区域形成的第二茎-环结构的区域中包含单个茎-环结构。在一些实施方案中,所述ITR中的一个或两个在通常包含由B和B'区域形成的第一茎-环结构以及由C和C'区域形成的第二茎-环结构的区域中包含单个茎和两个环。
在一些实施方案中,第一次施用或随后第二次施用或任何后续施用时所施用的ceDNA载体中的两个ITR是以当ITR相对于彼此倒置时产生整体三维对称性的方式发生改变。
在一些实施方案中,第一次施用或随后第二次施用或任何后续施用时所施用的ceDNA载体包含处于至少一个调控开关的控制下的至少一个异源核苷酸序列,例如至少一个调控开关是选自二进制调控开关、小分子调控开关、密码调控开关、基于核酸的调控开关、转录后调控开关、辐射控制的或超声波控制的调控开关、低氧介导性调控开关、发炎应答调控开关、剪切活化的调控开关,和杀灭开关。下文中更详细地公开了调控开关。
在一些实施方案中,第一次施用或随后第二次施用或任何后续施用时所施用的ceDNA载体被施用于患有选自以下的疾病或病症的受试者:例如癌症、自身免疫疾病、神经退化性病症、高胆固醇血症、急性器官排斥反应、多发性硬化症、绝经后骨质疏松症、皮肤病状、哮喘或血友病。在一些实施方案中,患有癌症的受试者患有实体肿瘤、软组织肉瘤、淋巴瘤和白血病。在一些实施方案中,受试者患有自身免疫疾病,例如选自类风湿性关节炎和克罗恩氏病(Crohn's disease)。在一些实施方案中,受试者患有皮肤病,例如选自牛皮癣和特应性皮炎。在一些实施方案中,受试者患有神经退化性病症,例如阿尔茲海默氏病(Alzheimer's disease)、ALS、帕金森氏病(Parkinson's Disease)、亨廷顿氏病(Huntington's Disease)。
在一些实施方案中,本文公开的方法进一步包含在第二时间点之后的一个或多个时间点向受试者施用一定剂量的ceDNA载体,相较于在第二时间点或此前时间点施用ceDNA载体之后所达成的转基因的表达水平,增加异源核酸序列(例如转基因)的表达水平,或增加转基因的表达水平以达成所期望的表达水平。
在一些实施方案中,在第二或任何后续时间点施用于受试者的ceDNA载体的预定剂量是第一时间点所施用的ceDNA载体组合物的剂量的2倍与10倍之间的量。在一些实施方案中,第二或任何后续时间点所施用的ceDNA载体组合物的预定剂量是相较于在第一时间点施用ceDNA载体或此前施用之后的转基因表达水平,使转基因表达增加至少3倍或至少5倍或至少10倍或介于2至15倍或2至20倍之间的量。在一些实施方案中,第二次施用或第二时间点所施用的ceDNA载体的预定剂量是利用剂量依赖关系来确定以便ceDNA载体使转基因在细胞中达成所期望的表达水平。
下面进一步详细描述本发明的这些和其它方面。
附图说明
通过参考在附图中描绘的本公开的说明性实施方案,可以理解上面简要概述并且在下面更详细论述的本公开的实施方案。但是,附图仅示出了本公开的典型实施方案,因此不应视为对范围的限制,因为本公开可以允许其它等效的实施方案。
图1A示出了如本文所公开的用于控制转基因表达的ceDNA载体的示例性结构,其包含不对称ITR。在这个实施方案中,示例性ceDNA载体包含含有CAG启动子、WPRE和BGHpA的表达盒。编码转基因的开放阅读框(ORF)能够插入介于CAG启动子与WPRE之间的克隆位点(R3/R4)中。表达盒的两侧是两个反向末端重复序列(ITR)-表达盒上游(5'-端)的野生型AAV2 ITR和下游(3'-端)的修饰ITR,因此位于表达盒两侧的两个ITR彼此不对称。
图1B示出了如本文所公开的用于控制转基因表达的ceDNA载体的示例性结构,其包含不对称ITR和含有CAG启动子、WPRE和BGHpA的表达盒。编码转基因的开放阅读框(ORF)能够插入介于CAG启动子与WPRE之间的克隆位点中。表达盒的两侧是两个反向末端重复序列(ITR)-表达盒上游(5'端)的修饰ITR和下游(3'端)的野生型ITR。
图1C示出了如本文所公开的用于控制转基因表达的ceDNA载体的示例性结构,其包含不对称ITR以及含有增强子/启动子、转基因、转录后元件(WPRE)和聚腺苷酸信号的表达盒。开放阅读框(ORF)允许转基因插入介于CAG启动子与WPRE之间的克隆位点。表达盒的两侧是两个彼此不对称的反向末端重复序列(ITR);表达盒上游(5'端)的修饰ITR和下游(3'端)的修饰ITR,其中5'ITR和3'ITR都是修饰ITR,但是具有不同的修饰(即,它们不具有相同的修饰)。
图1D示出了如本文所公开的用于控制转基因表达的ceDNA载体的示例性结构,其包含如本文所定义的对称修饰的ITR或基本对称修饰的ITR以及含有CAG启动子、WPRE和BGHpA的表达盒。编码转基因的开放阅读框(ORF)是插入介于CAG启动子与WPRE之间的克隆位点中。表达盒的两侧是两个修饰的反向末端重复序列(ITR),其中5'修饰ITR和3'修饰ITR是对称的或基本上对称的。
图1E示出了如本文所公开的用于控制转基因表达的ceDNA载体的示例性结构,其包含如本文所定义的对称修饰的ITR或基本对称修饰的ITR以及含有增强子/启动子、转基因、转录后元件(WPRE)和聚腺苷酸信号的表达盒。开放阅读框(ORF)允许转基因插入介于CAG启动子与WPRE之间的克隆位点。表达盒的两侧是两个修饰的反向末端重复序列(ITR),其中5'修饰ITR和3'修饰ITR是对称的或基本上对称的。
图1F示出了如本文所公开的用于控制转基因表达的ceDNA载体的示例性结构,其包含如本文所定义的对称WT-ITR或基本对称WT-ITR以及含有CAG启动子、WPRE和BGHpA的表达盒。编码转基因的开放阅读框(ORF)是插入介于CAG启动子与WPRE之间的克隆位点中。表达盒的两侧是两个野生型反向末端重复序列(WT-ITR),其中5'WT-ITR和3'WT ITR是对称的或基本上对称的。
图1G示出了如本文所公开的用于控制转基因表达的ceDNA载体的示例性结构,其包含如本文所定义的对称修饰的ITR或基本对称修饰的ITR以及含有增强子/启动子、转基因、转录后元件(WPRE)和聚腺苷酸信号的表达盒。开放阅读框(ORF)允许转基因插入介于CAG启动子与WPRE之间的克隆位点。表达盒的两侧是两个野生型反向末端重复序列(WT-ITR),其中5'WT-ITR和3'WT ITR是对称的或基本上对称的。
图2A提供了AAV2的野生型左ITR(SEQ ID NO:52)的T形茎-环结构,以及A-A'臂、B-B'臂、C-C'臂、两个Rep结合位点(RBE和RBE')的标识,并且还显示了末端解析位点(trs)。RBE含有一连串4个双链体四聚体,它们被认为与Rep 78或Rep 68相互作用。另外,RBE'也被认为与在所述构建体中的野生型ITR或突变ITR上装配的Rep复合物相互作用。D和D'区含有转录因子结合位点和其它保守结构。图2B显示了所提出的Rep催化的在野生型左ITR(SEQID NO:53)中产生的切割和接合活性,所述野生型左ITR包括AAV2的野生型左ITR的T形茎-环结构以及A-A'臂、B-B'臂、C-C'臂、两个Rep结合位点(RBE和RBE')的标识,并且还显示了末端解析位点(trs)以及包含若干转录因子结合位点和另一保守结构的D和D'区域。
图3A提供了野生型左AAV2 ITR(SEQ ID NO:54)的A-A'臂的含RBE部分以及C-C'和B-B'臂的一级结构(多核苷酸序列)(左)和二级结构(右)。图3B显示了左ITR的示例性突变ITR(也称为修饰ITR)序列。显示的是示例性突变左ITR(ITR-1,左)(SEQ ID NO:113)的A-A'臂的RBE部分、C臂和B-B'臂的一级结构(左)和预测的二级结构(右)。图3C显示了野生型右AAV2 ITR(SEQ ID NO:55)的A-A'环的含RBE部分以及B-B'和C-C'臂的一级结构(左)和二级结构(右)。图3D显示了示例性右修饰ITR。显示的是示例性突变右ITR(ITR-1,右)(SEQ IDNO:114)的A-A'臂的含RBE部分、B-B'和C臂的一级结构(左)和预测的二级结构(右)。可以如本文所教示,使用左ITR和右ITR的任何组合(例如AAV2 ITR或其它病毒血清型ITR或合成ITR)。图3A-3D的多核苷酸序列中的每一个是指在用于产生如本文所述的ceDNA的质粒或杆粒/杆状病毒基因组中所用的序列。图3A-3D每一个中还包括从质粒或杆粒/杆状病毒基因组中的ceDNA载体构型推断出的相应ceDNA二级结构以及预测的吉布斯自由能(Gibbs freeenergy)值。
图4A是示意图,其示出了制备杆状病毒感染的昆虫细胞(BIIC)的上游方法,适用于在图4B的示意图所述的方法中产生如本文所公开的用于控制转基因表达的ceDNA载体。图4B是ceDNA产生的一种示例性方法的示意图,图4C示出了证实ceDNA载体产生的一种生化方法和过程。图4D和图4E是描述了用于鉴定从在图4B的ceDNA产生过程期间获得的细胞集结粒收获的DNA中ceDNA的存在的过程的示意图。图4D显示未切割或用限制性核酸内切酶消化并然后在天然凝胶或变性凝胶上进行电泳的示例性ceDNA的示意性预期色带。最左边的示意图是天然凝胶,并显示多个色带,表明以其双链体和未切割形式的ceDNA以至少单体和二聚体状态存在,可看到呈迁移较快的较小单体和迁移较慢的二聚体,二聚体的大小是单体的两倍。左起第二个示意图显示,当用限制性核酸内切酶切割ceDNA时,原始色带消失并出现了迁移较快(例如较小)的色带,与裂解后剩余的预期片段大小相对应。在变性条件下,原始双链体DNA是单链的,并且因为互补链是共价连接的,所以作为两倍于天然凝胶上观察到的大小的物种进行迁移。因此,在右起第二个示意图中,经过消化的ceDNA显示出与在天然凝胶上观察到的相似的色带分布,但是所述色带作为其天然凝胶对应物大小的两倍的片段进行迁移。最右边的示意图显示,在变性条件下未切割的ceDNA作为单链开环进行迁移,因此观察到的色带是在不开环的天然条件下观察到的色带大小的两倍。在此图中,“kb”用于指示核苷酸分子的相对大小,取决于背景,其基于核苷酸链长(例如,对于在变性条件下观察到的单链分子)或碱基对数量(例如,对于在天然条件下观察到的双链分子)。图4E显示了具有不连续结构的DNA。ceDNA可以通过在ceDNA载体上具有单个识别位点的限制性核酸内切酶切割,并在中性和变性两种条件下产生两个大小不同(1kb和2kb)的DNA片段。图4E还显示了具有线性且连续结构的ceDNA。所述ceDNA载体可被限制性核酸内切酶切割,并产生两个DNA片段,所述片段在中性条件下以1kb和2kb迁移,但在变性条件下,链保持连接并产生以2kb和4kb迁移的单链。
图5是ceDNA载体实例跑变性凝胶的示例性图像,所述ceDNA载体用核酸内切酶消化(+)或不消化(-)(ceDNA构建体1和2使用EcoRI;ceDNA构建体3和4使用BamH1;ceDNA构建体5和6使用SpeI;且ceDNA构建体7和8使用XhoI)。构建体1-8描述于国际申请PCT PCT/US18/49996的实例1中,所述国际申请以全文引用的方式并入本文中。确定了用星号突出显示的色带的大小,并提供在图片的底部。
图6图示了加打(即,增强施用)用于增加转基因表达水平的作用,所述转基因来自存在于包含脂质体的组合物中的表达ceDNA载体的荧光素酶。如实例6中所述施用ceDNA载体之后,测量荧光素酶的表达,且于是随后在第84或87天再施用由所述ceDNA载体产生的ceDNA载体。评估且检测到所有三个组的荧光素酶表达直到至少132天(所评估的最长时间段)。图6显示在或约第80天,在脂质体存在下施用1mg/kg ceDNA载体(LNPceDNA)的小鼠中的转基因表达水平稍微降低。第84天或第87天在脂质体存在下再施用ceDNA载体能够用于使转基因表达在所期望的预定水平持续(数据未示出),或使ceDNA的转基因表达水平增加到高于之前ceDNA载体施用所达成的水平。在此显示了施用3mg/kg LNPceDNA载体使表达增加到此前转基因表达水平的7倍高,或施用10mg/kg LNPceDNA载体组合物使表达水平增加到此前转基因表达水平的17倍高。
图7描绘了实例7中所述的实验结果且特别地显示IVIS影像,所述影像获自经LNP-polyC对照物处理的小鼠(距左侧最远的小鼠)和经LNP-ceDNA荧光素酶处理的四个小鼠(除距离左侧最远的小鼠之外的所有小鼠)。经ceDNA处理的四只小鼠在小鼠的含肝脏区域中显示明显的荧光。
图8描绘了实例8中所述的实验结果。暗斑点表示由被表达的ceDNA转基因产生的蛋白质存在且证实所施用的LNP-ceDNA与肝细胞结合。
图9A-9B描绘了实例9中所示的眼部研究结果。图9A显示了注射Jet
Figure BDA0002685856320000181
-ceDNA荧光素酶的大鼠眼(左上方)相对于相同大鼠的未注射眼(右上方)或注射质粒-荧光素酶DNA的大鼠眼(左下方)与相同大鼠的未注射眼(右下方)的代表性IVIS影像。图9B显示了每个处理组的经处理眼或相应未处理眼的平均辐射度图。ceDNA处理的大鼠在99天期间展现长时间的明显荧光(和因此荧光素酶转基因表达),与之形成鲜明对比的是经质粒-荧光素酶处理的大鼠,其中观察到的相对荧光(和因此荧光素酶转基因表达)最小。
图10和10B描绘了实例10中所述的Rag2小鼠的ceDNA持久性和加打研究的结果。图10A显示了在LNP-ceDNA-Luc处理的野生型c57bl/6小鼠或Rag2小鼠中随时间观察到的总通量的图形。图10B提供的图形显示了加打对Rag2小鼠中的荧光素酶转基因表达水平的影响,加打之后,随之观察到增加的稳定表达(箭头表示加打施用的时间)。
图11提供了实例11中所述的经处理小鼠的ceDNA荧光素酶表达研究的数据,显示了每组小鼠在研究期间的总通量。高水平的未甲基化CpG与小鼠中随时间所观察到的较低总通量相关,而肝脏特异性启动子的使用与ceDNA载体在至少77天期间对转基因的持久稳定表达相关。
具体实施方式
本文描述了包含具有共价闭合端(ceDNA)的新颖无衣壳DNA载体的方法和组合物,所述DNA载体用于控制转基因的表达,例如能够使所期望的转基因在所期望的水平持续表达预定的时间,或体内或体外调节细胞中的转基因表达水平(包括增加表达水平),且其中至少一次(即,一次或多次)后续施用(例如增强施用或加打)能够增加转基因表达水平。
如本文所公开的ceDNA载体和方法通过在初次施用之后的时间点进行至少一次再施用(本文中也称为加打或增强施用)而能够在体外和体内维持转基因在宿主细胞或受试者中的表达水平,即,使表达维持在所期望水平,或中止表达水平的任何降低。
如本文所公开的ceDNA载体和方法通过在初次施用之后的时间点进行至少一次再施用(本文中也称为“加打”或“增强”施用)而能够在体外和体内使转基因表达水平相对于之前水平增加,即,使表达增加到或高于所期望水平,或使表达水平增加到所期望的表达范围内。
也就是说,能够使ceDNA所表达的转基因的表达增加而高于之前施用的水平。如果之前施用是初次剂量(即,预致敏剂量),则第二时间点的加打施用能够用于增加转基因的表达水平。类似地,如果之前施用是第二次施用(即,加打施用),则额外的加打施用能够用于使转基因表达水平增加到高于之前加打施用的水平或增加到所期望的表达水平或范围。因此,如本文所公开的技术、方法和ceDNA载体能够用于以可控方式将转基因表达水平递增地增加到所期望的表达水平。转基因表达水平的此类逐步和递增增加有利于治疗受试者,原因在于其允许基于受试者的需求和/或ceDNA载体和/或所表达的转基因(例如基因药物)在受试者中的功效来将转基因表达水平滴定到特定个体,而无需冒着初次施用超过实际需要的高剂量所需冒的风险且/或不出现与基于其它AAV的载体有关的免疫并发症。
定义
除非本文另有定义,否则结合本申请使用的科学和技术术语应具有本公开所属领域的普通技术人员通常所了解的含义。应了解,本发明不限于本文所述的具体方法、方案和试剂等,因此可以变化。本文中所用的术语仅仅是为了描述具体实施方案,而无意于限制本发明的范围,本发明的范围仅仅由权利要求书限定。免疫学和分子生物学中常用术语的定义能够在下列文献中找到:《默克诊疗手册(The Merck Manual of Diagnosis andTherapy)》第19版,默克夏普公司(Merck Sharp&Dohme Corp.)出版,2011(ISBN 978-0-911910-19-3);Robert S.Porter等人(编辑),《病毒学领域(Fields Virology)》第6版,Lippincott Williams&Wilkins出版,美国宾夕法尼亚州费城(Philadelphia,PA,USA)(2013);Knipe,D.M.和Howley,P.M.(编辑),《分子细胞生物学与分子医学百科全书(TheEncyclopedia of Molecular Cell Biology and Molecular Medicine)》,Blackwell科学有限公司出版,1999-2012(ISBN 9783527600908);以及Robert A.Meyers(编辑),《分子生物学与生物技术:综合案头参考(Molecular Biology and Biotechnology:aComprehensive Desk Reference)》,由VCH Publishers有限公司出版,1995(ISBN1-56081-569-8);Werner Luttmann的《免疫学(Immunology)》,由Elsevier出版,2006;《詹韦氏免疫生物学(Janeway's Immunobiology)》,Kenneth Murphy,Allan Mowat,Casey Weaver(编辑),Taylor&Francis有限公司,2014(ISBN 0815345305、9780815345305);《勒温基因XI(Lewin's Genes XI)》,由Jones&Bartlett Publishers出版,2014(ISBN-1449659055);Michael Richard Green和Joseph Sambrook,《分子克隆:实验室手册(MolecularCloning:A Laboratory Manual)》,第4版,冷泉港实验室出版社(Cold Spring HarborLaboratory Press),美国纽约州冷泉港(Cold Spring Harbor,N.Y.,USA)(2012)(ISBN1936113414);Davis等人,《分子生物学的基本方法(Basic Methods in MolecularBiology)》,Elsevier科学出版有限公司,美国纽约(2012)(ISBN044460149X);《酶学实验室方法:DNA(Laboratory Methods in Enzymology:DNA)》,Jon Lorsch(编辑)Elsevier,2013(ISBN 0124199542);《分子生物学现代方法(Current Protocols in Molecular Biology,CPMB)》,Frederick M.Ausubel(编辑),John Wiley and Sons,2014(ISBN047150338X、9780471503385),《蛋白质科学现代方法(Current Protocols in Protein Science,CPPS)》,John E.Coligan(编辑),John Wiley and Sons,Inc.,2005;以及《免疫学现代方法(Current Protocols in Immunology,CPI)》(John E.Coligan,ADA M Kruisbeek,David HMargulies,Ethan M Shevach,Warren Strobe(编辑)John Wiley and Sons,Inc.,2003(ISBN 0471142735、9780471142737),其内容以全文引用的方式并入本文中。
如本文所用,术语“异源核苷酸序列”和“转基因”可互换使用,并且是指并入如本文公开的ceDNA载体中并可以由其递送和表达的感兴趣核酸(编码衣壳多肽的核酸除外)。所关注的转基因包括(但不限于)编码多肽的核酸,所述多肽优选治疗(例如医学、诊断或兽医学用途)或免疫原性多肽(例如用于疫苗)。在一些实施方案中,所关注的核酸包括转录成治疗RNA的核酸。为了在本发明的ceDNA载体中使用而包括的转基因包括(但不限于)表达或编码以下中的一种或多种的转基因:多肽、肽、核糖核酸酶、适体、肽核酸、siRNA、RNAi、miRNA、lncRNA、反义寡核苷酸或多核苷酸、抗体、抗原结合片段或其任何组合。转基因可以是“基因药物”且涵盖以下中的任一种:抑制剂、核酸、寡核苷酸、静默核酸、miRNA、RNAi、拮抗剂、激动剂、多肽、肽、抗体或抗体片段、融合蛋白或其变异体、抗原决定基、抗原、适体、核糖体等等。本文在ceDNA载体中所用的转基因在尺寸上不受限制。
如本文所公开的术语“基因药物”涉及能够用于治疗或预防受试者的疾病或病症的任何DNA结构或核酸序列。
如本文所用,术语“表达盒”和“转录盒”可互换使用,并且是指一段线性核酸,其包括与一个或多个启动子或足以引导转基因转录的其它调控序列可操作地连接的转基因,但是不包含衣壳编码序列、其它载体序列或反向末端重复区域。表达盒可以另外包含一个或多个顺式作用序列(例如启动子、增强子或阻遏子)、一个或多个内含子和一个或多个转录后调控元件。
如本文所用,术语“末端重复”或“TR”包括任何包含至少一个最低需要的复制起点和包含回文发夹结构的区域的病毒末端重复或合成序列。Rep结合序列(“RBS”)(也称为RBE(Rep结合元件))和末端解链位点(“TRS”)共同构成“最低需要的复制起点”,因此TR包含至少一个RBS和至少一个TRS。在给定的一段多核苷酸序列内彼此是反向互补序列的TR通常各自被称为“反向末端重复序列”或“ITR”。在病毒的背景下,ITR介导复制、病毒包装、整合和原病毒拯救。正如在本发明中意外发现的,在全长上不是反向互补序列的TR仍然可以执行ITR的传统功能,因此术语ITR在本文中用于指ceDNA基因组或ceDNA载体中能够介导ceDNA载体复制的TR。本领域普通技术人员将了解,在复杂的ceDNA载体构型中,可以存在超过两个ITR或不对称的ITR对。ITR可以是AAV ITR或非AAV ITR,或可以源自于AAV ITR或非AAVITR。例如,ITR可以源自于细小病毒科,其涵盖细小病毒和依赖病毒(例如犬细小病毒、牛细小病毒、小鼠细小病毒、猪细小病毒、人细小病毒B-19),或可以将充当SV40复制起点的SV40发夹用作ITR,其可以通过截断、取代、缺失、插入和/或添加而被进一步修饰。细小病毒科家族病毒由两个亚科组成:感染脊椎动物的细小病毒亚科和感染无脊椎动物的浓核病毒亚科。依赖病毒属包括腺相关病毒(AAV)的病毒家族,其能够在脊椎动物宿主中复制,所述宿主包括但不限于人、灵长类、牛、犬、马和羊物种。
本文可互换使用的术语“多核苷酸”和“核酸”是指任何长度的核苷酸,核糖核苷酸或脱氧核糖核苷酸的聚合物形式。因此,这个术语包括单链、双链或多链DNA或RNA、基因组DNA、cDNA、DNA-RNA杂交物、或包括嘌呤和嘧啶碱基或其它天然、化学或生物化学修饰的、非天然的或衍生化的核苷酸碱基的聚合物。“寡核苷酸”通常是指单链或双链DNA的约5至约100个核苷酸之间的多核苷酸。然而,出于本公开的目的,寡核苷酸的长度没有上限。寡核苷酸也称为“寡聚物(oligomer)”或“寡聚物(oligo)”,并且可以从基因中分离出来,或通过本领域已知的方法化学合成。应了解术语“多核苷酸”和“核酸”包括单链(例如有义或反义)和双链多核苷酸(如果所描述的实施方案适用的话)。
如本文所用,术语“核酸构建体”是指单链或双链的核酸分子,其是从天然基因中分离的,或者以自然界中不另外存在或合成的方式进行修饰以含有核酸区段。当核酸构建体包含表达本公开的编码序列所需的控制序列时,术语核酸构建体与术语“表达盒”同义。“表达盒”包括可操作地连接至启动子的DNA编码序列。
“可杂交的”或“互补的”或“基本上互补的”意指核酸(例如RNA)包括使其能够与另一核酸序列在体外和/或体内适当的温度和溶液离子强度的条件下非共价结合,即形成沃森-克里克碱基对(Watson-Crick base pair)和/或G/U碱基对、“退火”或“杂交”以序列特异性的反向平行方式(即,核酸特异性地结合于互补核酸)的核苷酸序列。如本领域已知的,标准的沃森-克里克碱基对包括:腺嘌呤(A)与胸苷(T)配对,腺嘌呤(A)与尿嘧啶(U)配对,鸟嘌呤(G)与胞嘧啶(C)配对。另外,在本领域中还已知对于两个RNA分子(例如dsRNA)之间的杂交,鸟嘌呤(G)碱基与尿嘧啶(U)配对。例如,在与mRNA中的密码子进行tRNA反密码子碱基配对的情况下,G/U碱基配对部分负责遗传密码的简并性(即,冗余)。在本公开的上下文中,靶向主题DNA的RNA分子的蛋白质结合区段(dsRNA双链体)的鸟嘌呤(G)被认为与尿嘧啶(U)互补,反之亦然。这样,当可以在靶向主题DNA的RNA分子的蛋白质结合区段(dsRNA双链体)的给定核苷酸位置形成G/U碱基对时,该位置不被认为是非互补的,而是被认为是互补的。
术语“肽”、“多肽”和“蛋白质”在本文可互换使用,是指任何长度的氨基酸的聚合物形式,其可以包括编码和非编码的氨基酸、经过化学或生物化学修饰或衍生的氨基酸和具有修饰的肽骨架的多肽。
“编码”特定RNA或蛋白质基因产物的DNA序列是转录成特定RNA和/或蛋白质的DNA核酸序列。DNA多核苷酸可以编码被翻译成蛋白质的RNA(mRNA),或者DNA多核苷酸可以编码未被翻译成蛋白质的RNA(例如tRNA、rRNA或靶向DNA的RNA;也称为“非编码”RNA或“ncRNA”)。
如本文所用,术语“基因组安全港基因”或“安全港基因”是指可以插入核酸序列以使得该序列可以以可预测的方式整合和起作用(例如表达所关注蛋白质)且对内源基因活性没有明显的负面影响或不促进癌症的基因或基因座。在一些实施方案中,安全港基因也是可有效地表达所插入的核酸序列并且表达水平比非安全港位点高的基因座或基因。
如本文所用,术语“基因递送”意指将外来DNA转移到宿主细胞中以施加基因疗法的方法。
如本文所用,术语“末端重复”或“TR”包括任何包含至少一个最低需要的复制起点和包含回文发夹结构的区域的病毒末端重复或合成序列。Rep结合序列(“RBS”)(也称为RBE(Rep结合元件))和末端解链位点(“TRS”)共同构成“最低需要的复制起点”,因此TR包含至少一个RBS和至少一个TRS。在给定的一段多核苷酸序列内彼此是反向互补序列的TR通常各自被称为“反向末端重复序列”或“ITR”。在病毒的背景下,ITR介导复制、病毒包装、整合和原病毒拯救。正如在本发明中意外发现的,在全长上不是反向互补序列的TR仍然可以执行ITR的传统功能,因此术语ITR在本文中用于指ceDNA基因组或ceDNA载体中能够介导ceDNA载体复制的TR。本领域普通技术人员将了解,在复杂的ceDNA载体构型中,可以存在超过两个ITR或不对称的ITR对。ITR可以是AAV ITR或非AAV ITR,或可以源自于AAV ITR或非AAVITR。例如,ITR可以源自于细小病毒科,其涵盖细小病毒和依赖病毒(例如犬细小病毒、牛细小病毒、小鼠细小病毒、猪细小病毒、人细小病毒B-19),或可以将充当SV40复制起点的SV40发夹用作ITR,其可以通过截断、取代、缺失、插入和/或添加而被进一步修饰。细小病毒科家族病毒由两个亚科组成:感染脊椎动物的细小病毒亚科和感染无脊椎动物的浓核病毒亚科。依赖病毒属包括腺相关病毒(AAV)的病毒家族,其能够在脊椎动物宿主中复制,所述宿主包括但不限于人、灵长类、牛、犬、马和羊物种。本文中为了方便起见,将位于ceDNA载体中表达盒的5'(上游)的ITR称为“5'ITR”或“左ITR”,并将位于ceDNA载体中表达盒的3'(下游)的ITR称为“3'ITR”或“右ITR”。
“野生型ITR”或“WT-ITR”是指AAV或其它依赖病毒中天然存在的ITR序列的序列,其保留例如Rep结合活性和Rep切口能力。由于遗传密码的简并性或漂移,来自任何AAV血清型的WT-ITR的核苷酸序列可能与规范的天然存在的序列略有不同,因此,本文涵盖使用的WT-ITR序列包括由于在产生过程中发生的天然存在的变化(例如复制误差)而产生的WT-ITR序列。
如本文所用,术语“基本上对称的WT-ITR”或“基本上对称的WT-ITR对”是指单个ceDNA基因组或ceDNA载体内的一对WT-ITR,它们都是在整个长度上具有反向互补序列的野生型ITR。例如,ITR即使具有一个或多个偏离规范的天然存在的序列的核苷酸,只要变化不影响ITR的特性和序列的整体三维结构,也可以被认为是野生型序列。在一些方面,偏离的核苷酸代表保守的序列变化。作为一个非限制性实例,序列与规范序列具有至少95%、96%、97%、98%或99%的序列一致性(例如使用默认设置下的BLAST测量),并且还与另一个WT-ITR具有对称的三维空间组构,以使它们的3D结构在几何空间中具有相同的形状。基本上对称的WT-ITR在3D空间中具有相同的A、C-C'和B-B'环。通过确定具有与合适的Rep蛋白配对的可操作的Rep结合位点(RBE或RBE')和末端解链位点(trs),可以在功能上确认基本上对称的WT-ITR为WT。可以选择测试其它功能,包括在许可条件下的转基因表达。
如本文所用,短语“修饰ITR”或“mod-ITR”或“突变ITR”在本文中可互换使用,并且是指与来自相同血清型的WT-ITR相比在至少一个或多个核苷酸中具有突变的ITR。所述突变能够引起ITR的A、C、C'、B、B'区域中的一个或多个发生变化,并且能够使得三维空间组构(即,其几何空间中的3D结构)相较于相同血清型的WT-ITR的3D空间组构发生变化。
如本文所用,术语“不对称ITR”也称为“不对称ITR对”,是指单个ceDNA基因组或ceDNA载体内在全长上不反向互补的一对ITR。两个ITR之间的序列差异可能是由于核苷酸添加、缺失、截断或点突变。在一个实施方案中,所述对中的一个ITR可以是野生型AAV序列并且另一个可以是非野生型或合成序列。在另一个实施方案中,所述对中的ITR皆不是野生型AAV序列并且两个ITR的序列彼此不同。本文中为了方便起见,将位于ceDNA载体中表达盒的5'(上游)的ITR称为“5'ITR”或“左ITR”,并将位于ceDNA载体中表达盒的3'(下游)的ITR称为“3'ITR”或“右ITR”。作为一个非限制性实例,不对称的ITR与其同源ITR不具有对称的三维空间组构,使得其3D结构在几何空间中具有不同的形状。换句话说,不对称的ITR对具有不同的整体几何结构,即它们在3D空间中具有不同的A、C-C'和B-B'环组织(例如,一个ITR与同源ITR相比可能具有短的CC'臂和/或短的BB'臂)。两个ITR之间的序列差异可能是由于一个或多个核苷酸添加、缺失、截断或点突变引起的。在一个实施方案中,不对称ITR对中的一个ITR可以是野生型AAV ITR序列,另一个ITR是如本文定义的修饰ITR(例如非野生型或合成ITR序列)。在另一个实施方案中,不对称ITR对中的ITR皆不是野生型AAV序列,并且两个ITR是在几何空间中具有不同形状的经修饰的ITR(即,不同的整体几何结构)。在一些实施方案中,一个不对称ITR对中的一个mod-ITR能够具有短C-C'臂,而另一个ITR能够具有不同修饰(例如单臂,或短B-B'臂等),使得它们具有不同于同源不对称mod-ITR的三维空间组构。
如本文所用,术语“对称ITR”是指单个ceDNA基因组或ceDNA载体内的一对ITR,其相对于野生型依赖病毒ITR序列发生突变或修饰并且在其全长上反向互补。这两个ITR都不是野生型ITR AAV2序列(即,它们是修饰ITR,也称为突变ITR),并且由于核苷酸的添加、缺失、取代、截断或点突变,而在序列上与野生型ITR不同。本文中为了方便起见,将位于ceDNA载体中表达盒的5'(上游)的ITR称为“5'ITR”或“左ITR”,并将位于ceDNA载体中表达盒的3'(下游)的ITR称为“3'ITR”或“右ITR”。
如本文所用,术语“基本上对称的修饰ITR”或“基本上对称的mod-ITR对”是指单个ceDNA基因组或ceDNA载体中的一对修饰ITR,它们在其全长上具有反向互补序列。例如,修饰ITR即使具有一些偏离反向互补序列的核苷酸序列,只要变化不影响特性和整体形状,也可以认为是基本上对称的。作为一个非限制性实例,序列与规范序列具有至少85%、90%、95%、96%、97%、98%或99%的序列一致性(例如使用默认设置下的BLAST测量),并且还与其同源的修饰ITR具有对称的三维空间组构,以使它们的3D结构在几何空间中具有相同的形状。换句话说,基本上对称的修饰ITR对具有在3D空间中组织的相同的A、C-C'和B-B'环。在一些实施方案中,来自mod-ITR对的ITR可以具有不同的反向互补核苷酸序列,但是仍然具有相同的对称三维空间组构,即两个ITR都具有产生相同的整体3D形状的突变。举例来说,mod-ITR对中的一个ITR(例如5'ITR)可以来自一种血清型,而另一个ITR(例如3'ITR)可以来自不同血清型,然而,两者均能够具有相同的相应突变(例如如果5'ITR在C区域中具有缺失,则来自不同血清型的经修饰的同源3'ITR在C'区域中的相应位置具有缺失),使得经修饰的ITR对具有相同的对称三维空间组构。在此类实施例中,经修饰的ITR对中的每个ITR能够来自不同血清型(例如AAV1、2、3、4、5、6、7、8、9、10、11和12),例如AAV2与AAV6的组合,其中一个ITR中的修饰在来自不同血清型的同源ITR的相应位置得到反映。在一个实施方案中,基本上对称的修饰ITR对是指一对修饰ITR(mod-ITR),只要ITR之间核苷酸序列的差异不影响性质或整体形状并且它们在3D空间中具有基本相同的形状即可。作为非限制性实例,如通过本领域公知的标准方法如默认设置下的BLAST(基本局部比对搜索工具)或BLASTN测定,mod-ITR与规范的mod-ITR具有至少95%、96%、97%、98%或99%的序列一致性,并且还具有对称的三维空间组构,以使其3D结构在几何空间中的形状相同。基本上对称的mod-ITR对在3D空间中具有相同的A、C-C'和B-B'环,例如,如果基本上对称的mod-ITR对中的修饰ITR缺失C-C'臂,那么同源mod-ITR相应缺失C-C'环,并且在其同源mod-ITR的几何空间呈相同形状下,剩余A和B-B'环具有相似3D结构。
术语“位于两侧”是指一个核酸序列相对于另一核酸序列的相对位置。通常,在序列ABC中,B的两侧是A和C。对于A×B×C排列,情况也是如此。因此,位于两侧的序列在被侧接的序列之前或之后,但不必与被侧接的序列相邻或紧邻。在一个实施方案中,术语位于两侧是指在线性双链体ceDNA载体的每个末端出的末端重复序列。
如本文所用,术语“ceDNA基因组”是指还并入了至少一个反向末端重复区域的表达盒。ceDNA基因组还可以包含一个或多个间隔区。在一些实施方案中,ceDNA基因组作为DNA的分子间双链体多核苷酸并入质粒或病毒基因组中。
如本文所用,术语“ceDNA间隔区”是指分隔ceDNA载体或ceDNA基因组中的功能元件的间插序列。在一些实施方案中,ceDNA间隔区将两个功能元件保持在对于最佳功能性来说所期望的距离上。在一些实施方案中,ceDNA间隔区提供或增加了ceDNA基因组在例如质粒或杆状病毒内的遗传稳定性。在一些实施方案中,ceDNA间隔区通过提供克隆位点等的便利位置,促进ceDNA基因组的就绪遗传操作。举例来说,在某些方面中,含有若干限制性核酸内切酶位点的寡核苷酸“多酶切点接头”或设计成不具有已知蛋白质(例如转录因子)结合位点的非开放阅读框架序列能够定位于ceDNA基因组中以分离顺式作用因子,例如将6聚体、12聚体、18聚体、24聚体、48聚体、86聚体、176聚体等插入末端解析位点与上游转录调控元件之间。类似地,可以在聚腺苷酸化信号序列和3'-末端解链位点之间并入间隔区。
如本文所用,术语“Rep结合位点”、“Rep结合元件”、“RBE”和“RBS”可互换使用并且是指Rep蛋白(例如AAV Rep 78或AAV Rep 68)的结合位点,其在Rep蛋白结合后允许Rep蛋白在并入了所述RBS的序列上发挥其位点特异性核酸内切酶活性。RBS序列和其反向互补序列一起形成单个RBS。RBS序列在所属领域中是已知的,并且包括例如5'-GCGCGCTCGCTCGCTC-3'(SEQ ID NO:60),AAV2中所鉴定的RBS序列。在本发明的实施方案中可以使用任何已知的RBS序列,包括其它已知的AAV RBS序列和其它天然已知的或合成的RBS序列。不受理论束缚,相信Rep蛋白的核酸酶域结合到双链体核苷酸序列GCTC,并且因此,两种已知的AAV Rep蛋白直接结合到双链体寡核苷酸5'-(GCGC)(GCTC)(GCTC)(GCTC)-3'(SEQ ID NO:60)并且在其上稳定组装。另外,可溶性聚集性构象异构体(即,数目未定的相互缔合的Rep蛋白)解离并结合到含有Rep结合位点的寡核苷酸。每个Rep蛋白都与每个链上的含氮碱基和磷酸二酯骨架相互作用。与含氮碱基的相互作用提供了序列特异性,而与磷酸二酯骨架的相互作用是非或较少序列特异性的,并稳定了蛋白质-DNA复合物。
如本文所用,术语“末端解链位点”和“TRS”在本文可互换使用,是指一个区域,在此Rep与5'胸苷形成酪氨酸-磷酸二酯键,产生3'OH,充当通过DNA聚合酶、例如DNA polδ或DNA polε进行DNA延伸的底物。或者,Rep-胸苷复合物可以参与配位连接反应。在一些实施方案中,TRS最低限度地涵盖非碱基配对的胸苷。在一些实施方案中,TRS的切口效率可以至少部分由它在同一分子内距RBS的距离来控制。当受体底物是互补的ITR时,所产生的产物是分子内双链体。TRS序列在所属领域中已知,并且包括例如5'-GGTTGA-3'(SEQ ID NO:61),AAV2中所鉴定的六核苷酸序列。本发明的实施方案中可以使用任何已知的TRS序列,包括其它已知的AAV TRS序列和其它天然已知或合成的TRS序列,例如AGTT(SEQ ID NO:62)、GGTTGG(SEQ ID NO:63)、AGTTGG(SEQ ID NO:64)、AGTTGA(SEQ ID NO:65)和其它基序,例如RRTTRR(SEQ ID NO:66)。
如本文所用,术语“ceDNA-质粒”是指一种包含作为分子间双链体的ceDNA基因组的质粒。
如本文所用,术语“ceDNA-杆粒”是指一种包含作为分子间双链体的ceDNA基因组的感染性杆状病毒基因组,其能够作为质粒在大肠杆菌中增殖,因此可以作为杆状病毒的穿梭载体操作。
如本文所用,术语“ceDNA-杆状病毒”是指一种在杆状病毒基因组内包含作为分子间双链体的ceDNA基因组的杆状病毒。
如本文所用,术语“ceDNA-杆状病毒感染的昆虫细胞”和“ceDNA-BIIC”可互换使用,是指被ceDNA-杆状病毒感染的无脊椎动物宿主细胞(包括但不限于昆虫细胞(例如Sf9细胞))。
如本文所用,术语“闭合端DNA载体”是指具有至少一个共价闭合端的无衣壳DNA载体,其中所述载体的至少一部分具有分子内双链体结构。
如本文所用,术语“ceDNA载体”与“ceDNA”可互换地使用并且指包含至少一个末端回文结构的闭合端DNA载体。在一些实施方案中,ceDNA包含两个共价闭合端。
如本文中所定义,“报告分子”是指可用于提供可检测的读出数的蛋白质。报告分子通常产生可测量的信号,例如荧光、颜色或发光。报道蛋白编码序列编码在细胞或生物中的存在易于观察到的蛋白质。例如,荧光蛋白当被特定波长的光激发时会导致细胞发荧光,荧光素酶引起细胞催化产生光的反应,以及例如β-半乳糖苷酶之类的酶将底物转化为有色产物。可用于实验或诊断目的的示例性报告多肽包括但不限于β-内酰胺酶、β-半乳糖苷酶(LacZ)、碱性磷酸酶(AP)、胸苷激酶(TK)、绿色荧光蛋白(GFP)和其它荧光蛋白、氯霉素乙酰转移酶(CAT)、荧光素酶和其它在本领域中公知的报告多肽。
如本文所用,术语“效应蛋白”是指一种提供可检测的读出数的多肽,例如作为报告多肽,或更适当地,作为杀死细胞的多肽,例如毒素,或致使细胞易用所选作用剂或因缺乏所选作用剂而被杀死的作用剂。效应蛋白包括直接靶向或损害宿主细胞的DNA和/或RNA的任何蛋白质或肽。例如,效应蛋白可以包括但不限于,靶向宿主细胞DNA序列(无论是基因组的还是在染色体外元件上的)的限制性核酸内切酶、降解细胞存活所必需的多肽靶标的蛋白酶、DNA回旋酶抑制剂、以及核糖核酸酶型毒素。在一些实施方案中,由如本文所述的合成生物回路控制的效应蛋白表达可作为一个因子参与另一个合成生物回路,从而扩大了生物回路系统应答性的范围和复杂度。
转录调节子是指活化或阻遏所关注基因转录的转录活化因子和阻遏子。启动子是启动特定基因转录的核酸区域。转录活化因子通常在附近与转录启动子结合并募集RNA聚合酶来直接启动转录。阻遏子与转录启动子结合,并在空间上阻碍RNA聚合酶启动转录。其它转录调节子可取决于它们的结合位置以及细胞和环境条件来充当活化子或阻遏子。转录调节子类别的非限制性实例包括但不限于同源域蛋白、锌指蛋白、翼状螺旋(叉头)蛋白和亮氨酸拉链蛋白。
如本文所用,“阻遏蛋白”或“诱导蛋白”是与调控序列元件结合并分别阻遏或活化与调控序列元件可操作连接的序列的转录的蛋白质。如本文所述的优选的阻遏和诱导蛋白对至少一种输入剂或环境输入物的存在或不存在敏感。如本文所述的优选蛋白质是模块的形式,包含例如可分离的DNA结合和输入剂结合或应答元件或结构域。
如本文所用,“载剂(carrier)”包括任何和所有的溶剂、分散介质、媒介物、包衣、稀释剂、抗细菌和抗真菌剂、等张和吸收延迟剂、缓冲液、载剂溶液、悬液、胶体等。这样的介质和作用剂用于药物活性物质的用途是本领域公知的。补充的活性成分也可以并入组合物中。短语“药学上可接受的”是指当施用于宿主时不会产生毒性的、过敏性的或类似的不良反应的分子实体和组合物。
如本文所用,“输入剂应答结构域”是转录因子的一个结构域,其以致使连接的DNA结合融合结构域对条件或输入剂的存在作出应答的方式与所述条件或输入剂结合或以其它方式作出应答。在一个实施方案中,条件或输入剂的存在导致输入剂应答结构域或其融合的蛋白质发生构象变化,从而改变转录因子的转录调制活性。
术语“体内”是指在生物体、例如多细胞动物中或内部进行的测定或过程。在本文描述的一些方面中,当使用单细胞生物例如细菌时,可以说方法或用途是在“体内”发生的。术语“离体”是指使用具有完整膜的活细胞进行的方法和用途,所述活细胞在多细胞动物或植物体之外,例如外植体、培养细胞,包括原代细胞和细胞系、转化的细胞系,以及提取的组织或细胞,包括血细胞,等等。术语“体外”是指不需要存在具有完整膜的细胞的测定和方法,例如细胞提取物,并且可以指在非细胞系统、例如不包含细胞或细胞系统的介质、例如细胞提取物中引入可编程的合成生物回路。
如本文所用的术语“启动子”是指通过驱动核酸序列的转录来调节另一核酸序列表达的任何核酸序列,其可以是编码蛋白质或RNA的异源靶基因。启动子可以是组成型的、诱导型的、阻遏型的、组织特异性的或其任何组合。启动子是核酸序列的控制区域,在此核酸序列的其余部分的启动和转录速率是受控的。启动子还可以含有可以结合调节蛋白和分子的遗传元件,例如RNA聚合酶和其它转录因子。在本文所述的方面的一些实施方案中,启动子能够驱动转录因子的表达,所述转录因子调控启动子本身的表达,或本文所述的合成生物学回路中的另一模块化组件中使用的另一启动子的表达。在启动子序列内将发现转录起始位点,以及负责RNA聚合酶结合的蛋白质结合域。真核启动子将经常但并非总是含有“TATA”框和“CAT”框。各种启动子,包括诱导型启动子,可用于驱动本文公开的ceDNA载体中转基因的表达。启动子序列可以在其3'末端以转录起始位点为界并且向上游延伸(5'方向)以包括为了在高于背景的可检测水平上引发转录所必需的最少数目个碱基或元件。
如本文所用,术语“增强子”是指顺式作用调控序列(例如50-1,500个碱基对),其结合一种或多种蛋白质(例如活化剂蛋白质或转录因子)以增强核酸序列的转录活化。增强子可以位于其调节的基因起始位点上游或基因起始位点下游最多1,000,000个碱基对处。增强子可以位于内含子区域内,或无关基因的外显子区域中。
启动子可以被说成驱动其调节的核酸序列的表达或驱动其转录。短语“可操作地连接”、“操作性定位”、“操作性连接”,“在控制下”和“在转录控制下”指示启动子相对于其调节的核酸序列处于正确的功能位置和/或取向,以控制该序列的转录启动和/或表达。如本文所用的“反向启动子”是指核酸序列处于相反的取向,使得编码链现在成为非编码链,而非编码链成为编码链的启动子。反向启动子序列可以在各种实施方案中用于调控开关的状态。另外,在各种实施方案中,启动子可以与增强子结合使用。
启动子可以是与基因或序列天然结合的启动子,如能够通过分离位于编码区段上游的5'非编码序列和/或给定基因或序列的外显子所获得。这样的启动子可以被称为“内源性的”。类似地,在一些实施方案中,增强子可以是与核酸序列天然关联的增强子,位于该序列的下游或上游。
在一些实施方案中,编码核酸区段定位在“重组启动子”或“异源启动子”的控制下,两者均指在天然环境中正常不与其可操作地连接的编码核酸序列关联的启动子。重组或异源增强子是指在天然环境中正常不与给定核酸序列关联的增强子。这样的启动子或增强子可以包括其它基因的启动子或增强子;从任何其它原核、病毒或真核细胞中分离的启动子或增强子;以及非“天然存在”的合成启动子或增强子,即包含不同转录调节区域的不同元件、和/或通过本领域已知的基因工程方法来改变表达的突变。除了通过合成产生启动子和增强子的核酸序列之外,还可以结合本文公开的合成生物回路和模块,使用重组克隆和/或核酸扩增技术,包括PCR,来产生启动子序列(参见例如美国专利第4,683,202号、美国专利第5,928,906号,各自以引用的方式并入本文)。此外,预期也可以采用指导序列在例如线粒体、叶绿体等非核细胞器内的转录和/或表达的控制序列。
如本文所述,“诱导型启动子”是特征在于当存在诱导物或诱导剂或受其影响或被其接触时,启动或增强转录活性的启动子。如本文所定义的“诱导物”或“诱导剂”可以是内源性的,或是以能够从诱寻型启动子诱导转录活性的方式施用的通常外源性的化合物或蛋白质。在一些实施方案中,诱导物或诱导剂,即化学物质、化合物或蛋白质,本身可以是核酸序列转录或表达的结果(即诱导物可以是由另一组分或模块表达的诱导蛋白),转录或表达本身可以处于诱导型启动子的控制下。在一些实施方案中,诱导型启动子是在不存在某些剂、例如阻遏蛋白的情况下被诱导的。诱导型启动子的实例包括但不限于:四环素、金属硫蛋白、蜕皮素、哺乳动物病毒(例如腺病毒晚期启动子;以及小鼠乳腺肿瘤病毒长末端重复序列(MMTV-LTR))和其它类固醇响应性启动子、雷帕霉素响应性启动子等。
本文可互换使用的术语“DNA调控序列”、“控制元件”和“调控元件”是指转录和翻译控制序列,例如启动子、增强子、聚腺苷酸化信号、终止子、蛋白质降解信号等,其提供和/或调节非编码序列(例如靶向DNA的RNA)或编码序列(例如定点修饰多肽或Cas9/Csn1多肽)的转录和/或调节编码的多肽的翻译。
术语“可操作地连接”是指一种并接,其中如此描述的组件处于允许其按预定方式发挥作用的关系。例如,如果启动子影响编码序列的转录或表达,那么该启动子可操作地连接至编码序列。“表达盒”包括异源DNA序列,其可操作地连接到启动子或足以引导转基因在ceDNA载体中转录的其它调控序列。合适的启动子包括例如组织特异性启动子。启动子也可以是AAV起源的。
如本文所用的术语“受试者”是指向其提供用本发明的ceDNA载体的治疗、包括预防性治疗的人类或动物。通常,动物是脊椎动物,例如但不限于灵长类动物、啮齿动物、家养动物或野生动物。灵长类动物包括但不限于黑猩猩、食蟹猴、蜘蛛猴和猕猴,例如恒河猴。啮齿动物包括小鼠、大鼠、旱獭、雪貂、兔和仓鼠。家养和野生动物包括但不限于:牛、马、猪、鹿、野牛、水牛、猫科物种如家猫、犬科物种如狗、狐狸、狼、禽类物种如鸡、鸸鹋、鸵鸟,以及鱼如鳟鱼、鲶鱼和鲑鱼。在本文所述方面的某些实施方案中,受试者是哺乳动物,例如灵长类动物或人。受试者可以是雄性或雌性。另外,受试者可以是婴儿或儿童。在一些实施方案中,受试者可以是新生儿或未出生的受试者,例如,受试者还在子宫内。优选地,受试者是哺乳动物。哺乳动物可以是人、非人类的灵长类动物、小鼠、大鼠、狗、猫、马或牛,但不限于这些实例。人以外的哺乳动物可以有利地用作代表疾病和病症的动物模型的受试者。另外,本文所述的方法和组合物可用于家养动物和/或宠物。人类受试者可以是任何年龄、性别、种族或人种群组,例如,高加索人(白人)、亚洲人、非洲人、黑人、非裔美国人、非裔欧洲人、西班牙人、中东人等。在一些实施方案中,受试者可以是临床环境中的患者或其它受试者。在一些实施方案中,受试者已在进行治疗。在一些实施方案中,受试者是胚胎、胎儿、新生儿、婴儿、儿童、青少年或成人。在一些实施方案中,受试者是人类胎儿、人类新生儿、人类婴儿、人类儿童、人类青少年或人类成人。在一些实施方案中,受试者是动物胚胎,或非人类胚胎或非人类灵长类动物胚胎。在一些实施方案中,受试者是人胚胎。
如本文所用,术语“宿主细胞”包括易于被本公开内容的核酸构建体或ceDNA表达载体转化、转染、转导等的任何细胞类型。作为非限制性实例,宿主细胞可以是分离的原代细胞、多能干细胞、CD34+细胞、诱导的多能干细胞或许多永生化细胞系(例如HepG2细胞)中的任何一种。或者,宿主细胞可以是组织、器官或生物体中的原位或体内细胞。
术语“外源”是指存在于除天然来源外的细胞中的物质。当在本文中使用时,术语“外源”可以指已经通过涉及人手的过程被引入如细胞或生物体等生物系统中的核酸(例如编码多肽的核酸)或多肽,通常在所述细胞或生物体中未发现所述核酸或多肽,并且希望将核酸或多肽引入这种细胞或生物中。可替代地,“外源”可以指已经通过涉及人手的过程被引入到如细胞或生物体等生物系统中的核酸或多肽,在所述细胞或生物体中发现核酸或多肽的量相对较低,并且希望增加细胞或生物体中核酸或多肽的量,例如以产生异位表达或水平。与此相反,术语“内源”是指原产于所述生物系统或细胞的物质。
术语“序列一致性”是指两个核苷酸序列之间的相关性。为了本公开的目的,使用在EMBOSS软件包的Needle程序(EMBOSS:欧洲分子生物学开放软件套件,Rice等人,2000,同上)、优选版本3.0.0或更高版本中执行的Needleman-Wunsch算法(Needleman和Wunsch,1970,见上文)确定两个脱氧核糖核苷酸序列之间的序列一致性程度。使用的可选参数是空位开放罚分10,空位延伸罚分0.5和EDNAFULL(NCBI NUC4.4的EMBOSS版本)替换矩阵。标记为“最长一致性”的Needle的输出(使用-nobrief选项获得)用作一致性百分比,并按以下方式计算:(相同的脱氧核糖核苷酸乘以100)/(比对长度-比对空位总数)。比对的长度优选为至少10个核苷酸,优选为至少25个核苷酸,更优选为至少50个核苷酸,最优选为至少100个核苷酸。
如本文所用,术语“同源性”或“同源”定义为,在对准序列且必要时引入空位以实现最大序列一致性百分比之后,与靶染色体上的相应序列中的核苷酸残基一致的核苷酸残基的百分比。为了确定核苷酸序列同源性百分比的比对可以用本领域技术范围内的各种方式来实现,例如使用公开可用的计算机软件,例如BLAST、BLAST-2、ALIGN、ClustalW2或Megalign(DNASTAR)软件。本领域技术人员可以确定用于比对序列的合适参数,包括在所比较的序列的全长上实现最大比对所需的任何算法。在一些实施方案中,当同源臂的例如核酸序列(例如DNA序列)与宿主细胞的相应原生或未经编辑的核酸序列(例如基因组序列)至少70%、至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或更多一致时,所述序列被视为“同源”。
如本文所用,术语“异源”分别意指在天然核酸或蛋白质中未发现的核苷酸或多肽序列。异源核酸序列可以与天然存在的核酸序列(或其变异体)连接(例如通过基因工程)以产生编码嵌合多肽的嵌合核苷酸序列。异源核酸序列可以连接到变异型多肽(例如通过基因工程),以产生编码融合变异型多肽的核苷酸序列。
“载体”或“表达载体”是复制子,例如质粒、杆粒、噬菌体、病毒、病毒体或粘粒,可连接另一个DNA区段,即“插入物”以实现连接区段在细胞中的复制。载体可以是设计用于递送到宿主细胞或用于在不同宿主细胞之间转移的核酸构建体。如本文所用,载体在起源和/或最终形式上可以是病毒或非病毒的,但是出于本公开的目的,“载体”通常是指ceDNA载体,如本文所用。术语“载体”涵盖与适当的控制元件结合时能够复制并且可以将基因序列转移至细胞的任何遗传元件。在一些实施方案中,载体可以是表达载体或重组载体。
如本文所用,术语“表达载体”是指指导RNA或多肽从与载体上的转录调控序列连接的序列的表达的载体。表达的序列通常但不一定与细胞异源。表达载体可以包含其它元件,例如,表达载体可以具有两个复制系统,从而使其可以在两种生物体中维持,例如在人类细胞中进行表达,以及在原核宿主中进行克隆和扩增。术语“表达”是指涉及产生RNA和蛋白质以及适当时分泌蛋白质的细胞过程,在适用时包括但不限于例如转录、转录物加工、翻译和蛋白质折叠、修饰和加工。“表达产物”包括从基因转录的RNA和通过翻译从基因转录的mRNA所获得的多肽。术语“基因”是指当可操作地连接至适当的调控序列时,在体外或体内转录(DNA)为RNA的核酸序列。基因可以包括或可以不包括编码区前后的区域,例如5'非翻译(5'UTR)或“前导”序列和3'UTR或“尾随”序列,以及个别编码区段(外显子)之间的插入序列(内含子)。
“重组载体”意指包括能够在体内表达的异源核酸序列或“转基因”的载体。应了解,在一些实施方案中,本文所述的载体可以与其它合适的组合物和疗法组合。在一些实施方案中,载体是游离型的。合适的游离型载体的使用提供了一种以高拷贝数的染色体外DNA维持受试者中的所关注核苷酸,从而消除染色体整合的潜在影响的方式。
如本文所用的短语“遗传性疾病”是指部分或完全、直接或间接地由基因组中的一种或多种异常引起的疾病,尤其是从出生起出现的病状。异常可以是突变、插入或缺失。异常可能影响基因的编码序列或其调控序列。遗传疾病可以是(但不限于)DMD、血友病、囊肿性纤维化、亨廷顿氏舞蹈病、家族性高胆固醇血症(LDL受体缺陷)、肝母细胞瘤、威尔逊氏疾病(Wilson's disease)、先天性肝卟啉症(hepatic porphyria)、遗传性肝代谢病症、勒什尼汗综合症(Lesch Nyhan syndrome)、镰状细胞贫血、地中海贫血、着色性干皮病、范克尼氏贫血(Fanconi's anemia)、色素性视网膜炎、共济失调毛细血管扩张症、布鲁氏综合症、视网膜母细胞瘤,和泰伊-萨克斯二氏病(Tay-Sachs disease)。
如本文所用,术语“生物标志物”是指任何可分析的特征或组合物,其能够用于鉴定受试者或样品的病状(例如疾病)或病状的状态(例如疾病状态)。生物标志物在本文公开的一些实例中可以是一种基因,其表达特征能够用于鉴定受试者或样品的病状或病状的状态。在其它实例中,生物标志物可以是基因产物。在一些实施方案中,术语“生物标志物”是指一种多肽,其内源性表达于个体中或发现或掩蔽于个体的生物样品中。
“基因产物”意指转录物(例如mRNA)、核酸(例如miRNA)或蛋白质。因此,本文公开了生物标志物,其存在、缺乏或相对量能够用于鉴定受试者或样品的病状或病状的状态。在一个特定实例中,生物标志物可以是基因产物,其在受试者中的存在或缺乏是患有或不患有特定神经退化性疾病、具有产生疾病(例如神经退化性疾病)的特定风险或处于特定疾病阶段的受试者的特征。在又另一实例中,生物标志物可以是基因产物,其增加或减少指示特定的疾病状态、产生疾病的特定风险,或特定的疾病阶段。在另一个实例中,生物标志物可以是一组不同基因产物,其存在或缺乏指示受试者患有或不患有特定疾病、具有产生疾病的特定风险,或处于特定的疾病阶段。在另一实例中,生物标志物可以是一组基因产物,其增加和减少表达的模式是特定疾病或其缺乏的特征。再者,生物标志物可以是一种基因产物或一组基因产物,其表达模式是疾病存在或缺乏或疾病的特定预后或结果的特征。如本文所用,生物标志物可以是其它临床测试的替代物。能够测量本文所鉴定的生物标志物,以测定水平、表达、活性或检测变异体。如通篇所用,当论述检测表达水平或活性时,应理解,这能反映指定生物标志物的变异体。变异体包括氨基酸或核酸变异体或翻译后经修饰的变异体。
如本文所用,术语“生物样品”是指来自受试者的细胞或细胞群或一定数量的组织或体液。大多数情况下,样品已经从受试者中移出,但是术语“生物样品”还可以指体内分析(即,不从受试者中移出)的细胞或组织。通常,“生物样品”将含有来自受试者的细胞,但所述术语还可以指能够用于测量基因表达或蛋白质表达水平的非细胞生物材料,例如血液、唾液或尿液的非细胞部分。生物样品包括(但不限于)组织切片、刮除物(例如颊刮除物)、全血、血浆、血清、尿液、唾液、细胞培养液,或脑脊髓液。生物样品还包括组织切片、细胞培养液。生物样品或组织样品可以指从个体中分离出的组织样品或体液,包括(但不限于)例如血液、血浆、血清、肿瘤切片、尿液、粪便、痰液、脊髓液、胸膜液、乳头抽出物、淋巴液、皮肤的外部切片、呼吸道、肠道和泌尿生殖道、泪液、唾液、乳汁、细胞(包括(但不限于)血细胞)、肿瘤、器官,以及体外细胞培养成分的样品。在一些实施方案中,样品来自原发或转移瘤的切除、支气管镜切片或芯针切片,或来自胸膜液的细胞块。另外,使用细针抽吸样品。样品可以是石蜡包埋的或冷冻的组织。样品不仅能够通过从受试者中去除细胞样品来获得,而且能够通过使用预先分离出的细胞(例如由另一个人分离)或通过对体内ceDNA载体的转基因表达水平进行分析来完成。生物样品也指从个体中分离出的组织样品或体液,包括(但不限于)例如血液、血浆、血清、肿瘤切片、尿液、粪便、痰液、脊髓液、胸膜液、乳头抽出物、淋巴液、皮肤的外部切片、呼吸道、肠道和泌尿生殖道、泪液、唾液、乳汁、细胞(包括(但不限于)血细胞)、肿瘤、器官,以及体外细胞培养成分的样品。在一些实施方案中,能够制备生物样品,例如生物样品能够是新制的、固定、冷冻或包埋于石蜡中。
如本文所用,术语“血液样品”或“血液”包括(但不限于)全血、血清或血浆。在一些实施方案中,将全血样品进一步处理成血清或血浆样品。术语还包括上述样品的混合物。
如本文所用,术语“抑制剂”是指抑制蛋白质生物活性的任何药剂或实体。在基因活性水平的上下文中所用的“减少”或“抑制”是指细胞、细胞提取物或细胞上清液中的蛋白质或核酸水平或生物活性的降低。举例来说,此类抑制可能是由于多肽对其内源性配体的结合减少,或抑制剂对多肽的不完全结合使得催化活性或对靶配体的亲和力减少等,或替代地是由于减少的RNA稳定性、转录或翻译、增加的蛋白质降解或RNA干扰。优选地,减幅是控制条件下的表达水平或活性的至少约5%、至少约10%、至少约25%、至少约50%、至少约75%、至少约80%,或甚至至少约90%。如本文所用,术语“抑制”当其涉及抑制拓扑异构酶I蛋白质或其变异体的活性时,不一定意指表达和/或活性的完全抑制。相反,蛋白质、多肽或多核苷酸的表达或活性被抑制的程度和/或时间足以产生所期望的效应。
术语“较低(lower)”、“减小的(reduced)”、“减小(reduction)”或“减少(decrease)”或“抑制(inhibit)”在本文中通常都用于指减少了统计显著量。然而,为了避免疑问,“较低”、“减小的”、“减小”或“减少”或“抑制”是指相较于参考水平,减少至少10%,例如相较于参考水平,减少至少约20%,或至少约30%,或至少约40%,或至少约50%,或至少约60%,或至少约70%,或至少约80%,或至少约90%,或至多且包括100%减幅(即,相较于参考样品为缺失的水平),或10-100%之间的任何减幅。
术语“增加的”、“增加”或“增强”或“较高”在本文中通常都用于指增加了统计显著量;为了避免任何疑问,术语“增加的”、“增加”或“增强”或“较高”是指相较于参考水平,增加至少10%,例如相较于参考水平,增加至少约20%,或至少约30%,或至少约40%,或至少约50%,或至少约60%,或至少约70%,或至少约80%,或至少约90%,或至多且包括100%增幅,或10-100%之间的任何增幅,或相较于比参考水平,增加至少约2倍,或至少约3倍,或至少约4倍,或至少约5倍或至少约10倍,或2倍与10倍或更多倍之间的任何增幅。
基因或蛋白质表达或活性的“增加”意指细胞、细胞提取物或细胞上清液中的蛋白质或多肽或核酸水平或活性发生正向变化。举例来说,此类增加可能是由于增加的RNA稳定性、转录或翻译,或减少的蛋白质降解。相对于控制条件下的表达水平或活性,此增幅优选至少5%、至少约10%、至少约25%、至少约50%、至少约75%、至少约80%、至少约100%、至少约200%,或甚至约500%或更多。
如本文所用的术语“包含(comprising/comprises)”在提及组合物、方法以及对所述方法或组合物来说必不可少的其相应组分时使用,但对于包括未指明的要素,无论是否必要,仍然是开放的。
如本文所用,术语“基本上由……组成”是指给定实施方案所需要的那些要素。该术语允许存在不实质影响该实施方案的基本和新颖或功能性特征的要素。“包含”的使用表示包含而不是限制。
术语“由……组成”是指如本文所述的组合物、方法和其相应组分,其排除在该实施方案的描述中未叙述的任何要素。
如本文所用,术语“基本上由……组成”是指给定实施方案所需要的那些要素。该术语允许存在不实质上影响本发明的那个实施方案的基本和新颖或功能特征的额外元件。
如本说明书和所附权利要求书所用,除非上下文另有明确规定,否则单数形式“一种(a/an)”和“所述”包括复数提及物。因此,例如,提到“方法”包括本文所述的和/或在阅读本公开等之后对于本领域技术人员而言将变得显而易见的类型的一个或多个方法和/或步骤。类似地,除非上下文中另有明确指示,单词“或”旨在包括“和”。虽然与本文中所述的方法和材料相似或等效的方法和材料可用于实施或测试本公开,但在下面描述合适的方法和材料。缩写“例如(e.g.)”源自于拉丁文exempli gratia,在本文中用来指示非限制性实例。因此,缩写“例如(e.g.)”与术语“例如(for example)”是同义的。
除了在操作例中或在另外指出的情况下,本文中使用的表示成分或反应条件的量的所有数字都应理解为在所有情况下均由术语“约”修饰。术语“约”在结合百分比使用时,可以意指±1%。以下实施例进一步详细解释本发明,但本发明的范围不应限于此。
本文公开的本发明的替代要素或实施方案的分组不应解释为限制。每个组成员可以单独提及和要求,或呈与该组的其它成员或此处找到的其它要素的任何组合提及和要求。出于方便和/或可专利性的原因,一个组中的一个或多个成员可以包括在一个组中或从中删除。当发生任何这样的包括或删除时,在本文中认为说明书含有修改的组,从而满足所附权利要求书中使用的所有马库什组(Markush group)的书面描述。
在任何方面的一些实施方案中,本文描述的公开内容不涉及克隆人的方法、用于修饰人的种系遗传身份的方法、用于工业或商业目的的人胚胎的使用、或用于修饰动物的基因身份,可能导致其遭受痛苦而对人或动物没有任何实质性医学益处的方法,以及由这类方法产生的动物。
本文在本发明的各个方面的描述内定义了其它术语。
本申请全文中引用的所有专利和其它出版物,包括参考文献、授权专利、已发布的专利申请和共同待决的专利申请,以引用的方式明确地并入本文中,以描述和公开例如在这些出版物中描述的可以与本文所述的技术结合使用的方法。提供这些出版物仅仅是出于其在本申请的提交日期之前的公开内容而提供。关于这一点,任何内容都不应被解释为承认发明者由于在先发明或任何其它原因而无权早于这种公开内容。关于这些文件的日期的所有声明或关于内容的陈述都是基于申请人可获得的信息,并且不等同于承认这些文件的日期或内容的正确性。
本公开的实施方案的描述并非旨在穷举或将本公开限制于所公开的精确形式。尽管本文出于说明性目的描述了本公开的特定实施方案和实施例,但是如相关领域的技术人员将认识到的,在本公开的范围内可以进行各种等效修改。例如,虽然方法步骤或功能以给定的顺序呈现,但是替代实施方案可以以不同的顺序执行功能,或者功能可以基本上同时执行。本文提供的本公开的教导可以适当地应用于其它程序或方法。本文描述的各种实施方案可以进行组合以提供其它实施方案。如果需要,可以修改本公开的各方面以采用上述参考文献和申请的组合物、功能和概念来提供本公开的又一实施方案。而且,由于生物学功能等效性的考虑,可以在不影响生物学或化学作用的种类或数量的情况下对蛋白质结构进行一些改变。可以根据详细描述对本公开进行这些和其它改变。意图所有这些修改包括在所附权利要求书的范围内。
任何前述实施方案的特定要素都可以进行组合或替代其它实施方案中的要素。此外,尽管已经在这些实施方案的上下文中描述了与本公开的某些实施方案相关联的优点,但是其它实施方案也可以表现出这样的优点,并且并非所有实施方案都需要为了落入本公开的范围内而表现出这样的优点。
通过以下实施例进一步说明本文所述的技术,这些实施例决不应解释为进一步限制。应了解,本发明不限于本文所述的具体方法、方案和试剂等,因此可以变化。本文中所用的术语仅仅是为了描述具体实施方案,而无意于限制本发明的范围,本发明的范围仅仅由权利要求书限定。
I.使用ceDNA载体控制转基因表达的方法
本文中描述了体内或体外施用ceDNA载体的方法,所述ceDNA载体能够(i)在预定时间段实现转基因水平的持续表达(即,维持转基因表达水平),或(ii)以剂量依赖性方式增加转基因表达水平,所述方法包含ceDNA载体的至少一次(例如一次或多次)后续施用(例如“增强”或“加打”施用)。
相应地,本文所述的技术涉及ceDNA载体的体内施用,其中一次或多次后续施用(例如增强施用或加打)使转基因表达水平维持在所期望水平或使水平增加。本文公开的ceDNA载体能够使体外和体内的转基因表达水平相对于之前的水平增加。通过至少一次再施用(本文中也称为“加打”),转基因水平的增加能够在初次施用之后的任何时间点达到或高于所期望水平,或使表达水平增加到所期望的表达范围内。在一些情况下,所期望的增加是校正那些水平的天然存在的降低,使得最终剂量恢复至预先的期望水平,例如持续的剂量水平。如本文所公开的ceDNA载体的此类加打施用或重复给予能够用于增加转基因表达水平是可行的,原因在于ceDNA载体没有刺激宿主免疫应答的衣壳(例如载体具有非免疫原性特性),且从而提供相对于现有AAV载体技术的明显优势,在现有AAV载体技术中,加打是不可行的,因为宿主因之前的AAV暴露或例如AAV载体初次施用而存在免疫应答或AAV免疫。因此,为了使用rAAV载体达成高水平的表达,典型地需要初次高剂量并且加打由于免疫应答问题而不可行且/或无效。相比之下,能够施用如本文所公开的ceDNA载体的一次或多次加打施用,以增加转基因表达水平,例如使表达水平增加到所期望的表达水平,或高于所期望的阈值水平或在所期望的表达水平范围内。
相应地,本发明涉及为了以下中的任一种而控制转基因表达的方法和ceDNA:(i)通过在一个或多个时间点再施用ceDNA载体而使转基因表达水平在所期望水平保持或维持预定时间;(ii)通过在一个或多个时间点再施用ceDNA载体而增加转基因表达水平;或(iii)通过以剂量依赖性方式施用ceDNA载体实现剂量依赖性转基因表达(即,转基因的可滴定表达)。如本文所论述,cDNA载体相较于其它病毒载体独特之处在于,ceDNA载体能够多次施用于受试者,例如在短时间段(例如数月)内或在长时间段内(例如在数年内)多次施用于受试者,以便控制转基因的表达,由此能够按照受试者的需求来定制或调整基因疗法。
A.增加或剂量依赖性控制转基因的表达
(i)可控的转基因表达:通过再施用ceDNA载体来维持转基因表达
本文所述技术的一个方面涉及如本文所公开的ceDNA载体在保持或维持转基因在细胞中的表达水平的方法中的用途,所述方法包含:(a)在第一时间点将达成转基因表达的预致敏剂量的ceDNA载体施用于细胞;和(b)在第二时间点向细胞施用一定剂量的ceDNA载体,以补偿在第一时间点施用ceDNA载体之后发生的转基因表达水平的任何降低。
如图6所示,能够达成ceDNA表达转基因的表达水平且维持(即,保持)至少42天或至少60天或至少80天,并且在初次预致敏施用(例如在0时)之后的第二个或更多个后续时间点进行加打施用能够使所述表达水平增加到必需的预定表达水平。图6还证明,能够达成ceDNA表达转基因的表达水平并且维持至少42天或至少60天,并且在初次预致敏施用(例如在0时)之后的第二个或更多个后续时间点进行加打施用能够使所述表达水平以剂量依赖性方式增加。
转基因的表达典型地发生于加打施用之后的约7-20天内,并且在施用第二剂量(即,加打,或在第二或后续时间点施用)之后,使加打施用之后的转基因的那种表达水平保持(即,维持表达)至少约30天或约60天或约90天或约120天或长于120天。
本文所述技术的另一方面涉及一种治疗受试者的疾病的方法,或替代地,控制受试者中的转基因表达的方法,所述方法包含:(a)在第一时间点向受试者施用预致敏剂量的包含如本文所述的ceDNA载体的组合物,以达成转基因在第一水平(或第一数量)的表达;以及(b)在第二时间点向受试者施用一定剂量或数量的ceDNA载体,以使转基因的表达水平保持在所期望的持续表达水平,其中持续的表达水平是高于仅在第一时间点初次(即,预致敏)施用ceDNA载体时所达成的转基因表达水平的表达水平,由此治疗受试者的疾病。
相应地,在一些实施方案中,能够再施用(在本文中也称为“加打”)如本文所公开的ceDNA载体以保持所期望的转基因表达水平,其中ceDNA载体包含两个ITR序列(例如如本文所述的对称ITR对或不对称ITR对),所述ITR序列与可操作地连接到启动子的转基因多核苷酸序列侧接。
在一些实施方案中,在维持转基因于细胞中的表达水平的方法中使用ceDNA载体使转基因在所期望的表达水平表达至少42天。在一些实施方案中,ceDNA载体按照所期望的表达水平表达转基因至少84天。在一些实施方案中,ceDNA载体按照所期望的表达水平表达转基因至少132天。仅出于说明性目的,相较于其它方法所产生且在相同小鼠模型中测试的类似闭合端DNA载体,实例1中所公开的方法产生的ceDNA载体在施用后能够使CD-1IGS小鼠的鼠模型中的转基因表达水平在较高水平维持7到28天。
在一些实施方案中,增加的转基因表达不具剂量依赖性,或不具完全的剂量依赖性,而是持续的表达,原因在于增加的转基因表达典型地发生于加打施用之后的7到20天内,并且在施用第二剂量(即,加打,或在第二或后续时间点施用)之后,使加打引起的增加的转基因表达水平保持至少约30天或至少约60天或至少约90天或至少约120天或长于约120天。
本文公开的所指定ceDNA载体或组合物的特定剂量反应关系能够通过所属领域的技术人员众所周知的方式确定,包括例如实例6中所述的方式。必要时,通过在初次施用之后的一个或多个时间施用额外剂量的ceDNA载体能够滴定如本文所公开的ceDNA载体,以达成所期望的表达水平。为了将转基因表达水平滴定于或接近所期望水平,能够施用超过一次、2次、3次、4次、5次或6次或更多次的重复施用。典型地,每次重复施用是在观察到此前施用引起的转基因表达减少之前的大约7天施用。实际上,重复施用用于将转基因表达水平滴定到所期望水平,或换句话说,重复施用能够使转基因表达水平保持在所期望的表达水平范围内,例如具有治疗疾病或病症的治疗作用或处于组合物的治疗窗内的期望范围。
在一些实施方案中,本文所述的ceDNA载体能够用于调整体内转基因表达水平,其中表达水平在体内从之前的水平增加(其中之前的水平是之前预致敏或加打施用之后的水平)到所期望的表达水平,或所期望的表达水平范围内,或高于所期望的阈值水平,其中在加打施用ceDNA载体之后,使增加的表达水平维持或保持约30到60天,或约40到70天,或约50到80天,或约60到90天,或约70到100天,或约80到110天,或约40到120天,或长于120天。
在一些实施方案中,本文所述方法(例如用于维持转基因在细胞中的表达和/或用于治疗患有疾病的受试者的方法)中使用的ceDNA载体与药学上可接受的载剂和/或赋形剂组合施用。在一些实施方案中,ceDNA载体在第二时间点施用,即在第一时间点之后的至少30天或至少60天,或60到90天,或90到120天,或约3到6个月,或6到12个月,或1到2年,或2到3年施用。
(ii)可控的转基因表达:通过再施用ceDNA载体来增加转基因表达
除加打施用ceDNA载体以仅仅增加转基因表达水平(如果表达水平已随时间降低)(例如使转基因表达持续或保持在所期望的预定水平)之外,在一些实施方案中,再施用ceDNA载体的方法和组合物能够使转基因水平以剂量依赖性方式增加,即,加打施用定义量的ceDNA载体能够使转基因的表达水平实现定义的增加。换句话说且使用任意单位(仅出于说明性目的),加打施用1个单位剂量的ceDNA将使转基因表达水平相对于之前水平达成10%增幅,且2个单位剂量的cDNA载体将使转基因水平相对于之前水平达成20%增幅,并且0.5个单位剂量的ceDNA将使转基因表达水平相对于之前水平达成5%增幅。
相应地,在一个实施例中,如本文所公开的用于控制转基因表达的ceDNA载体能够用于以可控方式增加转基因在细胞或受试者中的表达水平。举例来说,ceDNA载体的一次或多次后续施用(例如加打或增强施用)能够增加转基因的表达水平。
如本文所述的ceDNA载体允许在初次预致敏施用之后的一个或多个点进行ceDNA的剂量或浓度依赖性加打施用,以使体内转基因表达水平增加定义的数量。在一些实施方案中,转基因表达增加定义的数量能够使体内转基因表达水平达到或高于所期望的阈值(或预定水平),或处于所期望的表达水平范围内,其中所期望的阈值或所期望的表达水平范围高于之前施用(即,初次预致敏施用或之前的加打施用)的转基因表达水平。
图6说明在受试者体内施用加打(即,再施用或增强)的ceDNA载体之后,能容易增加转基因表达水平。具体地说,图6表明在以加打施用方式向受试者施用不同浓度的ceDNA载体之后,转基因表达水平出现不同的增幅。具体地说,相较于未利用剂量依赖性加打施用的表达水平,ceDNA的加打浓度3mg/ml使转基因表达增加7倍,而ceDNA的加打浓度10mg/kg使转基因表达增加17倍。相应地,本文所述的技术涉及ceDNA体内至少两次施用于受试者,其中第二次或后续施用使得转基因表达水平发生剂量依赖性增加并且增加所期望的数量,且在一些实施方案中,相较于之前施用ceDNA载体或不利用剂量依赖性加打施用所达成的转基因表达水平,达成所期望的表达水平范围或所期望的表达水平,或达成阈值表达水平。也就是说,转基因表达水平的增加是通过一次或多次剂量依赖性加打施用达成的,从而以可控方式增加转基因表达水平,也就是说,基于ceDNA在加打施用时的剂量(或数量)滴定转基因的表达。
换句话说,本文公开的剂量依赖性加打施用相加到转基因表达水平。增加的转基因表达具有剂量依赖性并且是可持续的表达,也就是说,转基因在较高水平的表达(由于剂量依赖性加打施用)保持定义的时间段,或不减少或不下降到低于在不进行加打施用的情况下所观察到的表达水平。
典型地,每次剂量依赖性加打是在期望转基因的表达出现所期望的增加之前的大约7天施用。实际上,剂量依赖性加打用于将转基因表达水平滴定到所期望水平或所期望的表达水平范围,或换句话说,剂量依赖性加打能够使转基因表达水平增加定义的数量而高于之前的表达水平,且增加可以发生于至少一次剂量依赖性加打施用,或替代地,递增式增加发生于超过一次剂量依赖性加打施用,使得转基因以可控的滴定方式增加,从而按照所期望的表达水平范围(例如按照具有治疗疾病或病症的治疗作用的期望范围)内的水平表达。
在一些实施方案中,所期望的表达水平范围或所期望的转基因表达水平范围可以是转基因有效治疗或减少疾病症状的治疗有效量。相应地,在一些实施方案中,为了达成转基因的此类治疗有效量,如本文所述使用一次或多次加打施用能够增加转基因表达水平,从而将所述水平递增地增加到转基因的治疗有效量。因此,在一些实施方案中,能够向受试者施用在低表达水平上表达转基因的ceDNA载体的预致敏剂量(即,亚治疗有效量),并且能够在一定时间段上向受试者施用一次或多次加打施用以增加表达水平直到达成所期望的治疗作用为止。此类策略允许受试者的身体调整到所表达的转基因的水平,并且有效地允许以增量滴定或调整(在这种情况下,是增加)转基因表达水平,从而达到所期望的治疗目标或效果且/或防止由于转基因过度表达而产生的过度用药和/或副作用。替代地,在一些实施方案中,当受试者是婴儿或儿童时,能够向受试者施用在所期望的表达水平(典型地为低表达水平)上表达转基因的ceDNA载体的预致敏剂量,并且当受试者成长而使表达水平增加时,能够在一定时间段上向受试者施用一次或多次剂量依赖性加打施用,以便保持治疗效果。
B.ceDNA载体在再施用时的时序和数量
如本文所公开的ceDNA载体对转基因的表达水平能够通过在初次施用之后的一个或多个时间再施用(即,加打)ceDNA载体而从之前的水平(即,第0天的之前预致敏施用或之前的加打所达成的表达水平)增加。典型地,使表达水平增加到所期望水平或所期望的表达水平范围的加打施用是在期望表达增加之前的约7天或超过7天施用。作为说明性实例,如果转基因的期望表达水平在之前施用(即,预致敏或之前的加打施用)之后的约30天增加,则能够在第28天或更早给予加打。类似地,如果期望转基因表达在之前施用(即,预致敏或之前的加打施用)之后的约90天(或约3个月)增加,则能够在约第83或84天或更早施用加打,以便在或约第90天使转基因表达水平增加到所期望水平或所期望的表达水平范围,其中所期望水平或所期望的表达水平范围高于之前施用所达成的转基因表达水平。
如本文所论述,由于本文所述的方法和ceDNA载体允许个性化定制基因药物方案,即,通过加打施用、以逐步方式滴定转基因表达水平以递增地增加表达水平,因此设想能够随时间施用1、2、3、4、5或6次或超过6次加打,以便使转基因表达水平增加到所期望水平或增加到所期望的表达水平范围,所期望水平或所期望的表达水平范围高于之前施用或在此加打施用之前所达成的表达水平。每次加打施用引起的转基因表达水平的递增式增加可以是相同的,即,每次加打施用能够使转基因表达水平从之前的表达水平增加约10%,或可以是不同的,即,第一次加打施用能够使表达从之前的表达水平增加约10%,并且第二次加打施用能够使表达从之前的表达水平增加约20%。典型地,每次加打是在期望转基因的表达出现所期望的增加之前的大约7天施用。实际上,加打用于将转基因表达水平滴定到所期望水平或所期望的表达水平范围,或换句话说,加打能够使转基因表达水平增加而高于之前的表达水平,并且一次或多次加打施用能够使增加递增式发生,使得转基因按照所期望的表达水平范围(例如具有治疗疾病或病症的治疗作用的期望范围)内的水平表达。
在一些实施方案中,增加转基因表达水平的加打是在之前施用(例如第0天的初次预致敏施用,或之前的加打施用)ceDNA组合物之后的至少约20天,或至少约30天,或至少约40天,或至少约50天,或至少约60天,或约60到90天,或约90到120天,或约120到150天。
在一些实施方案中,本文所述的技术涉及加打ceDNA以便增加体内转基因表达,其中ceDNA组合物的一次或多次加打(即,再施用或增强施用)能够增加转基因表达。在一些实施方案中,在第二或后续时间点加打施用时的ceDNA载体的剂量(或数量)与此加打施用之前或此加打施用前一次的施用(第0天的初次预致敏施用,或之前的加打施用)中的ceDNA剂量(即,数量)相同或不同的数量。作为一个实例,如果在第一时间点施用的ceDNA数量是1mg/kg,则第二或后续时间点加打施用的数量可以是1mg/kg,或小于1mg/kg,或超过1mg/kg。在一些实施方案中,加打数量能够选自以下中的任一种:约2mg/kg、约3mg/kg、约4mg/kg、约5mg/kg、约6mg/kg、约7mg/kg、约8mg/kg、约9mg/kg、约10mg/kg,或约2到5mg/kg之间,或5到10mg/kg之间,或10到15mg/kg,或大于15mg/kg。
在一些实施方案中,为了通过一次或多次加打施用(即,使转基因表达水平递增地增加的连续加打施用)增加转基因表达水平,每次加打施用可以是相同的,即,每次加打施用能够使转基因表达水平从之前的表达水平增加约10%;或者可以是不同的,即,第一次加打施用能够使表达从之前的表达水平增加约10%,而第二次加打施用能够使表达从之前的表达水平增加约20%。
在其中超过一次加打施用的一些实施方案中,每次加打施用引起的转基因表达水平的增加量可以是相同的,即,每次加打施用能够使转基因表达水平从之前的表达水平增加约10%;或可以是不同的,即,第一次加打施用能够使表达从之前的表达水平增加约10%,而第二次加打施用能够使表达从之前的表达水平增加约20%。在超过一次加打施用的一些实施方案中,每次加打施用引起的转基因表达水平的增加量可以是相同的,即,每次加打施用能够使转基因表达水平从之前的表达水平增加约1倍或2倍或3倍;或者可以是不同的,即,第一次加打施用能够使表达从之前的表达水平增加约2倍,而第二次加打施用能够使表达从之前的表达水平增加约6倍,或使表达从初次预致敏施用所达成的表达水平增加约6倍。
在一些实施方案中,ceDNA载体是在预致敏施用(即,在0时进行的第一次施用)时所施用的ceDNA载体,与第二次或任何后续施用(例如加打施用)时施用于细胞或受试者的ceDNA载体相同。在一些实施方案中,ceDNA载体可以是相同的ceDNA载体。仅出于说明目的,再施用的病毒载体(例如AAV载体)通常是与此前所施用不同的血清型。相比之下,再施用的ceDNA载体与此前施用的ceDNA载体相同,也就是说,尚未改变ceDNA载体,以便等效于多次施用相同血清型的AAV。
也就是说,虽然等效于再施用相同血清型的ceDNA载体,但在一些实施方案中,初次预致敏施用之后的第二次或任何后续施用所施用的ceDNA载体(例如加打施用)是不同的,例如不同的ITR对、可操作地连接到转基因的不同启动子、不同的转基因或经修饰的转基因等等。在一些实施方案中,转基因是相同的,或者可以是经修饰的转基因。
在一些实施方案中,ceDNA载体的第一次施用(即,预致敏施用)与加打施用(即,第二时间点,或其后的任何后续时间点,例如第3、第4、第5、第6、第7、第8、第9、第10等)之间的时间间隔可以是之前施用之后(即,预致敏剂量或加打施用之前)的至少30天,或至少60天,或至少80天,或60到90天之间,或90到120天之间,或约2到3个月之间,或约3到6个月之间,或约6到12个月之间,或约1年,或1到2年之间,或约2年,或2到3年之间,或约3年,或3到4年之间,或约5年,或5到6年之间,或5到10年之间,或10到20年之间。如本文所论述,在一个实施方案中,增加转基因表达水平的加打施用是在期望表达增加之前的约7天或超过7天(例如8到10天之间,或14天)施用。
仅出于说明目的,如果第0天初次施用时的ceDNA载体数量设定为任意单位的1,则在第二、第三、第四、第五、第六时间点加打施用时的ceDNA载体数量能够选自以下中的任一种:第0天初次施用时的ceDNA载体数量的2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、11倍、12倍、13倍、14倍、15倍,或15到20倍之间,或20到50倍之间。
在一些实施方案中,如果第0天初次施用时的ceDNA载体数量使表达水平被赋予1倍的任意单位,则第二、第三、第四、第五、第六时间点加打施用的ceDNA载体数量可以是使得转基因表达水平相较于第0天初次施用ceDNA载体引起的转基因表达水平增加至少2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍、11倍、12倍、13倍、14倍、15倍,或15到20倍之间,或20到50倍之间的ceDNA载体的数量。
在一些实施方案中,加打施用采取与第0天初次施用ceDNA相同的方式或相同的施用途径。在一些实施方案中,加打施用采取与第0天初次施用ceDNA不同的方式或不同的施用途径。在一些实施方案中,当初次施用(即,在0时进行的预致敏施用)后进行一次或多次加打(即,增强施用)时,施用可以是对包含ceDNA载体的组合物进行静脉内施用、鼻内或肌肉内施用,或医学上适当的任何其它施用途径。
如本文所公开的ceDNA载体能够在第一时间点且在必要时或希望时能够在第一时间点之后的时间施用于受试者(例如初次施用,例如第0天)。如本文所公开的ceDNA载体能够在第二时间点施用,以将转基因水平滴定到所期望水平(例如高于阈值以发挥功效)或所期望的表达水平范围内(例如在组合物的治疗窗内)。设想能够向受试者施用如本文所公开的超过一次剂量的ceDNA载体,例如能够在以下中的任一个或多个时间点给予重复施用:第二时间点、第三时间点、第四时间点等。涵盖能够施用额外的剂量以保持所期望的转基因表达水平(即,保持或维持相同的转基因表达水平)。第一次与第二次加打或任何两次连续加打之间的时间间隔无需相同。
C.预定的转基因表达水平
在一些实施方案中,预定的转基因表达水平(也称为所期望的表达水平范围,或所期望的转基因表达水平范围)可以是转基因有效治疗或减少疾病症状的治疗有效量。相应地,在一些实施方案中,为达成此类转基因的治疗有效量,如本文所公开,能够利用如本文所述的一次或多次加打施用保持转基因表达水平且/或增加转基因表达水平,以使所述水平递增地增加到转基因的治疗有效量。因此,在一些实施方案中,能够向受试者施用在所期望的表达水平(典型地是低表达水平)表达转基因的ceDNA载体的预致敏剂量(即,亚治疗有效量),并且能够在一定时间段内向受试者施用一次或多次剂量依赖性加打施用以增加表达水平直到达成所期望的治疗效果为止。此类策略允许受试者的身体调整到所表达的转基因的水平,并且有效地允许至少一次或更多次剂量依赖性加打施用(即,至少两次或更多次增量)滴定或调整(在这种情况下是增加)转基因表达水平,从而达到所期望的治疗目标或效果且/或防止由于转基因过度表达而产生的过度用药和/或副作用。替代地,在一些实施方案中,当受试者是婴儿或儿童时,能够向受试者施用在所期望的表达水平(典型地为低表达水平)上表达转基因的ceDNA载体的预致敏剂量,并且当受试者成长而使表达水平增加时,能够在一定时间段上向受试者施用一次或多次剂量依赖性加打施用,以便保持治疗效果。类似地,在一些实施方案中,能够向受试者施用在所期望的表达水平表达受试者中的转基因的ceDNA载体的预致敏剂量,并且当受试者体重增加等时,能够在一定时间段内向受试者施用一次或多次剂量依赖性加打施用,以增加表达水平,从而保持治疗效果。
也就是说,将如本文所公开的ceDNA载体在第一时间点施用于受试者(例如初次施用,例如在第0天),并且在第一时间点之后的时间,在第二时间点施用如本文所公开的ceDNA载体以使转基因表达水平增加到预定的转基因表达水平(例如增加到所期望水平或所期望的表达水平范围内),其中预定的转基因表达水平高于加打施用之前的转基因表达水平。在一些实施方案中,预定的转基因表达水平不一定是转基因的治疗有效量,设想如本文所公开的ceDNA载体的超过一次剂量依赖性加打能够在以下中的任一个或多个时间点施用于受试者:第二时间点、第三时间点、第四时间点等,其中使转基因增加到预定的转基因表达水平。涵盖施用剂量依赖性加打能够使转基因表达水平增加定义的量,所述量依赖于加打施用的ceDNA剂量,并且在一些实施方案中,能够用于以逐步方式增加表达水平,从而对应于转基因的治疗有效量的表达水平(例如产生所期望的治疗效果或减少疾病或病症的一种或多种症状的水平)。
虽然加打施用使得转基因表达出现剂量依赖性增加,但在一些实施方案中,加打施用的效果具有协同性,也就是说,转基因表达的增加大于单次施用的总和。举例来说,如图6中所表明,ceDNA载体的数量在加打施用时增加3倍使得转基因表达的增加大于3倍;并且ceDNA载体的数量在加打施用时增加10倍使得转基因表达的增加大于10倍。
在本文所述的特定实施例中,初次施用时(即第一时间点,即第0天)可能希望选择ceDNA剂量反应曲线上的低剂量并且在第二、第三、第四次等施用时,任选地通过一次或多次剂量依赖性加打施用,按照增量增加剂量(即,转基因表达水平)以诱导治疗效果,同时还防止组合物的不良副作用或不耐受性发生。在一个实施方案中,利用指定ceDNA载体的剂量反应关系确定和/或评估有效治疗指定疾病的最佳剂量,所述最佳剂量完全在组合物治疗窗的范围内。也就是说,利用初次预致敏施用(例如第0天)滴定如本文所述的ceDNA载体的剂量以及在后续时间点加打施用时的递增剂量依赖性增加能够达成,从而使所表达的转基因的治疗效果最大化,同时还使副作用或非所需的毒性最小化。
体内和/或体外分析能够任选地用于帮助鉴定ceDNA载体在再施用时达成预定转基因表达水平的最佳剂量范围。ceDNA载体在初次预致敏施用(例如在0时)和随后每次再施用时的确切剂量还将取决于施用途径和病状严重程度,并且应该根据所属领域的技术人员的判断和每个受试者的情形决定。有效剂量能够从源自于体外或动物模型试验系统的剂量-反应曲线推断。
用于控制转基因表达的ceDNA载体是按照足以转染所期望的组织细胞和提供足够的转基因表达水平而无不当副作用的量施用。常规和药学上可接受的施用途径包括但不限于上文在“施用”部分中所述的那些途径,例如直接递送到选定的器官(例如门静脉内递送到肝脏)、口服、吸入(包括鼻内和气管内递送)、眼内、静脉内、肌内、皮下、皮内、肿瘤内和其它胃肠外施用途径。如果需要,施用途径可以组合。
用于控制转基因表达的ceDNA载体在初次预致敏施用(例如在0时)和随后每次再施用时为了达成特定“治疗效果”所必需的剂量将基于若干因素而变,包括(但不限于):核酸施用途径、达成治疗效果所必需的基因或RNA表达水平、所治疗的特定疾病或病症,以及基因、RNA产物或所得被表达的蛋白质的稳定性。本领域技术人员可以基于前述的因素以及本领域众所周知的其它因素容易地确定治疗患有特定疾病或病症的患者的ceDNA载体剂量范围。
剂量方案可以调整,以提供最佳的治疗反应。例如,可以重复施用寡核苷酸,例如可以每天施用若干剂,或者可以根据治疗情况的紧急程度的指示,按比例减少剂量。本领域普通技术人员将能够容易地确定主题寡核苷酸的适当剂量和施用计划,无论所述寡核苷酸是将施用于细胞还是受试者。
“治疗有效剂量”将落在相对较宽的范围内,该范围可以通过临床试验确定并将取决于特定应用(神经细胞将需要很少的量,而全身性注射将需要大量)。例如,对于体内直接注射到人类受试者的骨骼肌或心肌中,治疗有效剂量将为约1μg至100g左右的ceDNA载体。如果使用外泌体或微粒来递送ceDNA载体,那么可以通过实验确定治疗有效剂量,但预计递送1μg至约100g的载体。此外,治疗有效剂量是表达足量的转基因、从而对受试者起作用的ceDNA载体的量,其使得疾病的一种或多种症状减少,但不产生显著的脱靶或显著的不良副作用。
药学上可接受的赋形剂和载体溶液的配制是本领域技术人员众所周知的,开发在多种治疗方案中使用本文所述的特定组合物的合适的剂量和治疗方案也是本领域技术人员众所周知的。
对于体外转染来说,递送到细胞(1×106细胞)的ceDNA载体的有效量将是约0.1至100μg ceDNA载体,优选1至20μg,更优选1至15μg或8至10μg。ceDNA载体越大,需要的剂量越高。如果使用外泌体或微粒,那么可以通过实验确定有效的体外剂量,但意图递送大致相同量的ceDNA载体。
不希望受任何特定理论束缚,缺乏通过施用如本公开所述的ceDNA载体(即,缺乏衣壳组分)所诱发的典型抗病毒免疫应答允许ceDNA载体在多种场合下施用于宿主。在一些实施方案中,将异源核酸递送到受试者的次数在2至10次的范围内(例如2次、3次、4次、5次、6次、7次、8次、9次或10次)。在一些实施方案中,向受试者递送ceDNA载体超过10次。
在特定实施方案中,可以在不同时间间隔的时间段内,例如每日、每周、每月、每年等,利用超过一次施用(例如两次、三次、四次或更多次施用)来达成所期望的基因表达水平。
在一些实施方案中,如本文所公开的用于控制转基因表达的ceDNA载体所编码的转基因能够通过调控开关、诱导型或可抑制型启动子调控,使得其在受试者中表达至少1小时、至少2小时、至少5小时、至少10小时、至少12小时、至少18小时、至少24小时、至少36小时、至少48小时、至少72小时、至少1周、至少2周、至少1个月、至少2个月、至少6个月、至少12个月/一年、至少2年、至少5年、至少10年、至少15年、至少20年、至少30年、至少40年、至少50年或更长。在一个实施方案中,通过在预定或期望的间隔时间反复施用本文所述的ceDNA载体能够达成表达。替代地,如本文所公开的ceDNA载体的可控表达能够进一步包含基因编辑系统的组分(例如CRISPR/Cas、TALEN、锌指核酸内切酶等),以容许插入编码转基因的一个或多个核酸序列,达成疾病的实质性持久治疗或“治愈”。包含基因编辑组分的此类ceDNA载体在国际申请PCT/US18/64242中公开,并且能够包括5'和3'同源臂(例如SEQ ID NO:151-154,或与其具有至少40%、50%、60%、70%或80%同源性的序列)以便编码转基因的核酸插入安全港区域,例如但不包括白蛋白基因或CCR5基因。
治疗持续时间视受试者的临床进展和对治疗的应答而定。初始较高治疗剂量之后,预期为连续的相对较低维持剂量。
II.个性化定制的基因疗法
如本文所论述,如本文所述的方法和ceDNA载体允许个性化定制基因药物方案,即,利用加打,例如通过一次或多次加打施用,以逐步方式对转基因表达水平进行剂量依赖性滴定,以便每次加打施用使转基因表达水平增加一定的量。因而,加打能够用于按照增量来滴定转基因表达水平。相应地,在一些实施方案中,为了保持和/或使转基因表达水平每次(即,每次加打)增加定义的量,为了使表达水平增加到所期望水平或增加到所期望的表达水平范围(高于之前施用或在此加打施用之前所达成的表达水平),能够施用1、2、3、4、5或6次或超过6次剂量依赖性加打。
所属领域的技术人员基于载体的剂量反应关系滴定包含如本文所述的ceDNA载体的组合物的剂量的能力有利于通过多种方式治疗疾病。至少,当期望效果增强(例如转基因表达)时,所属领域的技术人员能够增加ceDNA载体剂量。替代地,所属领域的技术人员能够基于ceDNA组合物的剂量反应关系的先验了解来选择已知能达成具有治疗作用的表达水平的剂量。在一些实施方案中,可能希望在剂量反应曲线上选择例如相对较高的剂量以加速患有指定疾病的严重症状的受试者的治疗。相比之下,通常希望在剂量反应曲线上选择较低的剂量且任选地按照增量来增加剂量以诱导治疗效果,同时还防止组合物的不良副作用或不耐受性发生。在一个实施方案中,利用指定ceDNA载体的剂量反应关系确定和/或评估有效治疗指定疾病的最佳剂量,所述最佳剂量完全在组合物治疗窗的范围内。也就是说,如本文所述的ceDNA载体的剂量滴定使所表达的转基因的治疗效果最大化,同时还使副作用或非所需的毒性最小化。
仅举例说明,患有囊肿性纤维化的受试者可能患有不同严重程度的疾病,且/或对CFTR1基因的转基因表达的相同水平具有不同应答,且/或具有低于或高于正常的药物清除,并且因此,一次或多次加打施用包含CFTR1转基因的ceDNA载体、以逐步方式增加CFTR1转基因表达允许CFTR1转基因表达水平在递增步骤中增加,即,增加到有效减少那个特定受试者的囊肿性纤维化疾病的一种或多种症状的表达水平。由于免疫应答与基于其它病毒的载体(例如AAV载体)有关,因此先前的此类个性化方案或增加转基因表达水平的滴定方法无效且/或不可行。
在一些实施方案中,剂量依赖性加打施用允许转基因表达水平出现可控的增加,且因此,如本文所公开的方法和组合物允许基因疗法存在个性化药物方案。仅举例说明,患有囊肿性纤维化的受试者可能患有不同严重程度的疾病,且/或对CFTR1基因的转基因表达的相同水平具有不同应答,且/或具有低于或高于正常的药物清除,并且因此,通过一次或多次剂量依赖性加打施用包含CFTR1转基因的ceDNA载体控制CFTR1转基因表达的增加允许CFTR1转基因表达水平以可控方式增加,且在一些实施方案中,能够使表达可控地增加,增加到有效减少那个特定受试者的囊肿性纤维化疾病的一种或多种症状的表达水平。由于免疫应答与基于其它病毒或AAV的载体有关,因此先前的此类个性化方案或剂量依赖性增加转基因表达水平的滴定方法无效且/或不可行。
如本文所论述,在一些实施方案中,在ceDNA载体第一次施用之后的预定时间,例如在如下任何时间点:ceDNA载体第一次施用之后至少30天或至少60天,或60到90天之间,或长于90天,评估受试者以确定滴定剂量。举例来说,在一些实施方案中,第一次施用ceDNA载体之后,评估受试者以测定受试者的疾病状态和/或ceDNA载体在受试者中表达转基因的水平。
在一些实施方案中,评估疾病状态是评估受试者的疾病的至少一种症状。任何指定疾病的疾病状态能够由所属领域中的医师或熟练技术人员确定,并且包括评估疾病的一种或多种临床症状和/或生物标志物,包括蛋白质生物标志物、miRNA和mRNA生物标志物以及其它分子特征分析系统。
在一些实施方案中,将分子特征分析与患者的临床表征(例如医师的观察结果(例如国际疾病分类代码,且确定此类代码的数据))、实验室测试结果、x射线、活组织检查结果、患者所作的说明以及医师对特定疾病作出诊断所典型依赖的任何其它医疗信息组合使用,能够确定受试者疾病状态的评估。基于受试者的分子特征分析来确定疾病状态的方法公开于专利和美国专利申请7,167,734、9,372,193、9,383,365、2006/0224191、2011/0172501、2009/0104596、2009/0023149,所述专利各自全文并入本文中。
在一些实施方案中,本文所述的方法能够用于在受试者中滴定ceDNA载体以便对特定疾病状态进行个性化医学干预。
检查多种生物标志物的变化提供了关于生物标志物所得自的受试者的状态的信息。通过在单个时间点测量单一生物样品来了解生物标志物随着疾病进展如何变化(例如增加、减少、不变)容许对疾病状态进行验证(例如疾病或无疾病)、疾病分型和表征(例如早期或“发病”相对于晚期或“恢复”期)。
在一些实施方案中,基于每种生物标志物的水平以及它们相对于时间的趋势(增加、减少或恒定)评估疾病进展状态(例如发病或恢复)的生物标志物能够加以评估。对受试者疾病状态的生物标志物进行特征分析还能够与其它技术组合,例如呼吸时天然存在的稳定同位素比(例如美国专利第5,912,178号),以便评估个体是否健康或处于疾病状态。通过测量生物标志物(尤其是与疾病状态有关的生物学路径内的互相关联的多种生物标志物)水平的变化来检测疾病状态。在一些实施方案中,特定疾病状态能够如下表征:检测和分析NMR谱的复合信号以测定生物标志物水平随着疾病进展而发生变化的生物标志物。这种初始疾病状态评估允许对与疾病进展有关的动态变化进行“指纹识别”且有助于评估疾病进展和过程的当前状态。鉴定疾病状态时,能够定制和/或滴定ceDNA载体向受试者的施用以便缩短疾病时程。
在一些实施方案中,通过评估获自受试者的生物样品内的生物标志物特征能够评估疾病状态。所测量的特定生物标志物是通过分析疾病的潜在关键生物化学路径和相关的宿主免疫应答来确定。在一个实施方案中,标准的生物标志物特征获自健康个体和患有疾病的个体。比较得自生物样品的生物标志物特征与标准生物标志物特征(健康和疾病)容许鉴定出呈阳性的疾病状态。任选地,在第二时间点或疾病进展时间点,从患者中分离出第二生物样品以获得生物标志物特征趋势(例如在第一与第二样品之间,生物标志物发生改变),由此提供关于患者的疾病状况或状态的其它信息。在一些实施方案中,在以下时间中的一个或多个时间评估标准生物标志物特征;在第一次施用ceDNA载体之前、在第一次施用ceDNA载体之后的至少30天或至少60天,或60到90天之间,或长于90天之后,或在第二次(例如加打)施用ceDNA载体之后的至少30天或至少60天或60到90天之间或长于90天之后,或在任何后续施用(例如加打施用)ceDNA载体之后的至少30天或至少60天,或60到90天之间,或长于90天。
已经鉴定出糖尿病、阿尔兹海默氏病和癌症的蛋白质生物标志物。(参见例如美国专利第7,125,663号;第7,097,989号;第7,074,576号;和第6,925,389号,所述美国专利全文并入本文中)。还能使用检测蛋白质生物标志物(例如质谱学)和对抗体的特异性结合的方法。使用微阵列的高通量表达分析方法以及用于多个相关基因以鉴定应激相关基因的聚焦阵列和qPCR能够用于mRNA生物标志物,参见例如WO2007106685A2。DNA微阵列已用于测量患者肿瘤样品中的基因表达,和促进诊断。基因表达能够揭露患者癌症的存在、其类型、阶段和起源,以及是否涉及基因突变。基因表达甚至可以具有预测化学疗法功效的作用。最近数十年,国家癌症研究所(National Cancer Institute,NCI)已测试化合物(包括化学治疗剂)在限制60种人癌细胞系生长方面的效果。NCI还已经使用DNA微阵列测量这些60种癌细胞系的基因表达。多个研究已经使用NCI数据集探究了基因表达与化合物作用之间的关系。由于采用反复试验的方法为癌症患者寻找有效的化疗方法,往往会浪费关键时间。另外,癌细胞通常对此前有效的疗法产生抵抗力。在此类情况下,通过早期检测此类抗药性能够大大改善患者的结果。
在一些实施方案中,通过测量从基因转录的mRNA的水平、通过检测基因的蛋白质产物的水平或通过检测基因的蛋白质产物的生物活性水平来测定疾病状态的生物标志物表达水平。在一些实施方案中,使用定量逆转录-聚合酶链反应(qRT-PCR)测量疾病状态的生物标志物(包括miRNA生物标志物)的水平。测量基因表达产物(例如蛋白质水平)的此类方法包括ELISA(酶联免疫吸附分析)、蛋白质印迹,以及免疫沉淀法、免疫荧光法,其使用检测试剂,例如抗体或蛋白质结合剂。替代地,通过将经标记的抗肽抗体以及其它类型的检测剂引入受试者而能够检测受试者中的肽。举例来说,抗体能够用放射性标志物标记,所述放射性标志物在受试者中的存在和位置是通过标准成像技术检测。
在某些实施方案中,通过测量疾病生物标志物的信使RNA(mRNA)表达水平能够测定基因表达产物。此类分子能够从生物样品(例如全血或血浆,例如富含血小板的血浆)中分离出来、衍生或扩增。mRNA表达的检测已为所属领域的技术人员所知并且包含(但不限于)例如PCR程序、RT-PCR、RNA印迹分析、差异基因表达、RNA保护分析、微阵列分析、杂交方法等。在一些实施方案中,能够使用定量RT-PCR测量mRNA水平。一般来说,PCR程序描述一种基因扩增方法,其包含(i)使引物与核酸样品或库内的特定基因或序列发生序列特异性杂交;(ii)使用热稳定DNA聚合酶进行后续扩增,包括多轮粘接、延长和变性;以及(iii)根据尺寸正确的色带筛选PCR产物。所用引物是具有足够长度以及适当序列以起始聚合的寡核苷酸,即,每个引物经特别设计以与待扩增的基因组基因座的链互补。在一个替代性实施方案中,通过逆转录(RT)PCR以及通过定量RT-PCR(QRT-PCR)或实时PCR方法能够测定本文所述的基因表达产物的mRNA水平。RT-PCR和QRT-PCR方法在所属领域中是众所周知的。
在一些实施方案中,测量疾病状态的一种或多种生物标志物或ceDNA载体表达转基因的水平的方法可以是选自以下中的任一种的分析:免疫组织化学(IHC)分析和/或微阵列分析、比较基因组杂交(CGH)微阵列、单核苷酸多型性(SNP)微阵列、荧光原位杂交(ISH)、原位杂交(ISH)和蛋白质组阵列。
如本文所用,术语“微阵列”是指通过同时定量一种或多种受试者寡核苷酸(例如DNA或RNA,或其类似物)的任何方法使用的装置。一种示例性类别的微阵列由附接到玻璃或石英表面的DNA探针组成。许多微阵列,例如Affymetrix制备的那些微阵列,使用若干探针测定单一基因的表达。DNA微阵列能够含有寡核苷酸探针,所述探针可以是例如与RNA或cDNA片段互补的全长cDNA,所述片段与RNA的一部分杂交。示例性RNA包括mRNA、miRNA和miRNA前体。示例性微阵列还包括具有被底物结合的多种核酸的“核酸微阵列”,与多种所结合的核酸中的每一种的杂交可分别检测到。底物可以是固体或多孔的、平坦或非平坦的、一体式或分散式的。示例性核酸微阵列包括以下文献中的全部所谓装置:Schena(编),《DNA微阵列:实用方法(DNA Microarrays:A Practical Approach)》(实用方法系列),牛津大学出版社(Oxford University Press)(1999);《自然·遗传学(Nature Genet.)》21(1)(增刊):1-60(1999);和Schena(编),《微阵列生物芯片:工具技术技术(Microarray Biochip:Toolsand Technology)》,伊顿出版公司/生物技术书籍分公司(Eaton Publishing Company/BioTechniques Books Division)(2000)。另外,示例性核酸微阵列能够包括底物结合的多种核酸,其中多种核酸安置于多个珠粒上,而非一体式平坦底物上,尤其如Brenner等人,《美国国家科学院院刊》97(4):1665-1670(2000)所述。核酸微阵列的实例可以发现于美国专利第6,391,623号、第6,383,754号、第6,383,749号、第6,380,377号、第6,379,897号、第6,376,191号、第6,372,431号、第6,351,712 6,344,316号、第6,316,193号、第6,312,906号、第6,309,828号、第6,309,824号、第6,306,643号、第6,300,063号、第6,287,850号、第6,284,497号、第6,284,465号、第6,280,954号、第6,262,216号、第6,251,601号、第6,245,518号、第6,263,287号、第6,251,601号、第6,238,866号、第6,228,575号、第6,214,587号、第6,203,989号、第6,171,797号、第6,103,474号、第6,083,726号、第6,054,274号、第6,040,138号、第6,083,726号、第6,004,755号、第6,001,309号、第5,958,342号、第5,952,180号、第5,936,731号、第5,843,655号、第5,814,454号、第5,837,196号、第5,436,327号、第5,412,087号和第5,405,783号中,所述美国专利以引用的方式并入本文中。
示例性微阵列还能够包括具有被底物结合的多种多肽的“肽微阵列”或“蛋白质微阵列”,寡核苷酸、肽或蛋白质对多种所结合的多肽的结合可分别检测到。替代地,肽微阵列能够具有多种结合子,包括(但不限于)单克隆抗体、多克隆抗体、噬菌体呈现结合子、酵母2杂合体结合子、适体,其能够特异性检测特定寡核苷酸、肽或蛋白质的结合。肽阵列的实例可以发现于国际专利公开第WO 02/31463号、第WO 02/25288号、第WO 01/94946号、第WO01/88162号、第WO 01/68671号、第WO 01/57259号、第WO 00/61806号、第WO 00/54046号、第WO 00/47774号、第WO 99/40434号、第WO 99/39210号和第WO 97/42507号以及美国专利第6,268,210号、第5,766,960号和第5,143,854号中,所述专利以引用的方式并入本文中。
在一些实施方案中,如果受试者的疾病状态已保持稳定状态,或尚未改善,或在受试者的疾病状态已经下降(例如相较于第一次施用ceDNA载体时或施用ceDNA载体之前的任何时间的疾病状态)的情况下,则向受试者施用第二剂量的ceDNA载体,例如其中在一些实施方案中,ceDNA载体的施用量是滴定的剂量。
在替代性实施方案中,在第一次施用ceDNA载体之后,如果受试者中的转基因表达水平已经从预定水平下降或从治疗有效量下降,例如从初始转基因表达水平下降,则向受试者施用第二剂量的ceDNA载体,例如其中在一些实施方案中,ceDNA载体的施用量是滴定的剂量。在一些实施方案中,通过在获自受试者的生物样品中测量ceDNA载体表达转基因的水平(例如测量蛋白质水平和/或mRNA水平)来测定转基因表达水平。在一些实施方案中,生物样品是选自以下中的任一种:血液、血浆、滑液、CSF、唾液或组织活检样品。
在一些实施方案中,除编码所期望的蛋白质的转基因或治疗基因之外,在ceDNA载体还表达报道蛋白的情况下,通过使用所属领域的一般技术人员通常已知的方法测量体内ceDNA载体表达报道蛋白的水平能够测定转基因水平。在一些实施方案中,滴定ceDNA载体是测定ceDNA载体表达转基因的水平和向受试者施用第二剂量的ceDNA载体以将转基因表达调整或调节到预定的期望水平。
III.通用ceDNA载体
本发明的实施方案是基于包含闭合端线性双链(ceDNA)载体的方法和组合物,所述载体能够表达如本文所定义的转基因。本文所述的ceDNA载体不受大小限制,从而允许例如表达从单个载体表达转基因所需的所有组分。ceDNA载体优选双链体,例如相对于分子的至少一部分是自互补的,例如表达盒(例如ceDNA不是双链环状分子)。ceDNA载体具有共价闭合端,因此抵抗核酸外切酶(例如核酸外切酶I或核酸外切酶III)消化,例如在37℃下维持逾一小时。在一些实施方案中,如本文所公开的ceDNA载体转位到核中,在核中能够发生ceDNA载体对转基因(例如基因药物转基因)的表达。在一些实施方案中,如本文所公开的ceDNA载体转位到核中,在核中能够发生转基因(例如位于两个ITR之间的基因药物转基因)的表达。
一般来说,如本文所公开的ceDNA载体按照5'到3'方向包含:第一腺相关病毒(AAV)反向末端重复序列(ITR)、所关注的核苷酸序列(例如如本文所述的表达盒)和第二AAV ITR。ITR序列选自以下中的任一个:(i)至少一个WT ITR和至少一个经修饰的AAV反向末端重复序列(mod-ITR)(例如经修饰的不对称ITR);(ii)两个经修饰的ITR,其中mod-ITR对相对于彼此具有不同的三维空间组构(例如经修饰的不对称ITR);或(iii)对称或基本对称的WT-WT ITR对,其中每个WT-ITR具有相同的三维空间组构;或(iv)对称或基本对称修饰的ITR对,其中每个mod-ITR具有相同的三维空间组构。
本文中涵盖包含ceDNA载体的方法和组合物,其可以进一步包括递送系统,例如(但不限于)脂质体纳米颗粒递送系统。本文公开了预期使用的非限制示例性脂质体纳米颗粒系统。在一些方面中,本公开提供了包含ceDNA和可电离脂质的脂质纳米颗粒。举例来说,2018年9月7日提交的国际申请PCT/US2018/050042中公开了脂质纳米颗粒配制物,所述配制物经制备并且装载通过所述方法获得的ceDNA载体,所述国际申请并入本文中。
如本文所公开的ceDNA载体不存在由病毒衣壳内的有限空间所强加的封装局限。与囊封的AAV基因组相反,ceDNA载体是活真核生物产生的,其代表着原核生物产生的质粒DNA载体的替代方案。这允许插入控制元件,例如如本文公开的调控开关、大的转基因、多个转基因等。
图1A-1E显示了非限制示例性ceDNA载体或ceDNA质粒的相应序列的示意图。ceDNA载体无衣壳并且能够从按这种次序编码的质粒中获得:第一ITR、包含转基因的表达盒,和第二ITR。表达盒可以包括一种或多种允许且/或控制转基因表达的调控序列,例如其中表达盒能够按照此次序包含以下中的一个或多个:增强子/启动子、ORF报告基因(转基因)、转录后调控元件(例如WPRE),以及聚腺苷酸化和终止信号(例如BGH polyA)。
表达盒还能够包含内部核糖体进入位点(IRES)(例如SEQ ID NO:190)和/或2A元件。顺式调控元件包括但不限于启动子、核糖开关、隔离子、mir可调控元件、转录后调控元件、组织和细胞类型特异性启动子,和增强子。在一些实施方案中,ITR能够充当转基因的启动子。在一些实施方案中,ceDNA载体包含调控转基因表达的额外组件,例如调控开关,其描述于本文中的标题为“调控开关”的章节中,用于控制和调控转基因的表达,并且必要时能够包括作为杀灭开关的调控开关,从而能够使包含ceDNA载体的细胞实现可控的细胞死亡。
表达盒能够包含超过4000个核苷酸、5000个核苷酸、10,000个核苷酸或20,000个核苷酸、或30,000个核苷酸、或40,000个核苷酸、或50,000个核苷酸,或在约4000-10,000个核苷酸或10,000-50,000个核苷酸之间的任何范围,或超过50,000个核苷酸。在一些实施方案中,表达盒能够包含长度在500到50,000个核苷酸范围内的转基因。在一些实施方案中,表达盒能够包含长度在500到75,000个核苷酸范围内的转基因。在一些实施方案中,表达盒能够包含长度在500到10,000个核苷酸范围内的转基因。在一些实施方案中,表达盒能够包含长度在1000到10,000个核苷酸范围内的转基因。在一些实施方案中,表达盒能够包含长度在500到5,000个核苷酸范围内的转基因。ceDNA载体不存在衣壳化AAV载体的尺寸限制,从而能够递送大尺寸表达盒以提供有效的转基因。在一些实施方案中,ceDNA载体缺乏原核生物特异性甲基化。
ceDNA表达盒能够包括例如所编码的蛋白质在接受的受试者中不存在、无活性或活性不充分的可表达的外源序列(例如开放阅读框架)或转基因,或所编码的蛋白质具有所期望的生物或治疗作用的基因。转基因能够编码能够用以校正缺陷基因或转录物表达的基因产物。原则上,表达盒可包括编码因突变而减少或不存在或在本公开的范围内认为过度表达时会展现治疗益处的蛋白质、多肽或RNA的任何基因。
表达盒能够包含适用于治疗受试者的疾病或病症的任何转基因。ceDNA载体能够用于在受试者中递送和表达任何所关注基因,包括(但不限于)编码多肽的核酸,或非编码核酸(例如RNAi、miR等),以及外源基因和核苷酸序列,包括受试者基因组中的病毒序列,例如HIV病毒序列等。优选地,本文所公开的ceDNA载体用于治疗目的(例如用于医学、诊断或兽医学用途)或免疫原性多肽。在某些实施方案中,ceDNA载体适用于表达受试者中的所关注的任何基因,包括一种或多种多肽、肽、核糖核酸酶、肽核酸、siRNA、RNAi、反义寡核苷酸、反义多核苷酸,或RNA(编码或非编码;例如siRNA、shRNA、微RNA,和其反义对应物(例如拮抗MiR))、抗体、抗原结合片段,或其任何组合。
表达盒还能够编码多肽、有义或反义寡核苷酸,或RNA(编码或非编码;例如siRNA、shRNA、微RNA,和其反义对应物(例如拮抗MiR))。表达盒可包括编码用于实验或诊断目的的报道蛋白的外源序列,所述报道蛋白例如β-内酰胺酶、β-半乳糖苷酶(LacZ)、碱性磷酸酶、胸苷激酶、绿色荧光蛋白(GFP)、氯霉素乙酰转移酶(CAT)、荧光素酶和其它本领域众所周知的报道蛋白。
本文所述ceDNA载体的表达盒、表达构建体中提供的序列能够针对靶宿主细胞进行密码子优化。如本文所用,术语“进行密码子优化”或“密码子优化”是指通过用如小鼠或人等所关注脊椎动物的基因中使用频率较高或最高的密码子替换天然序列(例如原核序列)的至少一个、超过一个或大量密码子来修饰核酸序列以增强其在所述脊椎动物的细胞中的表达的过程。各种物种对特定氨基酸的某些密码子表现出特定的偏好。通常,密码子优化不会改变原始翻译蛋白质的氨基酸序列。最优密码子能够使用例如Aptagen的Gene
Figure BDA0002685856320000571
密码子优化和定制基因合成平台(Aptagen有限公司,2190Fox Mill Rd.Suite300,Herndon,Va.20171)或其它可公开获得的数据库加以确定。
在一些实施方案中,如本文所公开的用于控制表达的ceDNA载体所表达的转基因是治疗基因。在一些实施方案中,治疗基因是抗体或抗体片段,或其抗原结合片段,或融合蛋白。在一些实施方案中,抗体或其融合蛋白是活化抗体或中和抗体或抗体片段等等。在一些实施方案中,用于控制基因表达的ceDNA载体包含如国际专利PCT/US19/18016(2019年2月14日提交)中所公开的抗体或融合蛋白,所述专利以全文引用的方式并入本文中。
具体地说,治疗基因是一种或多种治疗剂,包括(但不限于)例如用于治疗、预防和/或改善疾病、功能障碍、损伤和/或病症的一种或多种症状的蛋白质、多肽、肽、酶、抗体、抗原结合片段以及其变异体和/或活性片段。示例性治疗基因描述于本文中的标题为“治疗方法”的章节中。
ceDNA载体的许多结构特征不同于基于质粒的表达载体。ceDNA载体可以具有以下特征中的一个或多个:缺乏原始(即,非插入)细菌DNA、缺乏原核复制起点、是自给式,即,它们不需要除所述两个ITR之外的任何序列,包括Rep结合和末端解析位点(RBS和TRS),和ITR之间的外源序列;存在形成发夹的ITR序列,以及缺乏细菌型DNA甲基化或实际上被哺乳动物宿主视为异常的任何其它甲基化。一般来说,本发明载体优选不含有任何原核DNA,但作为非限制性实例,预期可以将一些原核DNA作为外源序列插入启动子或增强子区域中。将ceDNA载体与质粒表达载体区分开来的另一个重要特征是,ceDNA载体是具有闭合端的单链线性DNA,而质粒始终是双链DNA。
通过本文所提供的方法产生的ceDNA载体优选具有线性连续结构,而非非连续结构,如限制酶消化分析所测定(图4D)。相信线性连续结构在受到细胞核酸内切酶攻击时更稳定,并且不太可能重组并引起诱变。因此,线性连续结构的ceDNA载体是优选的实施方案。连续、线性、单链的分子内双链体ceDNA载体能够具有共价结合的末端,而没有编码AAV衣壳蛋白的序列。这些ceDNA载体在结构上不同于质粒(包括本文所述的ceDNA质粒),所述质粒是细菌来源的环状双链体核酸分子。质粒的互补链在变性后可以分离,从而产生两个核酸分子,而与此相反,ceDNA载体虽然有互补链,却是单个DNA分子,因此即使变性,也仍然是单个分子。在一些实施方案中,与质粒不同,如本文所述的ceDNA载体的产生可以没有原核类型的DNA碱基甲基化。因此,在结构方面(特别是线性对比环形)以及还根据用于产生和提纯这些不同物体的方法方面,以及还根据它们的DNA甲基化方面,即ceDNA-质粒属于原核类型而ceDNA载体属于真核类型,ceDNA载体和ceDNA质粒是不同的。
使用如本文所述的ceDNA载体相对于基于质粒的表达载体具有若干优势,此类优势包括(但不限于):1)质粒含有细菌DNA序列并且经历原核特异性甲基化,例如6-甲基腺苷和5-甲基胞嘧啶甲基化,而无衣壳AAV载体序列具有真核起源并且未经历原核特异性甲基化;因此,相较于质粒,无衣壳AAV载体不大可能诱导发炎和免疫应答;2)质粒在生产过程期间需要存在抗性基因,而ceDNA载体则不需要;3)环状质粒在引入细胞后不递送到细胞核并且需要过量装载以规避细胞核酸酶的降解作用,而载体含有病毒顺式元件,即ITR,其赋予核酸酶抗性并且能够设计成靶向且递送到细胞核。假设:ITR功能必需的最小限定元件是Rep结合位点(RBS;对于AAV2,为5'-GCGCGCTCGCTCGCTC-3'(SEQ ID NO:60))和末端解析位点(TRS;对于AAV2,为5'-AGTTGG-3'(SEQ ID NO:64)),加上允许发夹形成的可变回文序列;且4)ceDNA载体不具有通常在原核生物来源的质粒中发现的CpG二核苷酸过度表达,原核生物来源的质粒据报导结合铎样受体家族成员,诱发T细胞介导的免疫应答。相比之下,用本文公开的无衣壳AAV载体进行的转导能够有效地靶向难以使用各种递送试剂用常规AAV病毒体转导的细胞和组织类型。
IV.ITR
如本文所公开,用于控制转基因表达的ceDNA载体含有位于两个反向末端重复(ITR)序列之间的转基因或异源核酸序列,其中ITR序列可以是不对称的ITR对或对称或基本对称的ITR对,这些术语如本文所定义。如本文所公开的ceDNA载体能够包含选自以下中的任一种的ITR序列:(i)至少一个WT ITR和至少一个经修饰的AAV反向末端重复序列(mod-ITR)(例如不对称修饰的ITR);(ii)两个经修饰的ITR,其中mod-ITR对相对于彼此具有不同的三维空间组构(例如不对称修饰的ITR),或(iii)对称或基本对称的WT-WT ITR对,其中每个WT-ITR具有相同的三维空间组构,或(iv)对称或基本对称修饰的ITR对,其中每个mod-ITR具有相同的三维空间组构,其中本公开的方法可以进一步包括递送系统,例如(但不限于)脂质体纳米颗粒递送系统。
在一些实施方案中,ITR序列可以来自细小病毒科的病毒,细小病毒科包括两个亚科:感染脊椎动物的细小病毒亚科,和感染昆虫的浓核病毒亚科。细小病毒亚科(称为细小病毒)包括依赖病毒属,其成员在大多数情况下需要与例如腺病毒或疱疹病毒等辅助病毒共同感染才能进行生产性感染。依赖病毒属包括通常感染人类(例如血清型2、3A、3B、5和6)或灵长类动物(例如血清型1和4)的腺相关病毒(AAV),以及感染其它温血动物的相关病毒(例如牛、犬、马和羊的腺相关病毒)。细小病毒和细小病毒科的其它成员大体描述于Kenneth I.Berns,《病毒学领域(FIELDS VIROLOGY)》(第3版,1996)中第69章“细小病毒科:病毒及其复制(Parvoviridae:The Viruses and Their Replication)”。
尽管在说明书和本文的实施例中举例说明的ITR是AAV2 WT-ITR,但是本领域的普通技术人员知道如上所述,可以使用来自任何已知的细小病毒,例如如AAV的依赖病毒(例如AAV1、AAV2、AAV3、AAV4、AAV5、AAV5、AAV7、AAV8、AAV9、AAV10、AAV 11、AAV12、AAVrh8、AAVrh10、AAV-DJ和AAV-DJ8基因组。例如NCBI:NC 002077;NC 001401;NC001729;NC001829;NC006152;NC 006260;NC 006261)的ITR、嵌合ITR或来自任何合成AAV的ITR。在一些实施方案中,AAV可以感染温血动物,例如禽类(AAAV)、牛(BAAV)、犬、马和绵羊腺相关病毒。在一些实施方案中,ITR来自B19细小病毒(GenBank登录号:NC 000883)、来自小鼠的细小病毒(MVM)(GenBank登录号NC 001510);鹅细小病毒(GenBank登录号NC 001701);蛇细小病毒1(GenBank登录号NC 006148)。在一些实施方案中,如本文所论述,5'WT-ITR可以来自一种血清型,而3'WT-ITR来自不同血清型。
普通技术人员知道,ITR序列具有双链霍利迪连结体(Holliday junction)的共同结构,该结构典型是T形或Y形发夹结构(参见例如图2A和3A),其中每个WT-ITR由两个回文臂或环(B-B'和C-C')嵌入较大的回文臂(A-A')中与单链D序列形成(其中这些回文序列的顺序限定了ITR的翻转或翻动取向)。参见例如来自不同AAV血清型(AAV1-AAV6)的ITR的结构分析和序列比较,并描述于Grimm等人,《病毒学杂志(J.Virology)》,2006;80(1);426-439;Yan等人,J.Virology,2005;364-379;Duan等人,《病毒学(Virology)》1999;261;8-14。本领域的技术人员基于本文提供的示例性AAV2 ITR序列,可以容易地确定用于ceDNA载体或ceDNA质粒的来自任何AAV血清型的WT-ITR序列。参见例如Grimm等人,《病毒学杂志》,2006;80(1);426-439中描述的来自不同AAV血清型(AAV1-AAV6、禽AAV(AAAV)和牛AAV(BAAV))的ITR的序列比较;其显示了AAV2的左ITR与其它血清型的左ITR的一致性%:AAV-1(84%)、AAV-3(86%)、AAV-4(79%)、AAV-5(58%)、AAV-6(左ITR)(100%)和AAV-6(右ITR)(82%)。
A.对称的ITR对
在一些实施方案中,如本文所述的ceDNA载体按照5'到3'方向包含:第一腺相关病毒(AAV)反向末端重复序列(ITR)、所关注的核苷酸序列(例如如本文所述的表达盒)和第二AAV ITR,其中第一ITR(5'ITR)和第二ITR(3'ITR)相对于彼此是对称的或基本对称的,也就是说,ceDNA载体能够包含具有对称三维空间组构的ITR序列,使得其结构在几何空间中具有相同形状,或在3D空间中具有相同的A、C-C'和B-B'环。在这样的实施方案中,对称的ITR对或基本上对称的ITR对可以是不是野生型ITR的修饰ITR(例如mod-ITR)。一个mod-ITR对可以具有相同的相对于野生型ITR具有一个或多个修饰的序列,并且彼此反向互补(反向)。在替代实施方案中,修饰ITR对如本文所定义是基本上对称的,即,修饰ITR对可以具有不同的序列,但是具有一致或相同的对称的三维形状。
(i)野生型ITR
在一些实施方案中,对称的ITR或基本上对称的ITR是如本文所述的野生型(WT-ITR)。也就是说,两个ITR都具有野生型序列,但不一定必须是来自同一AAV血清型的WT-ITR。也就是说,在一些实施方案中,一个WT-ITR可以来自一种AAV血清型,而另一WT-ITR可以来自不同的AAV血清型。在这样的实施方案中,WT-ITR对如本文所定义是基本上对称的,即,它们可以具有一个或多个保守核苷酸修饰,同时仍然保留对称的三维空间组构。
因此,如本文所公开,控制转基因表达的ceDNA载体含有位于两个侧接野生型反向末端重复(WT-ITR)序列之间的转基因或异源核酸序列,所述两个野生型反向末端重复序列彼此反向互补(逆向),或替代地,相对于彼此基本对称,即,WT-ITR对具有对称的三维空间组构。在一些实施方案中,野生型ITR序列(例如AAV WT-ITR)包含功能Rep结合位点(RBS;例如AAV2为5'-GCGCGCTCGCTCGCTC-3',SEQ ID NO:60)和功能末端解析位点(TRS;例如5'-AGTT-3',SEQ ID NO:62)
在一个方面中,用于控制转基因表达的ceDNA载体获自编码异源核酸的载体多核苷酸,所述异源核酸可操作地位于两个WT反向末端重复序列(WT-ITR)(例如AAV WT-ITR)之间。也就是说,两个ITR都具有野生型序列,但不一定必须是来自同一AAV血清型的WT-ITR。也就是说,在一些实施方案中,一个WT-ITR可以来自一种AAV血清型,而另一WT-ITR可以来自不同的AAV血清型。在这样的实施方案中,WT-ITR对如本文所定义是基本上对称的,即,它们可以具有一个或多个保守核苷酸修饰,同时仍然保留对称的三维空间组构。在一些实施方案中,5'WT-ITR来自一种AAV血清型,而3'WT-ITR来自相同或不同的AAV血清型。在一些实施方案中,5'WT-ITR和3'WT-ITR是彼此的镜像,即它们是对称的。在一些实施方案中,5'WT-ITR和3'WT-ITR来自相同的AAV血清型。
WT ITR是众所周知的。在一个实施方案中,两个ITR来自相同的AAV2血清型。在某些实施方案中,可以使用来自其它血清型的WT。有许多同源的血清型,例如AAV2、AAV4、AAV6、AAV8。在一个实施方案中,可以使用紧密同源的ITR(例如具有相似环结构的ITR)。在另一个实施方案中,能够使用较多样化的AAV WT ITR,例如AAV2和AAV5,并且在仍另一个实施方案中,能够使用基本上是WT的ITR,也就是说,其不仅具有WT的基本环结构,而且具有不改变或不影响所述特性的一些保守核苷酸变化。当使用来自相同病毒血清型的WT-ITR时,可以进一步使用一种或多种调控序列。在某些实施方案中,调控序列是容许调节ceDNA活性的调控开关。
在一些实施方案中,本文所述技术的一个方面涉及一种ceDNA载体,其中ceDNA载体包含至少一个可操作地位于两个野生型反向末端重复序列(WT-ITR)之间的异源核苷酸序列,其中WT-ITR能够来自相同血清型、不同血清型或相对于彼此是基本对称的(即,具有对称的三维空间组构,使得其结构在几何空间中具有相同形状,或在3D空间中具有相同的A、C-C'和B-B'环)。在一些实施方案中,对称的WT-ITR包含功能性末端解链位点和Rep结合位点。在一些实施方案中,异源核酸序列编码转基因,并且其中载体不在病毒衣壳中。
在一些实施方案中,WT-ITR是相同的,但是彼此反向互补。例如,5'ITR中的序列AACG可以是3'ITR中相应位点处的CGTT(即,反向互补)。在一个实例中,5'WT-ITR有义链包含ATCGATCG的序列,而相应的3'WT-ITR有义链包含CGATCGAT(即与ATCGATCG反向互补)。在一些实施方案中,WT-ITR ceDNA进一步包含末端解链位点和复制蛋白结合位点(RPS)(有时称为复制蛋白结合位点),例如Rep结合位点。
控制转基因表达的包含WT-ITR的ceDNA载体中所用的示例性WT-ITR序列显示于本文的表2中,所述表格显示了WT-ITR对(5'WT-ITR和3'WT-ITR)。
作为一个示例性实例,本公开提供了一种ceDNA载体,所述载体包含可操作地连接到转基因(例如异源核酸序列)的启动子,存在或不存在调控开关,其中ceDNA缺乏衣壳蛋白并且:(a)由编码WT-ITR的ceDNA质粒(参见例如图1F-1G)产生,其中每个WT-ITR的发夹二级构型具有相同数目个分子内双链体碱基对(相较于这些参考序列,优选排除这种构型中的任何AAA或TTT末端环的缺失);和(b)使用分析鉴定为ceDNA,所述分析是通过琼脂糖凝胶电泳、在实例1中的天然凝胶和变性条件下鉴定ceDNA。
在一些实施方案中,位于两侧的WT-ITR彼此基本上对称。在所述实施方案中,5'WT-ITR可以来自AAV的一种血清型,而3'WT-ITR可以来自AAV的另一种血清型,使得WT-ITR不是相同的反向互补序列。举例来说,5'WT-ITR能够来自AAV2,并且3'WT-ITR来自不同血清型,例如AAV1、3、4、5、6、7、8、9、10、11和12。在一些实施方案中,WT-ITR可以选自从以下中的任一种中选择的两种不同的细小病毒:AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV13、蛇细小病毒(例如巨蟒细小病毒)、牛细小病毒、山羊细小病毒、禽类细小病毒、犬细小病毒、马细小病毒、虾细小病毒、猪细小病毒或昆虫AAV。在一些实施方案中,WT ITR的这种组合是来自AAV2和AAV6的WT-ITR的组合。在一个实施方案中,当一个相对于另一个ITR反向时,基本上对称的WT-ITR是至少90%一致,至少95%一致,至少96%…97%…98%…99%…99.5%以及之间的所有点,并具有相同的对称三维空间组构。在一些实施方案中,WT-ITR对由于其具有对称的三维空间组构,例如具有A、C-C'、B-B'和D臂的相同3D组构,因此是基本对称的。在一个实施方案中,基本对称的WT-ITR对相对于彼此呈逆向,并且彼此至少95%一致、至少96%…97%…98%…99%…99.5%和其间的所有点,并且一个WT-ITR保留5'-GCGCGCTCGCTCGCTC-3'(SEQ ID NO:60)的Rep结合位点(RBS)和末端解析位点(trs)。在一些实施方案中,基本对称的WT-ITR对相对于彼此呈逆向,并且彼此至少95%一致、至少96%…97%…98%…99%…99.5%和其间的所有点,并且一个WT-ITR保留5'-GCGCGCTCGCTCGCTC-3'(SEQ ID NO:60)的Rep结合位点(RBS)和末端解析位点(trs),此外保留允许发夹二级结构形成的可变回文序列。同源性可以通过本领域公知的标准方法来确定,例如默认设置下的BLAST(基本局部比对搜索工具)、BLASTN。
在一些实施方案中,ITR的结构元件可以是参与ITR与大的Rep蛋白(例如Rep 78或Rep 68)的功能性相互作用的任何结构元件。在某些实施方案中,结构元件为ITR与大的Rep蛋白的相互作用提供了选择性,即,至少部分确定哪种Rep蛋白与ITR功能性相互作用。在其它实施方案中,当Rep蛋白与ITR结合时,结构元件与大的Rep蛋白物理上相互作用。每个结构元件可以是例如ITR的二级结构、ITR的核苷酸序列、两个或更多个元件之间的间隔,或上述任一个的组合。在一个实施方案中,结构元件选自由A和A'臂、B和B'臂、C和C'臂、D臂、Rep结合位点(RBE)和RBE'(即互补RBE序列)以及末端解链位点(trs)组成的组。
仅举例而言,表1指出WT-ITR的示例性组合。
表1:来自相同血清型或不同血清型或不同细小病毒的WT-ITR的示例性组合。显示的顺序并不表示ITR位置,例如,“AAV1,AAV2”表明ceDNA可以在5'位置包含WT-AAV1 ITR,而在3'位置包含WT-AAV2 ITR,反之亦然,WT-AAV2 ITR位于5'位置,WT-AAV1 ITR位于3'位置。缩写:AAV血清型1(AAV1),AAV血清型2(AAV2),AAV血清型3(AAV3),AAV血清型4(AAV4),AAV血清型5(AAV5),AAV血清型6(AAV6),AAV血清型7(AAV7),AAV血清型8(AAV8),AAV血清型9(AAV9),AAV血清型10(AAV10),AAV血清型11(AAV11)或AAV血清型12(AAV12);AAVrh8、AAVrh10、AAV-DJ和AAV-DJ8基因组(例如NCBI:NC 002077;NC 001401;NC001729;NC001829;NC006152;NC 006260;NC 006261),来自温血动物的ITR(禽AAV(AAAV),牛AAV(BAAV),犬、马和绵羊AAV),来自B19细小病毒的ITR(GenBank登录号:NC 000883),来自小鼠的细小病毒(MVM)(GenBank登录号NC 001510);鹅:鹅细小病毒(GenBank登录号NC 001701);蛇:蛇细小病毒1(GenBank登录号NC 006148)。
表1:
Figure BDA0002685856320000631
Figure BDA0002685856320000641
Figure BDA0002685856320000651
Figure BDA0002685856320000661
仅举例而言,表2显示来自一些不同AAV血清型的示例性WT-ITR的序列。
表2
Figure BDA0002685856320000662
Figure BDA0002685856320000671
在一些实施方案中,可以修饰WT-ITR序列的核苷酸序列(例如,通过修饰1、2、3、4或5个或更多个核苷酸或其中的任何范围),其中所述修饰是替代互补核苷酸,例如,G替代C,反之亦然,T替代A,反之亦然。
在本发明的某些实施方案中,合成产生的ceDNA载体不具有由选自以下任一种的核苷酸序列组成的WT-ITR:SEQ ID NO:1、2、5-14。在本发明的替代实施例中,如果ceDNA载体具有包含选自以下任一种的核苷酸序列的WT-ITR:SEQ ID NO:1、2、5-14,则侧接ITR也是WT并且ceDNA载体包含调控开关,例如如本文和国际申请PCT/US18/49996所公开(例如参见PCT/US18/49996的表11)。在一些实施方案中,ceDNA载体包含如本文所公开的调控开关和所选择的WT-ITR,所述WT-ITR具有选自由SEQ ID NO:1、2、5-14组成的群组中的任一种的核苷酸序列。
本文所述的ceDNA载体能够包括保留了可操作的RBE、trs和RBE'部分的WT-ITR结构。出于示例性目的使用野生型ITR,图2A和图2B示出了关于ceDNA载体的野生型ITR结构部分内的trs位点操作的一种可能机制。在一些实施方案中,ceDNA载体含有一种或多种功能WT-ITR多核苷酸序列,所述多核苷酸序列包含Rep结合位点(RBS;对于AAV2,5'-GCGCGCTCGCTCGCTC-3'(SEQ ID NO:60)和末端解析位点(TRS;5'-AGTT(SEQ ID NO:62))。在一些实施方案中,至少一个WT-ITR是功能性的。在替代实施方案中,在ceDNA载体包含彼此基本上对称的两个WT-ITR的情况下,至少一个WT-ITR是有功能的,并且至少一个WT-ITR是无功能的。
B.用于控制转基因表达的ceDNA载体通用的经修饰的ITR(mod-ITR),所述ceDNA载体包含不对称的ITR对或对称的ITR对
如本文所述,ceDNA载体能够包含对称的ITR对或不对称的ITR对。在两个例子中,ITR中的一个或两个可以是经修饰的ITR,差异在于,在第一个例子(即,对称mod-ITR)中,mod-ITR具有相同的三维空间组构(即,具有相同的A-A'、C-C'和B-B'臂构型),而在第二个例子(即,不对称mod-ITR)中,mod-ITR具有不同的三维空间组构(即,具有A-A'、C-C'和B-B'臂的不同构型)。
在一些实施方案中,相较于野生型ITR序列(例如AAV ITR),经修饰的ITR是通过缺失、插入和/或取代进行修饰的ITR。在一些实施方案中,ceDNA载体中的至少一个ITR包含功能Rep结合位点(RBS;对于AAV2为例如5'-GCGCGCTCGCTCGCTC-3',SEQ ID NO:60)和功能末端解析位点(TRS;例如5'-AGTT-3',SEQ ID NO:62)。在一个实施方案中,ITR中的至少一个是非功能ITR。在一个实施方案中,不同或修饰ITR不是来自不同血清型的每种野生型ITR。
在本文中详细描述了ITR中的特定改变和突变,但是在ITR的情况下,“改变”或“突变”或“修饰”表明相对于野生型、参考或原始ITR序列,插入、缺失和/或取代核苷酸。改变或突变的ITR可以是工程化ITR。如本文所用,“工程化”是指通过人的手进行操纵的方面。例如,当多肽的至少一个方面,例如其序列,通过人的手进行操纵而不同于自然存在的方面时,则认为该多肽是“工程化”的。
在一些实施方案中,mod-ITR可以是合成的。在一个实施方案中,合成的ITR是基于来自一种以上AAV血清型的ITR序列。在另一个实施方案中,合成的ITR不包括基于AAV的序列。在又一个实施方案中,合成的ITR尽管仅具有一些或不具有源自AAV的序列,但是保留了上述的ITR结构。在一些方面,合成的ITR可以优先与野生型Rep或特定血清型的Rep相互作用,或者在某些情况下,野生型Rep将不识别其,而仅突变的Rep可识别其。
技术人员可以通过已知手段确定其它血清型的相应序列。例如,确定改变是否在A、A'、B、B'、C、C'或D区域中,并确定另一种血清型中的相应区域。能够在默认状态下使用
Figure BDA0002685856320000691
(基本局部比对搜索工具)或其它同源性比对程序测定相应序列。本发明进一步提供了包含来自不同AAV血清型组合的mod-ITR、用于控制转基因表达的ceDNA载体群体和多种ceDNA载体,也就是说,一个mod-ITR能够来自一种AAV血清型,而另一个mod-ITR能够来自不同血清型。不希望受理论的束缚,在一个实施方案中,一个ITR可以来自或基于AAV2ITR序列,而ceDNA载体的另一个ITR可以来自或基于以下中的任一种或多种ITR序列:AAV血清型1(AAV1)、AAV血清型4(AAV4)、AAV血清型5(AAV5)、AAV血清型6(AAV6)、AAV血清型7(AAV7)、AAV血清型8(AAV8)、AAV血清型9(AAV9)、AAV血清型10(AAV10)、AAV血清型11(AAV11)或AAV血清型12(AAV12)。
任何细小病毒ITR都可以用作ITR或用于修饰的基础ITR。优选地,细小病毒是依赖病毒。更优选是AAV。选择的血清型可以是基于血清型的组织嗜性。AAV2具有广泛的组织嗜性,AAV1优先靶向神经元和骨骼肌,而AAV5优先靶向神经元、视网膜色素上皮和光感受器。AAV6优先靶向骨骼肌和肺。AAV8优先靶向肝脏、骨骼肌、心脏和胰腺组织。AAV9优先靶向肝脏、骨骼和肺组织。在一个实施方案中,修饰ITR是基于AAV2 ITR。
更具体地,可以通过修饰结构元件来改变结构元件与特定的大Rep蛋白功能性相互作用的能力。例如,可以与ITR的野生型序列相比较来修饰结构元件的核苷酸序列。在一个实施方案中,可以除去ITR的结构元件(例如A臂、A'臂、B臂、B'臂、C臂、C'臂、D臂、RBE、RBE'和trs)并用来自不同细小病毒的野生型结构元件替代。例如,替代结构可以来自:AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、AAV13、蛇细小病毒(例如巨蟒细小病毒)、牛细小病毒、山羊细小病毒、禽类细小病毒、犬细小病毒、马细小病毒、虾细小病毒、猪细小病毒或昆虫AAV。例如,ITR可以是AAV2 ITR,并且A或A'臂或RBE可以用来自AAV5的结构元件替代。在另一个实例中,ITR可以是AAV5 ITR,并且C或C'臂、RBE和trs可以用来自AAV2的结构元件替代。在另一个实例中,AAV ITR可以是B和B'臂被AAV2 ITRB和B'臂替代的AAV5 ITR。
仅举例而言,表3显示经修饰的ITR的区域中的至少一个核苷酸的示例性修饰(例如缺失、插入和/或取代),其中X表示那个区段中的至少一个核酸相对于相应野生型ITR的修饰(例如缺失、插入和/或取代)。在一些实施方案中,在C和/或C'和/或B和/或B'的任何区域中的至少一个核苷酸的任何修饰(例如缺失、插入和/或取代)在至少一个末端环中保留三个连续的T核苷酸(即,TTT)。例如,如果修饰引起以下任一种:单臂ITR(例如,单个C-C'臂或单个B-B'臂)或修饰的C-B'臂或C'-B臂、或具有至少一个截断臂(例如截断的C-C'臂和/或截断的B-B'臂)的两臂ITR,那么至少所述单臂、或两臂ITR(其中一个臂可以是截断的)的至少一个臂在至少一个末端环中保留三个连续的T核苷酸(即TTT)。在一些实施方案中,截断的C-C'臂和/或截断的B-B'臂在末端环中具有三个连续的T核苷酸(即TTT)。
表3:ITR的不同B-B'和C-C'区域或臂的至少一个核苷酸的修饰的示例性组合(例如缺失、插入和/或取代)(X表示核苷酸修饰,例如所述区域中的至少一个核苷酸的添加、缺失或取代)。
B区域 B'区域 C区域 C'区域
X
X
X X
X
X
X X
X X
X X
X X
X X
X X X
X X X
X X X
X X X
X X X X
在一些实施方案中,如本文公开的包含不对称ITR对或对称mod-ITR对的ceDNA载体中使用的mod-ITR能够包含表3中所示的任一种修饰组合,以及选自以下的任一个或多个区域中的至少一个核苷酸的修饰:A'与C之间、C与C'之间、C'与B之间、B与B'之间以及B'与A之间。在一些实施方案中,在C或C'或者B或B'区域中的至少一个核苷酸的任何修饰(例如缺失、插入和/或取代)仍然保留了茎环的末端环。在一些实施方案中,在C和C'和/或B和B'之间的至少一个核苷酸的任何修饰(例如缺失、插入和/或取代)在至少一个末端环中保留三个连续的T核苷酸(即TTT)。在替代实施方案中,C与C'和/或B与B'之间的至少一个核苷酸的任何修饰(例如缺失、插入和/或取代)在至少一个末端环中保留三个连续的A核苷酸(即AAA)。在一些实施方案中,本文中使用的经修饰的ITR能够包含表3中所示的任一种修饰组合,以及选自以下的任一个或多个区域中的至少一个核苷酸的修饰(例如缺失、插入和/或取代):A'、A和/或D。举例来说,在一些实施方案中,本文中使用的经修饰的ITR能够包含表3中所示的任一种修饰组合,以及A区域中的至少一个核苷酸的修饰(例如缺失、插入和/或取代)。在一些实施方案中,本文中使用的经修饰的ITR能够包含表3中所示的修饰组合中的任一个,并且还包含A'区域中的至少一个核苷酸的修饰(例如缺失、插入和/或取代)。在一些实施方案中,本文中使用的经修饰的ITR能够包含表3中所示的修饰组合中的任一个,并且还包含A和/或A'区域中的至少一个核苷酸的修饰(例如缺失、插入和/或取代)。在一些实施方案中,本文中使用的经修饰的ITR能够包含表3中所示的修饰组合中的任一个,并且还包含D区域中的至少一个核苷酸的修饰(例如缺失、插入和/或取代)。
在一个实施方案中,能够修饰结构元件的核苷酸序列(例如修饰1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20个或更多个核苷酸或其中的任何范围),以产生经修饰的结构元件。在一个实施方案中,本文中举例说明了ITR的特定修饰(例如SEQ IDNO:3、4、15-47、101-116或165-187,或2018年12月6日提交的PCT/US2018/064242的图7A-7B中所示(例如PCT/US2018/064242中的SEQ ID No 97-98、101-103、105-108、111-112、117-134、545-54)。在一些实施方案中,能够修饰ITR(例如通过修饰1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20个或更多个核苷酸或其中的任何范围)。在其它实施方案中,ITR与SEQ ID NO:3、4、15-47、101-116或165-187的经修饰的ITR之一或SEQ ID NO:3、4、15-47、101-116或165-187的A-A'臂和C-C'和B-B'臂的含RBE区段或国际申请PCT/US18/49996的表2-9中所示(即,SEQ ID NO:110-112、115-190、200-468)能够具有至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或更大序列一致性,所述国际申请以全文引用的方式并入本文中。
在一些实施方案中,经修饰的ITR能够包含例如所有特定臂(例如A-A'臂的全部或一部分,或B-B'臂的全部或一部分,或C-C'臂的全部或一部分)的去除或缺失,或替代地,形成环茎的1、2、3、4、5、6、7、8、9或更多个碱基对的去除,只要对茎(例如单臂)进行封端的最终环仍然存在(参见例如2018年12月6日提交的PCT/US2018/064242的图7A中的ITR-21)。在一些实施方案中,修饰ITR可以包含从B-B'臂除去1个、2个、3个、4个、5个、6个、7个、8个、9个或更多个碱基对。在一些实施方案中,经修饰的ITR能够包含1、2、3、4、5、6、7、8、9或更多个碱基对从C-C'臂中的去除(参见例如2018年12月6日提交的PCT/US2018/064242的图3B中的ITR-1或图7A中的ITR-45)。在一些实施方案中,修饰ITR可以包含从C-C'臂除去1个、2个、3个、4个、5个、6个、7个、8个、9个或更多个碱基对和从B-B'臂除去1个、2个、3个、4个、5个、6个、7个、8个、9个或更多个碱基对。设想去除碱基对的任何组合,例如可以在C-C'臂中去除6个碱基对以及在B-B'臂中去除2个碱基对。作为说明性实例,图3B展示了示例性的修饰ITR,其从C部分和C'部分各缺失至少7个碱基对,C和C'区域之间的环中的核苷酸被取代,以及从B区域和B'区域各自缺失至少一个碱基对,使得修饰ITR包含至少一个臂(例如C-C')截断的两个臂。在一些实施方案中,修饰ITR还包含从B区域和B'区域各自缺失至少一个碱基对,使得臂B-B'相对于WT ITR也截断。
在一些实施方案中,经修饰的ITR相对于野生型全长ITR序列能够具有1到50(例如1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49或50)个核苷酸缺失。在一些实施方案中,相对于全长WT ITR序列,修饰ITR可缺失1和30个之间的核苷酸。在一些实施方案中,相对于全长野生型ITR序列,修饰ITR可缺失2和20个之间的核苷酸。
在一些实施方案中,经修饰的ITR在A或A'区域的含RBE部分中不含任何核苷酸缺失,以便干扰DNA复制(例如通过Rep蛋白结合至RBE,或在末端解析位点切割)。在一些实施方案中,预期用于本文中的经修饰的ITR在如本文所述的B、B'、C和/或C区域中具有一个或多个缺失。
在一些实施方案中,包含对称ITR对或不对称ITR对的合成产生的ceDNA载体包含如本文公开的调控开关和至少一种所选的经修饰的ITR,所述经修饰的ITR的核苷酸序列选自由SEQ ID NO:3、4、15-47、101-116或165-187组成的组中的任一种。
在另一个实施方案中,结构元件的结构可以进行修饰。例如,结构元件改变了茎高和/或环中核苷酸的数量。例如,茎高可以是约2个、3个、4个、5个、6个、7个、8个或9个或更多个核苷酸或其中的任何范围。在一个实施方案中,茎高可以是约5个核苷酸至约9个核苷酸并与Rep功能性相互作用。在另一个实施方案中,茎高可以是约7个核苷酸并与Rep功能性相互作用。在另一个实例中,环可以具有3个、4个、5个、6个、7个、8个、9个或10个或更多个核苷酸或其中的任何范围。
在另一个实施方案中,RBE或扩展RBE内GAGY结合位点或GAGY相关结合位点的数量可以增加或减少。在一个实例中,RBE或扩展RBE可以包含1个、2个、3个、4个、5个或6个或更多个GAGY结合位点或其中的任何范围。每个GAGY结合位点可以独立地是精确的GAGY序列或类似于GAGY的序列,只要该序列足以结合Rep蛋白即可。
在另一个实施方案中,能够改变(例如增加或减少)两个元件(例如(但不限于)RBE和发夹)之间的间距,以改变与大Rep蛋白的功能相互作用。例如,间距可以是约1个、2个、3个、4个、5个、6个、7个、8个、9个、10个、11个、12个、13个、14个、15个、16个、17个、18个、19个、20个或21个或更多个核苷酸或其中的任何范围。
本文所述的ceDNA载体能够包括相对于本文公开的野生型AAV2 ITR结构经修饰,但仍保留可操作的RBE、trs和RBE'部分的ITR结构。图2A和图2B显示了ceDNA载体的野生型ITR结构部分内的trs位点的一种可能的操作机理。在一些实施方案中,ceDNA载体含有一种或多种功能ITR多核苷酸序列,所述多核苷酸序列包含Rep结合位点(RBS;对于AAV2,5'-GCGCGCTCGCTCGCTC-3'(SEQ ID NO:60)和末端解析位点(TRS;5'-AGTT(SEQ ID NO:62))。在一些实施方案中,至少一个ITR(wt或修饰ITR)是功能性的。在其中ceDNA载体包含彼此不同或不对称的两个经修饰的ITR的替代性实施方案中,至少一个经修饰的ITR是功能性的并且至少一个经修饰的ITR是非功能性的。
在一些实施方案中,本文所述的合成产生的ceDNA载体的经修饰的ITR(例如左或右ITR)在环臂、截断的臂或间隔子内具有修饰。环臂、截断的臂或间隔子内具有修饰的ITR的示例性序列列举于国际申请PCT/US18/49996的表2(即,SEQ ID NO:135-190、200-233);表3(例如SEQ ID No:234-263);表4(例如SEQ ID NO:264-293);表5(例如本文中的SEQ IDNo:294-318);表6(例如SEQ ID NO:319-468;以及表7-9(例如SEQ ID No:101-110、111-112、115-134)或表10A或10B(例如SEQ ID No:9、100、469-483、484-499)中,所述国际申请以全文引用的方式并入本文中。
在一些实施方案中,包含不对称ITR对或对称mod-ITR对的ceDNA载体中使用的经修饰的ITR选自国际申请PCT/US18/49996的表2、3、4、5、6、7、8、9和10A-10B中所示的那些修饰中的任一个或组合,所述国际申请以全文引用的方式并入本文中。
表4A和4B中提供了每一个以上类别中的包含不对称ITR对或对称mod-ITR对的ceDNA载体中使用的另外的示例性的修饰ITR。表4A中的经修饰的右ITR的预测二级结构显示于2018年12月6日提交的国际申请PCT/US2018/064242的图7A中,并且表4B中的经修饰的左ITR的预测二级结构显示于2018年12月6日提交的国际申请PCT/US2018/064242的图7B中,所述国际申请以全文引用的方式并入本文中。
表4A和表4B展示了示例性的经修饰的右和左ITR。
表4A:示例性的经修饰的右ITR。经修饰的这些示例性右ITR能够包含GCGCGCTCGCTCGCTC-3′(SEQ ID NO:60)的RBE、ACTGAGGC(SEQ ID NO:69)的间隔子、间隔子补体GCCTCAGT(SEQ ID NO:70)和GAGCGAGCGAGCGCGC(SEQ ID NO:71)的RBE'(即,RBE的补体)。
Figure BDA0002685856320000751
Figure BDA0002685856320000761
表4B:示例性的经修饰的左ITR经修饰的这些示例性左ITR能够包含GCGCGCTCGCTCGCTC-3'(SEQ ID NO:60)的RBE、ACTGAGGC(SEQ ID NO:69)的间隔子、间隔子补体GCCTCAGT(SEQ ID NO:70)和GAGCGAGCGAG CGCGC(SEQ ID NO:71)的RBE补体(RBE')。
Figure BDA0002685856320000762
Figure BDA0002685856320000771
在一个实施方案中,ceDNA载体按照5'到3'方向包含:第一腺相关病毒(AAV)反向末端重复序列(ITR)、所关注非核苷酸序列(例如如本文所述的表达盒)和第二AAV ITR,其中第一ITR(5'ITR)和第二ITR(3'ITR)相对于彼此是不对称的,也就是说,它们具有彼此不同的3D空间构型。作为示例性实施方案,第一ITR可以是野生型ITR,并且第二ITR可以是突变或修饰ITR,或反过来,其中第一ITR可以是突变或修饰ITR,第二ITR可以是野生型ITR。在一些实施方案中,第一ITR和第二ITR均是mod-ITR,但具有不同序列或具有不同修饰,因此不是相同的经修饰的ITR,并且具有不同的3D空间构型。换句话说,具有不对称ITR的ceDNA载体包含如下ITR,其中一个ITR相对于WT-ITR的任何变化均未反映于另一个ITR中;或替代地,其中不对称ITR具有、经修饰的不对称ITR对能够具有相对于彼此不同的序列和不同的三维形状。ceDNA载体中以及用于产生ceDNA质粒的示例性不对称ITR示于表4A和4B中。
在一个替代实施方案中,合成产生的ceDNA载体包含两个对称的mod-ITR,也就是说,两个ITR具有相同的序列,但是彼此逆向的补体(反向)。在一些实施方案中,相对于来自相同AAV血清型的野生型ITR序列,对称的mod-ITR对包含缺失、插入或取代中的至少一种或任何组合。对称ITR中的添加、缺失或取代是相同的,但彼此反向互补。例如,在5'ITR的C区域中插入3个核苷酸将反映为在3'ITR的C'区域中相应部分中插入3个反向互补核苷酸。仅出于说明目的,如果在5'ITR中添加AACG,那么在3'ITR中相应位点处添加CGTT。举例来说,如果5'ITR有义链是
Figure BDA0002685856320000781
则G与A之间添加AACG会产生序列
Figure BDA0002685856320000782
(SEQ ID NO:51)。相应的3'ITR有义链是
Figure BDA0002685856320000783
(
Figure BDA0002685856320000784
的反向补体),其中T与C之间添加CGTT(即,AACG的反向补体)会产生序列
Figure BDA0002685856320000785
(SEQ ID NO:49)(
Figure BDA0002685856320000786
的反向补体)(SEQ ID NO:51)。
在替代实施方案中,修饰ITR对如本文所定义是基本上对称的,即,修饰ITR对可以具有不同的序列,但是具有一致或相同的对称的三维形状。举例来说,一个经修饰的ITR能够来自一种血清型,而另一个经修饰的ITR能够来自不同血清型,但它们在相同区域中具有相同突变(例如核苷酸插入、缺失或取代)。换句话说,仅出于说明目的,5'mod-ITR可以来自AAV2并在C区域有一个缺失,而3'mod-ITR可以来自AAV5并在C'区域中有相应的缺失,并且如果5'mod-ITR和3'mod-ITR具有相同或对称的三维空间组构,那么其作为修饰ITR对涵盖用于在本文中。
在一些实施方案中,基本上对称的mod-ITR对在3D空间中具有相同的A、C-C'和B-B'环,例如,如果基本上对称的mod-ITR对中的修饰ITR缺失C-C'臂,那么同源mod-ITR相应缺失C-C'环,并且在其同源mod-ITR的几何空间呈相同形状下,剩余A和B-B'环具有相似3D结构。仅作为示例,基本上对称的ITR可以具有对称的空间组构,使得它们的结构在几何空间中是相同的形状。例如,当将GC对修饰为例如CG对,反之亦然,或者将AT对修饰为TA对,反之亦然时,可能会发生这种情况。因此,如果例如5'ITR具有序列
Figure BDA0002685856320000792
(SEQID NO:51)(其中G另外修饰成C),并且基本对称的3'ITR具有序列
Figure BDA0002685856320000793
(SEQ ID NO:49)(除a之外,T不进行相应修饰),那么使用上述示例性实例经修饰的5'ITR作为
Figure BDA0002685856320000794
(SEQ ID NO:50)和经修饰的3'ITR作为
Figure BDA0002685856320000795
(SEQID NO:49)(即,
Figure BDA0002685856320000796
的反向补体(SEQ ID NO:51)),这些经修饰的ITR仍然会是对称的。在一些实施方案中,此类经修饰的ITR对是基本对称的,原因是经修饰的ITR对具有对称立体化学构型。
表5显示了示例性的经修饰的对称ITR对(即,经修饰的左ITR和经修饰的对称右ITR)。序列的黑体(红色)部分标识了部分ITR序列(即A-A'、C-C'和B-B'环的序列),也在图31A-46B中示出。经修饰的这些示例性ITR能够包含GCGCGCTCGCTCGCTC-3'(SEQ ID NO:60)的RBE、ACTGAGGC(SEQ ID NO:69)的间隔子、间隔子补体GCCTCAGT(SEQ ID NO:70)和GAGCGAGCGAGCGCGC(SEQ ID NO:71)的RBE'(即,RBE的补体)。
Figure BDA0002685856320000791
Figure BDA0002685856320000801
Figure BDA0002685856320000811
Figure BDA0002685856320000821
在一些实施方案中,包含不对称ITR对的ceDNA载体能够包含具有修饰的ITR,所述修饰对应于以下序列中的任一修饰:本文表4A-4B中的任一个或多个中所示的ITR序列或ITR部分序列;或2018年12月6日提交的国际申请PCT/US2018/064242的图7A-7B中所示的序列,所述国际申请全文并入本文中;或2018年9月7日提交的国际申请PCT/US18/49996的表2、3、4、5、6、7、8、9或10A-10B中所公开的序列,所述国际申请以全文引用的方式并入本文中。
V.用于控制转基因表达的示例性ceDNA载体
如上文所述,本公开涉及重组ceDNA表达载体和用于控制转基因表达的编码转基因的ceDNA载体,所述载体包含以下中的任一个:不对称的ITR对、对称的ITR对,或基本对称的ITR对,如上文所述。在某些实施方案中,本公开涉及用于控制转基因表达的重组ceDNA载体,其与ITR序列和转基因侧接,其中如本文所定义,ITR序列相对于彼此是不对称的、对称的或基本对称的,并且ceDNA进一步包含位于侧接的ITR之间的所关注核苷酸序列(例如包含转基因的核酸的表达盒),其中所述核酸分子缺乏病毒衣壳蛋白编码序列。
用于控制转基因表达的ceDNA载体可以是能够方便地经历重组DNA程序(包括如本文所述的核苷酸序列)的任何ceDNA载体,条件是改变至少一个ITR。本公开的ceDNA载体与其中将要引入ceDNA载体的宿主细胞相容。在某些实施方案中,ceDNA载体可以是线性的。在某些实施方案中,ceDNA载体可以作为染色体外实体存在。在某些实施方案中,本公开的ceDNA载体可以含有容许供体序列整合到宿主细胞基因组中的元件。如本文所用,“转基因”与“异源核苷酸序列”同义。
现参看图1A-1G,显示了适用于制备本公开的ceDNA载体的两个非限制性质粒的功能组分的示意图。图1A、1B、1D、1F显示了ceDNA载体的构建体或ceDNA质粒的相应序列。ceDNA载体是无衣壳的并且能够获自质粒,所述质粒按照此次序编码:第一ITR、可表达的转基因盒,和第二ITR,其中如本文所定义,第一与第二ITR序列相对于彼此是不对称的、对称的或基本对称的。ceDNA载体是无衣壳的并且能够获自质粒,所述质粒按照此次序编码:第一ITR、可表达的转基因(蛋白质或核酸),和第二ITR,其中如本文所定义,第一与第二ITR序列相对于彼此是不对称的、对称的或基本对称的。在一些实施方案中,可表达的转基因盒在需要时包括:增强子/启动子、一个或多个同源臂、供体序列、转录后调控元件(例如WPRE,例如SEQ ID NO:67),以及聚腺苷酸化和终止信号(例如BGH polyA,例如SEQ ID NO:68)。
图5是使用实施例中所述的方法证实从多个质粒构建体产生ceDNA的凝胶。如以上关于图4A和实施例中所论述,ceDNA由凝胶中的特征色带图案证实。
A.调控元件.
包含如本文所定义的不对称ITR对或对称ITR对的如本文所述的ceDNA载体能够进一步包含顺式调控元件的特定组合。顺式调控元件包括但不限于启动子、核糖开关、隔离子、mir可调控元件、转录后调控元件、组织和细胞类型特异性启动子,和增强子。在一些实施方案中,ITR能够充当转基因的启动子。在一些实施方案中,用于控制转基因表达的ceDNA载体包含调控转基因表达的其它组分,例如如本文中所述的调控转基因表达的调控开关,或能够杀灭包含ceDNA载体的细胞的杀灭开关。国际申请PCT/US18/49996中更充分地论述了本发明中能够使用的调控元件,包括调控开关,所述国际申请以全文引用的方式并入本文中。
在实施方案中,第二核苷酸序列包括调控序列和编码核酸酶的核苷酸序列。在某些实施方案中,基因调控序列与编码核酸酶的核苷酸序列可操作地连接。在某些实施方案中,调控序列适合于控制核酸酶在宿主细胞中的表达。在某些实施方案中,调控序列包括适合的启动子序列,其能够引导可操作地连接到启动子序列的基因转录,例如编码本公开的核酸酶的核苷酸序列。在某些实施方案中,第二核苷酸序列包括连接到编码核酸酶的核苷酸序列的5'末端的内含子序列。在某些实施方案中,在启动子的上游提供增强子序列以增加启动子的功效。在某些实施方案中,调控序列包括增强子和启动子,其中第二核苷酸序列包括在编码核酸酶的核苷酸序列上游的内含子序列,其中内含子包括一个或多个核酸酶裂解位点,并且其中启动子与编码核酸酶的核苷酸序列可操作地连接。
以合成方式或使用如本文实例中所述的基于细胞的产生方法产生的ceDNA载体能够进一步包含顺式调控元件的特定组合,例如WHP转录后调控元件(WPRE)(例如SEQ ID NO:67)和BGH polyA(SEQ ID NO:68)。适用于表达构建体中的表达盒不受病毒衣壳强加的包装约束的限制。
(i).启动子:
所属领域的普通技术人员将了解,当对于启动子所启动的特定序列适当时,应该定制本发明的ceDNA载体中使用的启动子。举例来说,向导RNA可能根本不需要启动子,因为其功能是与原生DNA上的特定靶序列形成双链体以实现重组事件。相比之下,由ceDNA载体编码的核酸酶会受益于启动子,使得其能够从载体有效表达,并且任选地以可调控的方式表达。
本发明的表达盒包括能够影响总体表达水平以及细胞特异性的启动子。为了转基因表达,它们能够包括高度活性的病毒源即刻早期启动子。表达盒可以含有组织特异性的真核启动子,以将转基因表达限制在特定细胞类型,并减少由不受调控的异常表达引起的毒性效应和免疫应答。在优选的实施方案中,表达盒可以含有合成调控元件,例如CAG启动子(SEQ ID NO:72)。CAG启动子包含(i)巨细胞病毒(CMV)早期增强子元件,(ii)鸡β-肌动蛋白基因的启动子、第一外显子和第一内含子,以及(iii)兔β-球蛋白基因的剪接受体。替代地,表达盒能够含有α-1-抗胰蛋白酶(AAT)启动子(SEQ ID NO:73或SEQ ID NO:74)、肝脏特异性(LP1)启动子(SEQ ID NO:75或SEQ ID NO:76),或人延伸因子-1α(EF1a)启动子(例如SEQ ID NO:77或SEQ ID NO:78)。在一些实施方案中,表达盒包括一个或多个组成型启动子,例如逆转录病毒劳氏肉瘤病毒(Rous sarcoma virus,RSV)LTR启动子(任选地具有RSV增强子),或细胞巨大病毒(CMV)即刻早期启动子(任选地具有CMV增强子,例如SEQ ID NO:79)。可替代地,可以使用诱导型启动子、转基因的天然启动子、组织特异性启动子或本领域已知的各种启动子。
合适的启动子,包括上述启动子,可以源自于病毒并因此可以称为病毒启动子,或者它们可以源自于任何生物,包括原核或真核生物。合适的启动子可用于通过任何RNA聚合酶(例如pol I、pol II、pol III)来驱动表达。示例性启动子包括(但不限于)SV40早期启动子、小鼠乳房肿瘤病毒长末端重复(LTR)启动子;腺病毒主要晚期启动子(Ad MLP);单纯疱疹病毒(HSV)启动子、细胞巨大病毒(CMV)启动子(例如CMV即刻早期启动子区域(CMVIE))、劳氏肉瘤病毒(RSV)启动子、人U6小核启动子(U6,例如SEQ ID NO:80)(Miyagishi等人,《自然·生物技术(Nature Biotechnology)》20,497-500(2002))、增强型U6启动子(例如Xia等人,《核酸研究(Nucleic Acids Res.)》2003年9月1日;31(17))、人H1启动子(H1)(例如SEQID NO:81)、CAG启动子(或SEQ ID NO:72)、人α1-抗胰蛋白酶(HAAT)启动子(例如SEQ IDNO:82)等等。在某些实施方案中,这些启动子在其下游含内含子的末端处被改变以包括一个或多个核酸酶裂解位点。在某些实施方案中,含有核酸酶裂解位点的DNA与启动子DNA是无关的。
在一个实施方案中,使用的启动子是编码治疗性蛋白质的基因的天然启动子。编码治疗性蛋白质的相应基因的启动子和其它调控序列是已知的并且已被表征。所用启动子区域可以进一步包括一种或多种额外的调控序列(例如原生),例如增强子(例如SEQ IDNO:79和SEQ ID NO:83),包括SV40增强子(SEQ ID NO:126)。
根据本发明使用的适合启动子的非限制性实例包括例如CAG启动子(SEQ ID NO:72)、HAAT启动子(SEQ ID NO:82)、人EF1-α启动子(SEQ ID NO:77),或EF1a启动子(SEQ IDNO:78)、IE2启动子(例如SEQ ID NO:84)和大鼠EF1-α启动子(SEQ ID NO:85)或1E1启动子片段(SEQ ID NO:125)的片段。
(ii).聚腺苷酸化序列:
用于控制转基因表达的ceDNA载体中能够包括编码聚腺苷酸化序列的序列,以稳定由ceDNA载体表达的mRNA并且有助于核输出和翻译。在一个实施方案中,ceDNA载体不包括聚腺苷酸化序列。在其它实施方案中,所述载体包括至少1个、至少2个、至少3个、至少4个、至少5个、至少10个、至少15个、至少20个、至少25个、至少30个、至少40个、至少45个、至少50个或更多个腺嘌呤二核苷酸。在一些实施方案中,聚腺苷酸化序列包含约43个核苷酸、约40-50个核苷酸、约40-55个核苷酸、约45-50个核苷酸、约35-50个核苷酸或它们之间的任何范围。在其中用于控制转基因表达的ceDNA载体能够包含两个转基因的一些实施方案中,例如在控制抗体表达的的情况下,ceDNA载体能够包含编码抗体重链(例如,示例性重链是SEQ ID NO:57)的核酸和编码抗体轻链(例如,示例性轻链是SEQ ID NO:58)的核酸,并且第一转基因能够存在聚腺苷酸化3',并且IRES(例如SEQ ID NO:190)位于第一与第二转基因之间(例如编码抗体重链的核酸与编码抗体轻链的核酸之间)。在此类实施例中,用于控制转基因表达、编码超过一个转基因(例如2个或3个或更多)的ceDNA载体能够包含IRES(内部核糖体进入位点)序列(SEQ ID NO:190),例如其中IRES序列定位于聚腺苷酸化序列的3',以便定位于第一转基因的3'的第二转基因(例如抗体或抗原结合片段)被翻译且被相同ceDNA载体表达,使得ceDNA载体能够表达两个或更多个由ceDNA载体编码的转基因。
表达盒能够包括所属领域中已知的聚腺苷酸化序列或其变异体,例如从牛BGHpA(例如SEQ ID NO:68)或病毒SV40pA(例如SEQ ID NO:86)中分离的天然存在的序列,或合成序列(例如SEQ ID NO:87)。一些表达盒还可以包括SV40晚期多聚A信号上游增强子(USE)序列。在一些实施方案中,USE可以与SV40pA或异源多聚A信号组合使用。
表达盒还可以包括转录后元件以增加转基因的表达。在一些实施方案中,使用土拨鼠肝炎病毒(WHP)转录后调控元件(WPRE)(例如SEQ ID NO:67)增强转基因表达。可以使用其它转录后加工元件,例如来自单纯疱疹病毒的胸苷激酶基因或乙型肝炎病毒(HBV)的转录后元件。分泌序列能够连接到转基因,例如VH-02(SEQ ID NO:88)和VK-A26序列(SEQID NO:89)或IgK信号序列(SEQ ID NO:128)、Glu分泌信号序列(SEQ ID NO:188)或TND分泌信号序列(SEQ ID NO:189)。
(iii).核定位序列
在一些实施方案中,编码RNA向导内切核酸酶的ceDNA载体包含一个或多个核定位序列(NLS),例如1、2、3、4、5、6、7、8、9、10个或更多个NLS。在一些实施方案中,一个或多个NLS位于氨基端或附近、羧基端或附近,或这些位置的组合(例如氨基端的一个或多个NLS和/或羧基端的一个或多个NLS)。当存在超过一个NLS时,可以彼此独立地选择,使得单个NLS可以呈超过一个拷贝存在和/或与呈一个或多个拷贝存在的一个或多个其它NLS组合存在。NLS的非限制性实例如表6所示。
表6:核定位信号
Figure BDA0002685856320000861
Figure BDA0002685856320000871
B.ceDNA载体的其它组分
本公开的ceDNA载体可以含有编码用于基因表达的其它组分的核苷酸。例如,为了选择特定的基因靶向事件,可以将保护性shRNA嵌入微型RNA中,然后插入被设计成位点特异性地整合至高活性基因座(如白蛋白基因座)中的重组ceDNA载体中。这样的实施方案可以提供用于在任何遗传背景下体内选择和扩增基因修饰的肝细胞的系统,例如在Nygaard等人的《体内选择基因修饰的肝细胞的通用系统(A universal system to select gene-modified hepatocytes in vivo)》《基因疗法(Gene Therapy)》,2016年6月8日)中所述。本公开的ceDNA载体可以含有一种或多种选择性标志物,其允许选择转化、转染、转导等的细胞。选择性标志物是产物提供杀生物剂或病毒抗性、对重金属的抗性、对营养缺陷型的原营养、NeoR等的基因。在某些实施方案中,将正向选择标志物并入供体序列中,例如NeoR。可以将负向选择标志物并入供体序列的下游,例如可以将编码负向选择标志物的核酸序列HSV-tk并入供体序列下游的核酸构建体中。
在实施方案中,使用如本文所述的合成方法所产生的用于控制转基因表达的ceDNA载体能够用于基因编辑,例如如2018年12月6日提交的国际申请PCT/US2018/064242中所公开,所述国际申请以全文引用的方式并入本文中;并且可以包括以下中的一个或多个:5'同源臂、3'同源臂、5'同源臂上游且邻近的聚腺苷酸化位点。示例性的同源臂是5'和3'白蛋白同源臂(SEQ ID NO:151和152)或CCR5 5'和3'同源臂(例如SEQ ID NO:153、154)。
C.调控开关
分子调控开关是一种响应信号而产生可测量的状态变化的开关。此类调控开关能够与本文所述的ceDNA载体组合使用以控制转基因从ceDNA载体中表达的输出。在一些实施方案中,用于控制转基因表达的ceDNA载体包含用于微调转基因表达的调控开关。例如,它可以发挥ceDNA载体的生物封存功能。在一些实施方案中,开关是“ON/OFF”型开关,其设计成以可控和可调控方式起始或中止(即,关闭)所关注基因在ceDNA中的表达。在一些实施方案中,开关可包括“杀灭开关”,一旦所述开关被活化,它就可以指令包含ceDNA载体的细胞经历程序性死亡。预期用于控制转基因表达的ceDNA载体中的示例性调控开关能够用于调控转基因表达,并且更充分地论述于国际申请PCT/US18/49996中,所述国际申请以全文引用的方式并入本文中。
(i)二进制调控开关
在一些实施方案中,用于控制转基因表达的ceDNA载体包含能够用于可控地调节转基因表达的调控开关。举例来说,位于控制转基因表达的ceDNA载体的ITR之间的表达盒可以另外包含可操作地连接到所关注基因的调控区域,例如启动子、顺式元件、抑制子、增强子等,其中所述调控区域通过一种或多种辅因子或外源试剂调控。仅举例而言,调控区域能够通过小分子开关或者诱导型或阻遏型启动子进行调控。诱导型启动子的非限制性实例是激素诱导型或金属诱导型启动子。其它示例性的诱导型启动子/增强子元件包括但不限于RU486诱导型启动子、蜕皮素诱导型启动子、雷帕霉素诱导型启动子和金属硫蛋白启动子。
(ii)小分子调控开关
本领域中已知的多种基于小分子的调控开关在所属领域中是已知的,并且能够与本文公开的ceDNA载体组合以形成调控开关控制的ceDNA载体。在一些实施方案中,调控开关可以选自以下任一种或组合:正交配体/核受体对,例如类视色素受体变异体/LG335和GRQCIMFI,以及控制操作性连接的转基因的表达的人工启动子,例如Taylor等人,《BMC生物技术(BMC Biotechnology)》10(2010):15中公开的人工启动子;工程化类固醇受体,例如C末端截断的修饰孕激素受体,其不能结合孕激素但结合RU486(米非司酮(mifepristone))(美国专利第5,364,791号);来自果蝇(Drosophila)的蜕皮素受体和其蜕皮类固醇配体(Saez等人,《美国国家科学院院刊(PNAS)》,97(26)(2000),14512-14517;或由抗生素甲氧苄啶(trimethoprim,TMP)控制的开关,如Sando R;《自然方法》第3版2013,10(11):1085-8中所公开。在一些实施方案中,控制转基因的调控开关或由控制转基因表达的ceDNA载体所表达的调控开关是前药活化开关,例如美国专利8,771,679和6,339,070中所公开。
(iii)“密码”调控开关
在一些实施方案中,调控开关可以是“密码开关”或“密码回路”。在发生特定条件时,也就是说,需要存在条件组合才能发生转基因表达和/或抑制时,密码开关允许微调用于控制转基因表达的ceDNA载体对转基因的表达的控制。例如,为了发生转基因的表达,至少必须发生条件A和B。密码调控开关可以是任何数目个条件,例如,要存在至少2个或至少3个或至少4个或至少5个或至少6个或至少7个或更多个条件方能发生转基因表达。在一些实施方案中,需要发生至少2个条件(例如A、B条件),并且在某些实施方案中,需要发生至少3个条件(例如A、B和C,或A、B和D)。仅作为示例,为了从具有密码“ABC”调控开关的ceDNA发生基因表达,必须存在条件A、B和C。条件A、B和C可以如下:条件A是存在病状或疾病,条件B是激素响应,并且条件C是对转基因表达的响应。举例来说,如果转基因编辑缺陷性EPO基因,那么条件A是存在慢性肾病(CKD),如果受试者的肾脏中有低氧状况,那么发生条件B,条件C是肾脏中产生促红细胞产生素的细胞(EPC)的募集受损;或可替代地,HIF-2活化受损。一旦氧水平升高或达到期望的EPO水平,转基因就会关闭,直到再次发生3个条件,它重新打开。
在一些实施方案中,预期用于控制转基因表达的ceDNA载体中的密码调控开关或“密码回路”包含杂合体转录因子(TF)以扩大用于定义生物封存条件的环境信号的范围和复杂度。与在预定条件存在下触发细胞死亡的致命开关相反,“密码回路”允许在特定“密码”存在下细胞存活或转基因表达,并且只有当存在预定环境条件或密码时,才可以容易地重新编程以允许转基因表达和/或细胞存活。
本文公开的调控开关,例如小分子开关、基于核酸的开关、小分子-核酸杂合开关、转录后转基因调控开关、翻译后调节、辐射控制开关、低氧介导的开关和如本文公开的本领域中普通技术人员已知的其它调控开关中的任何和所有组合均可以用于如本文公开的密码调控开关中。预期使用的调控开关也在综述文章Kis等人,《皇家学会界面杂志(J R SocInterface)》12:20141000(2015)中论述,并总结在Kis的表1中。在一些实施方案中,密码系统中使用的调控开关能够选自表11中的任何开关或组合。
(iv).控制转基因表达的基于核酸的调控开关
在一些实施方案中,控制由ceDNA载体表达的转基因的调控开关是建立在基于核酸的控制机理的基础上。示例性的核酸控制机制是本领域已知的并且是设想使用的。举例来说,此类机理包括核糖开关,例如以下文献中所公开的核糖开关:例如US2009/0305253、US2008/0269258、US2017/0204477、WO2018026762A1、美国专利9,222,093和EP申请EP288071;以及Villa JK等人的评论中所公开的核糖开关,《微生物学光谱(MicrobiolSpectr.)》2018年5月;6(3)。还包括代谢物响应性转录生物传感器,例如WO2018/075486和WO2017/147585中公开的那些。设想使用的其它本领域已知的机制包括用siRNA或RNAi分子(例如miR、shRNA)使转基因沉默。举例来说,用于控制转基因表达的ceDNA载体能够包含编码RNAi分子的调控开关,所述RNAi分子与ceDNA载体所表达的转基因互补。当此类RNAi被表达时,即使ceDNA载体表达转基因,所述转基因也将被互补RNAi分子静默,并且当RNAi未被表达时,即使ceDNA载体表达转基因,所述转基因也不被RNAi静默。
在一些实施方案中,调控开关是组织特异性自失活调控开关,例如如US2002/0022018中所公开,其中调控开关在其中转基因表达原本可能不利的位点有意地将转基因表达关闭。在一些实施方案中,调控开关是重组酶可逆基因表达系统,例如如US2014/0127162和美国专利8,324,436中所公开。
(v).转录后和翻译后调控开关
在一些实施方案中,控制ceDNA载体表达所关注的转基因或基因的调控开关是转录后修饰系统,所述ceDNA载体用于控制转基因表达。例如,这样的调控开关可以是对四环素或茶碱敏感的适体酶(aptazyme)核糖开关,如以下中所公开:US2018/0119156、GB201107768、WO2001/064956A3、欧洲专利2707487和Beilstein等人,《ACS合成生物学(ACSSynth.Biol.)》,2015,4(5),第526-534页;Zhong等人,Elife.2016年11月2日;5.pii:e18858。在一些实施方案中,设想本领域普通技术人员可以编码转基因和含有配体敏感性(OFF-开关)适体的抑制性siRNA二者,净结果是配体敏感性ON-开关。
(vi).其它示例性调控开关
ceDNA载体中能够使用任何已知的调控开关来控制ceDNA载体所表达的转基因的基因表达,包括环境变化所触发的那些。其它实例包括但不限于;Suzuki等人,《科学报告(Scientific Reports)》8;10051(2018)的BOC方法;遗传密码扩展和非生理氨基酸;辐射控制或超声控制的on/off开关(参见例如Scott S等人,《基因疗法(Gene Ther)》.2000年7月;7(13):1121-5;美国专利5,612,318;5,571,797;5,770,581;5,817,636;以及WO1999/025385A1。在一些实施方案中,调控开关是通过可植入系统控制,例如如美国专利7,840,263;US2007 0190028A1中所公开,其中基因表达是通过一种或多种形式的能量控制,包括电磁能,所述能量将可操作地连接到ceDNA载体中的转基因的启动子活化。
在一些实施方案中,设想用于控制转基因表达的ceDNA载体中的调控开关是低氧介导或应激活化的开关,例如以下文献中所公开的那些:WO1999060142A2、美国专利5,834,306;6,218,179;6,709,858;US2015/0322410;Greco等人(2004)《靶向癌症疗法(TargetedCancer Therapies)》9;S368以及FROG、TOAD和NRSE元件,以及条件诱导型静默元件,包括低氧应答元件(HRE)、发炎应答元件(IRE)和剪切应激活化元件(SSAE),例如如美国专利9,394,526中所公开。此类实施方案适用于在局部缺血之后或在局部缺血组织和/或肿瘤中开启用于控制转基因表达的ceDNA载体对转基因的表达。。
(iv).杀灭开关
本发明的其它实施方案涉及用于控制转基因表达的包含杀灭开关的ceDNA载体。如本文公开的杀伤开关能够使包含ceDNA载体的细胞被杀死或经历程序性细胞死亡,作为从受试者的系统中永久去除引入的ceDNA载体的手段。本领域普通技术人员将了解,杀灭开关在本发明的ceDNA载体中的使用典型地联合ceDNA载体靶向受试者可接受地所能失去的有限数目个细胞或靶向希望细胞凋亡的细胞类型(例如癌细胞)。在所有方面中,如本文公开的“杀伤开关”被设计成在缺乏输入的存活信号或其它指定条件下提供对包含ceDNA载体的细胞的快速而强大的细胞杀伤。换句话说,由本文中ceDNA载体编码的杀灭开关能够将包含ceDNA载体的细胞的细胞存活限制在由特定输入信号限定的环境中。如果希望从受试者中去除ceDNA载体或确保其不表达所编码的转基因,则此类杀灭开关发挥生物学的生物封存功能。
VI.产生ceDNA载体的详细方法
A.通用产生
用于产生ceDNA载体的某些方法描述于2018年9月7日提交的国际申请PCT/US18/49996的章节IV中,所述ceDNA载体包含如本文所定义的不对称ITR对或对称ITR对,用于控制转基因表达,所述国际申请以全文引用的方式并入本文中。在一些实施方案中,如本文所公开的方法和组合物中使用的用于控制转基因表达的ceDNA载体能够使用昆虫细胞产生,如本文所述。在替代实施方案中,如本文所公开的方法和组合物中使用的ceDNA载体能够以合成方式产生,并且在一些实施方案中,以无细胞方法产生,如2019年1月18日提交的国际申请PCT/US19/14122所公开,所述国际申请以全文引用的方式并入本文中。
如本文所述,在一个实施方案中,用于控制转基因表达的ceDNA载体能够通过例如包含以下步骤的方法获得:a)在诱导宿主细胞内产生ceDNA载体的有效条件和充足时间下,在Rep蛋白存在下,培育含有缺乏病毒衣壳编码序列的多核苷酸表达构建体模板(例如ceDNA质粒、ceDNA杆粒,和/或ceDNA杆状病毒)的宿主细胞群(例如昆虫细胞),且其中宿主细胞不包含病毒衣壳编码序列;和b)从宿主细胞中收获且分离出ceDNA载体。Rep蛋白的存在诱导具有修饰ITR的载体多核苷酸复制,从而在宿主细胞中产生ceDNA载体。但是,没有表达病毒颗粒(例如AAV病毒体)。因此,没有大小限制,例如在AAV或其它基于病毒的载体中天然强加的大小限制。
可以通过用在ceDNA载体上具有单个识别位点的限制酶消化从宿主细胞分离的DNA,并在非变性凝胶上分析消化的DNA物质,以与线性和非连续DNA相比较证实线性且连续DNA的特征色带的存在,从而证实从宿主细胞分离的ceDNA载体的存在。
在又一个方面,本发明提供了将DNA载体多核苷酸表达模板(ceDNA模板)稳定地整合至其自身基因组中的宿主细胞系的用途,所述细胞系用于产生非病毒DNA载体,例如如Lee,L.等人(2013)Plos One 8(8):e69879中所述。优选地,Rep以约3的MOI加入宿主细胞中。当宿主细胞系是哺乳动物细胞系、例如HEK293细胞时,所述细胞系可以具有稳定整合的多核苷酸载体模板,并且可以使用第二载体、例如疱疹病毒将Rep蛋白引入细胞中,使得在Rep和辅助病毒存在下切除和扩增ceDNA。
在一个实施方案中,用于制备本文所述的ceDNA载体的宿主细胞是昆虫细胞,并使用杆状病毒递送编码Rep蛋白的多核苷酸和用于ceDNA的非病毒DNA载体多核苷酸表达构建体模板,例如如图4A-4C和实例1中所述。在一些实施方案中,宿主细胞经工程改造以表达Rep蛋白。
然后从宿主细胞中收获和分离ceDNA载体。从细胞收获和收集本文所述的ceDNA载体的时间可以进行选择和优化,以高产率地产生ceDNA载体。例如,可以根据细胞存活率、细胞形态、细胞生长等选择收获时间。在一个实施方案中,细胞在足以产生ceDNA载体的条件下生长,并在杆状病毒感染后足以产生ceDNA载体但在大多数细胞开始因杆状病毒毒性而死亡之前的时间收获。可以使用质粒提纯试剂盒,例如Qiagen Endo-Free Plasmid试剂盒分离DNA载体。为分离质粒而开发的其它方法也适用于DNA载体。通常,可以采用任何核酸提纯方法。
DNA载体可以通过本领域技术人员已知用于提纯DNA的任何手段来提纯。在一个实施方案中,将ceDNA载体作为DNA分子进行提纯。在另一个实施方案中,将ceDNA载体作为外泌体或微粒进行提纯。
ceDNA载体的存在能够如下证实:使用对DNA载体具有单个识别位点的限制酶消化从细胞中分离出的载体DNA,并且使用凝胶电泳术分析已消化和未消化的DNA物质,从而相较于线性非连续DNA来证实线性连续DNA的特征色带的存在。图4C和图4D示出了用于鉴定通过本文的方法产生的闭合端ceDNA载体的存在的一个实施方案。
B.ceDNA质粒
ceDNA质粒是用于后来产生ceDNA载体的质粒。在一些实施方案中,ceDNA质粒可以使用已知的技术构建,以在转录方向上提供至少下列作为操作性连接的组分:(1)修饰5'ITR序列;(2)含有例如启动子、诱导型启动子、调控开关、增强子等顺式调控元件的表达盒;以及(3)修饰3'ITR序列,其中3'ITR序列相对于5'ITR序列是对称的。在一些实施方案中,侧接ITR的表达盒包含用于引入外源序列的克隆位点。表达盒替换了AAV基因组的rep和cap编码区。
在一个方面中,用于控制转基因表达的ceDNA载体获自质粒,在本文中称为“ceDNA质粒”,其按照此次序编码:第一腺相关病毒(AAV)反向末端重复序列(ITR)、包含转基因的表达盒,以及突变或经修饰的AAV ITR,其中所述ceDNA质粒缺乏AAV衣壳蛋白编码序列。在替代实施方案中,ceDNA-质粒依次编码:第一(或5')修饰或突变AAV ITR、包含转基因的表达盒、以及第二(或3')修饰AAV ITR,其中所述ceDNA质粒缺乏AAV衣壳蛋白编码序列,并且其中5'和3'ITR彼此对称。在替代实施方案中,ceDNA质粒依次编码:第一(或5')修饰或突变AAV ITR、包含转基因的表达盒、以及第二(或3')突变或修饰AAV ITR,其中所述ceDNA质粒缺乏AAV衣壳蛋白编码序列,并且其中5'和3'修饰ITR具有相同的修饰(即彼此反向互补或对称)。
在另一个实施方案中,cDNA-质粒系统缺乏病毒衣壳蛋白编码序列(即,它缺乏AAV衣壳基因,也没有其它病毒的衣壳基因)。另外,在一个特定实施方案中,ceDNA-质粒也缺乏AAV Rep蛋白编码序列。因此,在一个优选实施方案中,ceDNA-质粒缺乏AAV2的功能性AAVcap和AAV rep基因GG-3'加上允许发夹形成的可变回文序列。
本发明的ceDNA-质粒可以使用本领域公知的任何AAV血清型的基因组的天然核苷酸序列来产生。在一个实施方案中,ceDNA-质粒骨架源自于AAV1、AAV2、AAV3、AAV4、AAV5、AAV 5、AAV7、AAV8、AAV9、AAV10、AAV 11、AAV12、AAVrh8、AAVrh10、AAV-DJ和AAV-DJ8基因组。例如NCBI:NC 002077;NC 001401;NC001729;NC001829;NC006152;NC 006260;NC 006261;Kotin和Smith,《Springer病毒索引》(The Springer Index of Viruses)》,在Springer维护的URL上可得(www网址:oesys.springer.de/viruses/database/mkchapter.asp?virID=42.04.)(注意-对URL或数据库的引用是指截至本申请生效提交日为止的URL或数据库的内容)。在一个特定实施方案中,ceDNA-质粒骨架源自于AAV2基因组。在另一个特定实施方案中,ceDNA-质粒骨架是合成的骨架,其经过基因工程以在它的5'和3'ITR处包括源自于这些AAV基因组之一。
ceDNA-质粒可以任选地包括选择性或选择标志物,用于建立产生ceDNA载体的细胞系。在一个实施方案中,选择标志物能够插入3'ITR序列的下游(即3')。在另一个实施方案中,选择标志物能够插入5'ITR序列的上游(即5')。适当的选择标志物包括例如赋予耐药性的标志物。选择标志物可以是例如杀稻瘟菌素S抗性基因、卡那霉素(kanamycin)、遗传霉素(geneticin)等。在一个优选实施方案中,药物选择标志是杀稻瘟菌素S抗性基因。
示例性ceDNA(例如rAAV0)是从rAAV质粒产生。一种用于产生rAAV载体的方法可以包含:(a)为宿主细胞提供如上所述的rAAV质粒,其中宿主细胞和质粒均缺乏衣壳蛋白编码基因,(b)在允许产生ceDNA基因组的条件下培养宿主细胞;以及(c)收获细胞并分离从所述细胞产生的AAV基因组。
C.从ceDNA质粒制备ceDNA载体的示例性方法
本文还提供了制备无衣壳的ceDNA载体的方法,特别是具有足够高的产率以提供足够的载体用于体内实验的方法。
在一些实施方案中,用于产生ceDNA载体以便控制转基因表达的方法包含以下步骤:(1)将包含表达盒和两个对称ITR序列的核酸构建体引入宿主细胞(例如Sf9细胞)中;(2)任选地建立克隆细胞系,例如通过使用存在于质粒上的选择标志物;(3)(通过将转染或感染带有所述基因的杆状病毒)将Rep编码基因引入所述昆虫细胞;以及(4)收获细胞且提纯ceDNA载体。上文针对产生用于控制转基因表达的ceDNA载体所述的包含表达盒和两个ITR序列的核酸构建体可以呈ceDNA质粒或如下文所述使用ceDNA质粒所产生的杆粒或杆状病毒形式。可以通过转染、病毒转导、稳定整合或本领域已知的其它方法将核酸构建体引入宿主细胞中。
D.细胞系:
用于产生供控制转基因表达用的ceDNA载体的宿主细胞系能够包括衍生自草地粘虫(Spodoptera frugiperda)的昆虫细胞系,例如Sf9 Sf21;或粉纹夜蛾(Trichoplusiani)细胞;或其它无脊椎动物、脊椎动物或其它真核细胞系,包括哺乳动物细胞。也可以使用普通技术人员已知的其它细胞系,例如HEK293、Huh-7、HeLa、HepG2、HeplA、911、CHO、COS、MeWo、NIH3T3、A549、HT1 180、单核细胞、以及成熟和不成熟的树突状细胞。可以转染宿主细胞系以稳定表达ceDNA-质粒,从而高产率地产生ceDNA载体。
可以使用本领域已知的试剂(例如脂质体、磷酸钙)或物理手段(例如电穿孔),通过瞬时转染将ceDNA-质粒引入Sf9细胞中。可替代地,可以建立将ceDNA-质粒稳定整合至基因组中的稳定Sf9细胞系。这样的稳定细胞系可以通过如上所述将选择标志物并入ceDNA-质粒中来建立。如果用于转染细胞系的ceDNA-质粒包括选择标志物,例如抗生素,那么可以通过向细胞生长培养基中加入抗生素来选择已用ceDNA-质粒转染并将ceDNA-质粒DNA整合至基因组中的细胞。然后可以通过单细胞稀释或集落转移技术来分离细胞的抗性克隆并增殖。
E.分离和提纯ceDNA载体:
图4A-4E和下面的特定实例中描述了用于获得和分离ceDNA载体的方法的实例。本文公开的ceDNA载体能够从表达AAV Rep蛋白的生产细胞获得,进一步用ceDNA质粒、ceDNA杆粒或ceDNA杆状病毒转化。适用于产生ceDNA载体的质粒包括并有一种或多种Rep蛋白的质粒和用于获得ceDNA载体的质粒。用于产生供控制转基因表达用的ceDNA载体的示例性质粒是如2018年12月6日提交的国际申请PCT/US2018/064242的图6B中所示的质粒,所述国际申请全文并入本文中。用于产生供控制抗体表达用的ceDNA载体的ceDNA质粒公开于2019年2月14日提交的国际申请PCT/US19/18016的图6A和SEQ ID NO:56中,所述国际申请公开了用于产生阿杜单抗(aducanmab)的示例性ceDNA质粒。
在一个方面中,多核苷酸编码的AAV Rep蛋白(Rep 78或Rep68)通过质粒(Rep质粒)、杆粒(Rep杆粒)或杆状病毒(Rep杆状病毒)递送到生产细胞。Rep质粒、Rep杆粒和Rep杆状病毒可以通过上述方法产生。
本文描述了ceDNA载体作为示例性ceDNA载体产生的方法。用于产生本发明的ceDNA载体的表达构建体可以是质粒(例如ceDNA质粒)、杆粒(例如ceDNA杆粒)和/或杆状病毒(例如ceDNA杆状病毒)。仅为了举例,ceDNA载体可以由用ceDNA杆状病毒和Rep杆状病毒共同感染的细胞产生。由Rep杆状病毒产生的Rep蛋白可以复制ceDNA杆状病毒以产生ceDNA载体。替代地,ceDNA载体能够由经构建体稳定转染的细胞产生,所述构建体包含编码AAVRep蛋白(Rep78/52)的序列,所述AAV Rep蛋白通过Rep质粒、Rep杆粒或Rep杆状病毒递送。ceDNA杆状病毒可以瞬时转染到细胞中,通过Rep蛋白复制并产生ceDNA载体。
杆粒(例如ceDNA杆粒)能够转染到允许的昆虫细胞中,例如Sf9、Sf21、Tni(粉纹夜蛾)细胞、High Five细胞,并且产生ceDNA杆状病毒,所述杆状病毒是重组杆状病毒,其包括包含对称ITR的序列和表达盒。ceDNA杆状病毒能够再次感染到昆虫细胞中以获得下一代重组杆状病毒。任选地,该步骤可以重复一次或多次以产生更大量的重组杆状病毒。
从细胞收获和收集本文所述的ceDNA载体的时间可以进行选择和优化,以高产率地产生ceDNA载体。例如,可以根据细胞存活率、细胞形态、细胞生长等选择收获时间。通常,细胞可在杆状病毒感染后足以产生ceDNA载体(例如ceDNA载体)的时间后但在大多数细胞开始因病毒毒性而死亡之前收获。使用质粒提纯试剂盒,例如Qiagen ENDO-FREE
Figure BDA0002685856320000961
试剂盒,能够从Sf9细胞中分离出ceDNA载体。为了分离质粒而开发的其它方法也可以适用于ceDNA载体。通常,可以采用本领域已知的任何核酸提纯方法,以及可商购的DNA提取试剂盒。
或者,可以通过对细胞集结粒进行碱裂解法、离心所得裂解液并进行色谱分离来实施提纯。作为一个非限制性实例,所述方法能够如下进行:将上清液装载于保留核酸的离子交换柱(例如SARTOBIND
Figure BDA0002685856320000962
)上,然后洗脱(例如使用1.2M NaCl溶液)并且在凝胶过滤柱上进一步进行色谱提纯(例如6个快速流动GE)。然后通过例如沉淀来回收无衣壳的AAV载体。
在一些实施方案中,ceDNA载体也能以外泌体或微粒形式提纯。本领域中已知,许多细胞类型不仅释放出可溶性蛋白质,而且通过膜微米囊泡脱落释放出复杂的蛋白质/核酸货物(Cocucci等人,2009;EP 10306226.1)。这样的囊泡包括微米囊泡(也称为微粒)和外泌体(也称为纳米囊泡),两者均包含蛋白质和RNA作为货物。微米囊泡由质膜的直接出芽产生,而外泌体在多囊泡内体与质膜融合后释放到细胞外的环境中。因此,可以从已经用ceDNA-质粒转导的细胞或用ceDNA-质粒产生的杆粒或杆状病毒中分离出含有ceDNA载体的微米囊泡和/或外泌体。
微米囊泡可以通过对培养基以20,000×g进行过滤或超速离心来分离,而对外泌体为100,000×g。超速离心的最佳持续时间可以通过实验确定,并将取决于从中分离出囊泡的特定细胞类型。优选地,首先利用低速离心(例如在2000×g下进行5-20分钟)清除培养基并且使用例如
Figure BDA0002685856320000963
离心柱(密理博(Millipore),英国赫特福德郡(Watford,UK))进行离心浓缩。微米囊泡和外泌体可以通过使用识别存在于微米囊泡和外泌体上的特定表面抗原的特异性抗体,通过FACS或MACS进一步提纯。其它微米囊泡和外泌体提纯方法包括但不限于免疫沉淀、亲和色谱、过滤和涂有特异性抗体或适体的磁珠。提纯后,用例如磷酸盐缓冲盐水洗涤囊泡。使用微米囊泡或外泌体递送含ceDNA的囊泡的一个优点是,这些囊泡可通过在它们的膜上包括被相应细胞类型上的特异性受体识别的蛋白质而靶向各种细胞类型。(也参见EP10306226)
本文中发明的另一方面涉及从已将ceDNA构建体稳定整合至自身基因组中的宿主细胞系中提纯ceDNA载体的方法。在一个实施方案中,将ceDNA载体作为DNA分子进行提纯。在另一个实施方案中,将ceDNA载体作为外泌体或微粒进行提纯。
国际申请PCT/US18/49996的图5显示了凝胶证实ceDNA的产生,所述ceDNA使用实例中所述的方法由多种ceDNA-质粒构建体产生。如实例中关于图4D所论述,ceDNA通过凝胶中的特征色带图案来证实。
VII.医药组合物
在另一个方面中,提供了医药组合物。医药组合物包含闭合端DNA载体,例如使用如本文所述的合成方法所产生的用于控制转基因表达的ceDNA载体以及药学上可接受的载剂或稀释剂。
如本文所公开的ceDNA载体能够并入适于施用于受试者的医药组合物中以便体内递送到受试者的细胞、组织或器官。通常,医药组合物包含如本文公开的ceDNA载体和药学上可接受的载剂。例如,可以将本文所述的ceDNA载体并入适合于期望的治疗施用途径(例如肠胃外施用)的医药组合物中。还涵盖通过高压静脉内或动脉内输注以及例如核内显微注射或胞浆内注射等细胞内注射进行的被动组织转导。用于治疗目的的医药组合物能够配制成溶液、微乳液、分散液、脂质体或其它适合高ceDNA载体浓度的有序结构。无菌注射溶液可以通过将所需量的ceDNA载体化合物根据需要与上文列举的成分之一或组合一起并入适当的缓冲液中、然后进行过滤灭菌来制备。可以配制包括ceDNA载体,以将核酸中的转基因递送到接受者的细胞,使得转基因或供体序列在其中治疗性表达。组合物还可包括药学上可接受的载剂。
包含用于控制转基因表达的ceDNA载体的医药活性组合物能够被配制成将用于不同目的的转基因递送到细胞,例如受试者的细胞。
本文所公开的ceDNA载体能够并入适于施用于受试者的医药组合物中以便体内递送到受试者的细胞、组织或器官。典型地,医药组合物包含本文公开的DNA载体和药学上可接受的载剂。举例来说,本发明的ceDNA载体能够并入适于期望的治疗施用途径(例如肠胃外施用)的医药组合物中。还涵盖通过高压静脉内或动脉内输注以及例如核内显微注射或胞浆内注射等细胞内注射进行的被动组织转导。用于治疗目的的医药组合物能够配制成溶液、微乳液、分散液、脂质体或其它适合高ceDNA载体浓度的有序结构。无菌注射溶液能够通过将所需量的ceDNA载体化合物根据需要与上文列举的成分之一或组合一起并入适当的缓冲液中、然后进行过滤灭菌来制备。
包含ceDNA载体的医药活性组合物能够被配制成将核酸转基因递送到接受者的细胞,从而引起转基因在其中发生治疗表达。所述组合物还能够任选地包括药学上可接受的载剂和/或赋形剂。
本文提供的组合物和载体能用于递送转基因以用于不同目的。在一些实施方案中,转基因编码的蛋白质或功能RNA旨在用于研究目的,例如建立含有转基因的体细胞转基因动物模型,例如研究转基因产物的功能。在另一个实例中,转基因编码的蛋白质或功能RNA旨在用于建立动物疾病模型。在一些实施方案中,转基因编码一种或多种适用于治疗或预防哺乳动物受试者的疾病状态的肽、多肽或蛋白质。可以将转基因足量转移至患者(例如在其中表达),以治疗与所述基因表达降低、缺乏表达或功能障碍有关的疾病。在一些实施方案中,转基因是基因编辑分子(例如核酸酶)。在某些实施方案中,核酸酶是CRISPR相关的核酸酶(Cas核酸酶)。
出于治疗目的的医药组合物在制造和储存条件下典型地须无菌且稳定。无菌注射溶液能够通过将所需量的ceDNA载体化合物根据需要与上文列举的成分之一或组合一起并入适当的缓冲液中、然后进行过滤灭菌来制备。
在某些情形中,希望如本文所公开的ceDNA组合物或载体以本文公开的适当配制的医药组合物形式,通过皮下、胰脏内、鼻内、肠胃外、静脉内、肌肉内、鞘内、全身施用或口服、腹膜内或通过吸入递送。
本文中特别预期的是,本文所述的组合物包含指定剂量的用于控制转基因表达的ceDNA载体,所述剂量是根据ceDNA载体的剂量反应关系确定,例如在施用后能够可靠地预计到基因药物将在典型受试者中产生所期望的作用或表达水平的“单位剂量”。
出于治疗目的的医药组合物在制造和储存条件下典型地须无菌且稳定。组合物能够配制成溶液、微乳液、分散液、脂质体或适合于高ceDNA载体浓度的其它有序结构。无菌注射溶液能够通过将所需量的ceDNA载体化合物根据需要与上文列举的成分之一或组合一起并入适当的缓冲液中、然后进行过滤灭菌来制备。
如本文所公开的用于控制转基因表达的ceDNA载体能够并入适于以下的医药组合物中:体表、全身、羊膜内、鞘内、颅内、动脉内、静脉内、淋巴内、腹膜内、皮下、气管、组织内(例如肌肉内、心内、肝内、肾内、脑内)、鞘内、膀胱内、结膜(例如眶外、眶内、眶后、视网膜内、视网膜下、脉络膜、脉络膜下、基质内、前房内和玻璃体内)、耳蜗内和粘膜(例如口腔、直肠、鼻)施用。还涵盖通过高压静脉内或动脉内输注以及例如核内显微注射或胞浆内注射等细胞内注射进行的被动组织转导。
在一些方面中,本文提供的方法包含将一种或多种如本文公开的ceDNA载体递送到宿主细胞。本文还提供了通过这类方法产生的细胞,以及包含这类细胞或由这类细胞产生的生物体(例如动物、植物或真菌)。核酸的递送方法可包括脂质转染、核转染、显微注射、生物弹药、脂质体、免疫脂质体、聚阳离子或脂质:核酸偶联物、裸DNA和试剂增强的DNA吸收。脂质体转染描述于例如美国专利第5,049,386号、第4,946,787号;和第4,897,355号)并且脂质体转染试剂有市售(例如TransfectamTM和LipofectinTM)。能够递送到细胞(例如体外或离体施用)或靶组织(例如体内施用)。
将核酸递送到细胞的各种技术和方法是本领域已知的。举例来说,能够将核酸(例如ceDNA)配制成脂质纳米颗粒(LNP)、类脂(lipidoid)、脂质体、脂质纳米颗粒、脂质体复合物(lipoplex)或核壳纳米颗粒。通常,LNP由核酸(例如ceDNA)分子、一种或多种可电离或阳离子脂质(或其盐)、一种或多种非离子或中性脂质(例如磷脂)、防止聚集的分子(例如PEG或PEG-脂质偶联物)以及任选的固醇(例如胆固醇)构成。
将核酸(例如ceDNA)递送到细胞的另一种方法是将核酸与被该细胞内化的配体偶联。例如,配体能够结合细胞表面上的受体并通过胞吞而被内化。配体能够与核酸中的核苷酸共价连接。用于将核酸递送到细胞中的示例性偶联物描述于例如WO2015/006740、WO2014/025805、WO2012/037254、WO2009/082606、WO2009/073809、WO2009/018332、WO2006/112872、WO2004/090108、WO2004/091515和WO2017/177326中。
核酸,例如ceDNA,也能通过转染递送到细胞。有用的转染方法包括但不限于脂质介导的转染、阳离子聚合物介导的转染或磷酸钙沉淀。转染试剂在所属领域中是众所周知的且包括(但不限于)TurboFect转染试剂(赛默飞世尔科技(Thermo FisherScientific))、Pro-Ject试剂(赛默飞世尔科技)、TRANSPASSTMP蛋白质转染试剂(新英格兰生物实验室(New England Biolabs))、CHARIOTTM蛋白质递送试剂(Active Motif)、PROTEOJUICETM蛋白质转染试剂(EMD密理博)、293fectin、LIPOFECTAMINETM2000、LIPOFECTAMINETM3000(赛默飞世尔科技)、LIPOFECTAMINETM(赛默飞世尔科技)、LIPOFECTINTM(赛默飞世尔科技)、DMRIE-C、CELLFECTINTM(赛默飞世尔科技)、OLIGOFECTAMINETM(赛默飞世尔科技)、LIPOFECTACETM、FUGENETM(罗氏(Roche),瑞士巴塞尔(Basel,Switzerland))、FUGENETMHD(罗氏)、TRANSFECTAMTM(转染胺,普洛麦格(Promega),威斯康星州麦迪逊(Madison,Wis.))、TFX-10TM(普洛麦格)、TFX-20TM(普洛麦格)、TFX-50TM(普洛麦格)、TRANSFECTINTM(BioRad,加利福尼亚州赫拉克勒斯(Hercules,Calif.)、SILENTFECTTM(Bio-Rad)、EffecteneTM(Qiagen,加利福尼亚州瓦伦西亚(Valencia,Calif.)、DC-chol(Avanti Polar Lipids)、GENEPORTERTM(Gene Therapy Systems,加利福尼亚州圣地亚哥(San Diego,Calif.))、DHARMAFECT 1TM(Dharmacon,科罗拉多州拉斐特(Lafayette,Colo.)、DHARMAFECT 2TM(Dharmacon)、DHARMAFECT 3TM(Dharmacon)、DHARMAFECT 4TM(Dharmacon)、ESCORTTMIII(西格玛(Sigma),密苏里州圣路易斯(St.Louis,Mo.)),以及ESCORTTMIV(西格玛化学公司(Sigma Chemical Co.))。核酸,例如ceDNA,也能够通过本领域技术人员已知的微流体方法递送到细胞。
如本文所述的ceDNA载体也能够直接施用于生物体以在体内转导细胞。施用是通过正常用于引入分子与血液或组织细胞最终接触的任何途径,包括但不限于注射、输注、局部施用和电穿孔。适于施用这类核酸的方法可以获得并且是本领域技术人员众所周知的,并且虽然可以使用超过一种途径来施用特定的组合物,但是特定的途径经常可以提供比其它途径更直接和更有效的反应。
将如本文公开的用于控制转基因表达的核酸载体ceDNA载体引入的方法能够递送到造血干细胞中,例如通过如例如美国专利第5,928,638号中所述的方法来递送。
根据本发明的ceDNA载体能够添加到脂质体中以递送到受试者的细胞或靶器官。脂质体是具有至少一个脂质双层的囊泡。在医药开发的背景下,脂质体通常用作药物/治疗剂递送的载剂。它们通过与细胞膜融合并重新定位其脂质结构以递送药物或活性药物成分(API)来起作用。用于这类递送的脂质体组合物由磷脂、特别是具有磷脂酰胆碱基团的化合物构成,然而这些组合物还可以包括其它脂质。2018年9月7日提交的国际申请PCT/US2018/050042和2018年12月6日提交的国际申请PCT/US2018/064242中公开了示例性脂质体和脂质体配方,包括(但不限于)含有聚乙二醇(PEG)官能基的化合物,参见例如标题为“医药配方”的章节。
本领域已知的各种递送方法或其修改能够用于体外或体内递送ceDNA载体。举例来说,在一些实施方案中,ceDNA载体是通过机械、电、超声波、流体动力学或基于激光的能量在细胞膜中产生瞬时通透、以便促进DNA进入靶细胞中来递送。举例来说,通过瞬时破裂细胞膜、通过挤压细胞穿过尺寸被限制的通道或通过所属领域中已知的其它方式能够递送用于控制转基因表达的ceDNA载体。在一些情况下,单独的ceDNA载体作为裸DNA直接注射到皮肤、胸腺、心肌、骨骼肌或肝细胞中。在一些情况下,通过基因枪递送ceDNA载体。无衣壳的AAV载体包被的金或钨球形颗粒(直径1-3μm)可以通过加压气体加速至高速而渗透到靶组织细胞中。
本文特别涵盖包含用于控制转基因表达的ceDNA载体和药学上可接受的载剂的组合物。在一些实施方案中,用于控制转基因表达的ceDNA载体是用脂质递送系统(例如如本文所述的脂质体)配制。在一些实施方案中,此类组合物通过熟练从业人员期望的任何途径来施用。可以通过不同途径,包括经口、肠胃外、舌下、经皮直肠、经粘膜、局部、通过吸入、经颊施用、胸膜内、静脉内、动脉内、腹膜内、皮下、肌内、鼻内鞘内和关节内或其组合,向受试者施用组合物。对于兽医用途,可根据正常兽医实践将组合物作为适当可接受的配制物施用。兽医可以很容易地确定最适合具体动物的给药方案和施用途径。可以通过传统注射器、无针注射装置、“微弹轰击基因枪”或其它物理方法(例如电穿孔(“EP”)、流体动力学方法或超声波)施用组合物。
在一些情况下,用于控制转基因表达的ceDNA载体是通过流体动力学注射递送,流体动力学注射是一种简单且高效的方法,用于将任何水溶性化合物和颗粒直接细胞内递送到内脏和整个肢体的骨骼肌中。
在一些情况下,ceDNA载体是利用超声波在膜中产生纳米级孔隙以促进细胞内递送DNA颗粒到内脏或肿瘤细胞中来递送,因此质粒DNA的尺寸和浓度对系统的效率具有很大作用。在一些情况下,通过使用磁场的磁转染来递送ceDNA载体,以将含有核酸的颗粒集中至靶细胞中。
在一些情况下,可以使用化学递送系统,例如通过使用纳米复合物,其包括用属于阳离子脂质体/胶束或阳离子聚合物的聚阳离子纳米颗粒来压紧带负电荷的核酸。用于递送方法的阳离子脂质包括但不限于单价阳离子脂质、多价阳离子脂质、含胍化合物、胆固醇衍生化合物、阳离子聚合物、(例如聚(乙烯亚胺)、聚-L-赖氨酸、鱼精蛋白、其它阳离子聚合物)和脂质-聚合物杂化物。
A.外泌体:
在一些实施方案中,如本文公开的用于控制转基因表达的ceDNA载体通过封装于外泌体中来递送。外泌体是胞吞来源的小膜囊泡,其在多囊泡体与质膜融合后被释放到细胞外环境中。它们的表面由来自供体细胞的细胞膜的脂质双层组成,它们含有来自产生外泌体的细胞的胞溶质且在表面上展现来自亲本细胞的膜蛋白。外泌体由包括上皮细胞、B和T淋巴细胞、肥大细胞(MC)以及树突状细胞(DC)在内的各种细胞类型产生。一些实施方案设想使用直径在10nm与1μm之间、20nm与500nm之间、30nm与250nm之间、50nm与100nm之间的外泌体。使用外泌体的供体细胞或通过将特定核酸引入外泌体中,可以分离外泌体以递送到靶细胞。本领域已知的各种途径可用于产生含有本发明的无衣壳AAV载体的外泌体。
B.微米颗粒/纳米颗粒:
在一些实施方案中,如本文公开的用于控制转基因表达的ceDNA载体是通过脂质纳米颗粒递送。通常,脂质纳米颗粒包含可电离的氨基脂质(例如4-(二甲基氨基)丁酸三十七碳-6,9,28,31-四烯-19-基酯、DLin-MC3-DMA、磷脂酰胆碱(1,2-二硬脂酰基-sn-甘油-3-磷酸胆碱,DSPC)、胆固醇和外被脂质(聚乙二醇-二肉豆蔻酰基甘油,PEG-DMG),例如如Tam等人(2013).《用于递送siRNA的脂质纳米颗粒的进展(Advances in Lipid Nanoparticlesfor siRNA delivery)》.《制药(Pharmaceuticals)》5(3):498-507所公开。
在一些实施方案中,脂质纳米颗粒的平均直径在约10nm与约1000nm之间。在一些实施方案中,脂质纳米颗粒的直径小于300nm。在一些实施方案中,脂质纳米颗粒的直径在约10nm与约300nm之间。在一些实施方案中,脂质纳米颗粒的直径小于200nm。在一些实施方案中,脂质纳米颗粒的直径在约25nm与约200nm之间。在一些实施方案中,脂质纳米颗粒制剂(例如包含多个脂质纳米颗粒的组合物)具有一定的尺寸分布,其中平均尺寸(例如直径)是约70nm至约200nm,且更典型地,平均尺寸是约100nm或更小。
所属领域中已知的各种脂质纳米颗粒能够用于递送如本文中所公开的用于控制转基因表达的ceDNA载体。例如,美国专利第9,404,127号、第9,006,417号和第9,518,272号中描述了使用脂质纳米颗粒的各种递送方法。
在一些实施方案中,通过金纳米颗粒递送本文公开的用于控制转基因表达的ceDNA载体。通常,核酸可以与金纳米颗粒共价结合或与金纳米颗粒非共价结合(例如通过电荷-电荷相互作用结合),例如如Ding等人(2014).《用于核酸递送的金纳米颗粒(GoldNanoparticles for Nucleic Acid Delivery)》.《分子疗法(Mol.Ther.)》22(6);1075-1083所述。在一些实施方案中,使用例如美国专利第6,812,334号中描述的方法产生金纳米颗粒-核酸偶联物。
C.偶联物
在一些实施方案中,如本文公开的用于控制转基因表达的ceDNA载体是与增加细胞吸收的试剂偶联(例如共价结合)。“增强细胞吸收的试剂”是促进核酸跨脂质膜运输的分子。例如,核酸能够与亲脂性化合物(例如胆固醇、生育酚等)、细胞穿透肽(CPP)(例如穿膜肽、TAT、Syn1B等)和多胺(例如精胺)偶联。增强细胞吸收的试剂的其它实例公开于例如Winkler(2013).《用于治疗应用的寡核苷酸偶联物(Oligonucleotide conjugates fortherapeutic applications)》.《治疗剂递送(Ther.Deliv.)》4(7);791-809。
在一些实施方案中,使如本文所公开的用于控制转基因表达的ceDNA载体与聚合物(例如聚合物分子)或叶酸盐分子(例如叶酸分子)偶联。通常,与聚合物偶联的核酸的递送是本领域已知的,例如如WO2000/34343和WO2008/022309中所述。在一些实施方案中,使如本文所公开的用于控制转基因表达的ceDNA载体与聚(酰胺)聚合物偶联,例如如美国专利第8,987,377号所述。在一些实施方案中,如美国专利第8,507,455号中所述,本公开所述的核酸与叶酸分子偶联。
在一些实施方案中,使如本文所公开的用于控制转基因表达的ceDNA载体与碳水化合物偶联,例如如美国专利第8,450,467号中所述。
D.纳米胶囊
可替代地,能够使用如本文所公开的用于控制转基因表达的ceDNA载体的纳米胶囊配制物。纳米胶囊通常可以稳定且可再现的方式截留物质。为了避免由于细胞内聚合物过载所致的副作用,应该使用能够在体内降解的聚合物来设计此类超细颗粒(尺寸约0.1μm)。满足这些要求的可生物降解的聚烷基-氰基丙烯酸酯纳米颗粒是预期使用的。
E.脂质体
根据本发明的ceDNA载体能够添加到脂质体中以递送到受试者的细胞或靶器官。脂质体是具有至少一个脂质双层的囊泡。在医药开发的背景下,脂质体通常用作药物/治疗剂递送的载剂。它们通过与细胞膜融合并重新定位其脂质结构以递送药物或活性药物成分(API)来起作用。用于这类递送的脂质体组合物由磷脂、特别是具有磷脂酰胆碱基团的化合物构成,然而这些组合物还可以包括其它脂质。
脂质体的形成和使用是本领域技术人员通常已知的。已经开发了血清稳定性和循环半衰期有所改善的脂质体(美国专利第5,741,516号)。此外,已经描述了脂质体和脂质体样制剂作为潜在药物载体的各种方法(美国专利第5,567,434号;第5,552,157号;第5,565,213号;第5,738,868号和第5,795,587号)。
F.示例性脂质体和脂质纳米颗粒(LNP)组合物
根据本发明的ceDNA载体能够添加到脂质体中以便递送到细胞,例如需要表达转基因的细胞。脂质体是具有至少一个脂质双层的囊泡。在医药开发的背景下,脂质体通常用作药物/治疗剂递送的载剂。它们通过与细胞膜融合并重新定位其脂质结构以递送药物或活性药物成分(API)来起作用。用于这类递送的脂质体组合物由磷脂、特别是具有磷脂酰胆碱基团的化合物构成,然而这些组合物还可以包括其它脂质。
包含ceDNA的脂质纳米颗粒(LNP)公开于2018年9月7日提交的国际申请PCT/US2018/050042和2018年12月6日提交的国际申请PCT/US2018/064242中,所述国际申请各自全文并入本文中;并且设想用于如本文所公开的方法和组合物中。
在一些方面中,包含ceDNA的脂质纳米颗粒是可电离脂质。
通常,以约10:1至30:1的总脂质与ceDNA(质量或重量)比率制备脂质颗粒。在一些实施方案中,脂质与ceDNA比率(质量/质量比率;w/w比率)可以在约1:1至约25:1、约10:1至约14:1、约3:1至约15:1、约4:1至约10:1、约5:1至约9:1或约6:1至约9:1范围内。能够调节脂质和ceDNA的量以提供所需的N/P比,例如N/P比为3、4、5、6、7、8、9、10或更高。通常,脂质颗粒配制物的总脂质含量能够在约5mg/ml至约30mg/mL的范围内。可电离的脂质在本文中也称为阳离子脂质。示例性可电离脂质描述于国际PCT专利公开WO2015/095340、WO2015/199952、WO2018/011633、WO2017/049245、WO2015/061467、WO2012/040184、WO2012/000104、WO2015/074085、WO2016/081029、WO2017/004143、WO2017/075531、WO2017/117528、WO2011/022460、WO2013/148541、WO2013/116126、WO2011/153120、WO2012/044638、WO2012/054365、WO2011/090965、WO2013/016058、WO2012/162210、WO2008/042973、WO2010/129709、WO2010/144740、WO2012/099755、WO2013/049328、WO2013/086322、WO2013/086373、WO2011/071860、WO2009/132131、WO2010/048536、WO2010/088537、WO2010/054401、WO2010/054406、WO2010/054405、WO2010/054384、WO2012/016184、WO2009/086558、WO2010/042877、WO2011/000106、WO2011/000107、WO2005/120152、WO2011/141705、WO2013/126803、WO2006/007712、WO2011/038160、WO2005/121348、WO2011/066651、WO2009/127060、WO2011/141704、WO2006/069782、WO2012/031043、WO2013/006825、WO2013/033563、WO2013/089151、WO2017/099823、WO2015/095346和WO2013/086354;以及美国专利公开US2016/0311759、US2015/0376115、US2016/0151284、US2017/0210697、US2015/0140070、US2013/0178541、US2013/0303587、US2015/0141678、US2015/0239926、US2016/0376224、US2017/0119904、US2012/0149894、US2015/0057373、US2013/0090372、US2013/0274523、US2013/0274504、US2013/0274504、US2009/0023673、US2012/0128760、US2010/0324120、US2014/0200257、US2015/0203446、US2018/0005363、US2014/0308304、US2013/0338210、US2012/0101148、US2012/0027796、US2012/0058144、US2013/0323269、US2011/0117125、US2011/0256175、US2012/0202871、US2011/0076335、US2006/0083780、US2013/0123338、US2015/0064242、US2006/0051405、US2013/0065939、US2006/0008910、US2003/0022649、US2010/0130588、US2013/0116307、US2010/0062967、US2013/0202684、US2014/0141070、US2014/0255472、US2014/0039032、US2018/0028664、US2016/0317458和US2013/0195920,所述文献的内容以全文引用的方式并入本文中。
在一些实施方案中,可电离的脂质是具有以下结构的MC3(6Z,9Z,28Z,31Z)-三十七碳-6,9,28,31-四烯-19-基-4-(二甲基氨基)丁酸酯(DLin-MC3-DMA或MC3):
Figure BDA0002685856320001051
VIII.递送ceDNA载体的方法
在一些实施方案中,用于控制转基因表达的ceDNA载体在体外或体内能够通过各种适合方法递送到靶细胞。能够施用或注射单独的ceDNA载体。CeDNA载体能够在不借助于转染试剂或其它物理方式的情况下递送到细胞。替代地,ceDNA载体能够使用本领域已知的任何转染试剂或本领域已知的促进DNA进入细胞的其它物理方式递送,例如脂质体、醇类、富含聚赖氨酸的化合物、富含精氨酸的化合物、磷酸钙、微囊泡、显微注射、电穿孔等等。
相比之下,用本文公开的无衣壳AAV载体进行的转导能够有效地靶向难以使用各种递送试剂用常规AAV病毒体转导的细胞和组织类型。
在另一个实施方案中,用于控制转基因表达的ceDNA载体施用于CNS(例如脑或眼)。可以将用于控制转基因表达的ceDNA载体引入脊髓、脑干(延髓、脑桥)、中脑(下丘脑、丘脑、上丘脑、垂体腺、黑质、松果腺)、小脑、端脑(纹状体、包括枕骨、颞叶、顶叶和额叶的大脑、皮质、基底神经节、海马状突起和杏仁核(portaamygdala))、边缘系统、新皮质、纹状体、大脑和下丘。也可以将ceDNA载体施用于眼睛的不同区域,例如视网膜、角膜和/或视神经。ceDNA载体可以被递送到脑脊髓液中(例如通过腰椎穿刺)。可以在血脑屏障已被扰动的情况下(例如脑肿瘤或大脑梗塞),进一步将ceDNA载体通过血管内施用于CNS。
在一些实施方案中,用于控制转基因表达的ceDNA载体能够通过所属领域中已知的任何途径施用于CNS的期望区域,包括(但不限于)鞘内、眼内、脑内、脑室内、静脉内(例如在糖存在下,例如甘露糖醇)、鼻内、耳内、眼内(例如玻璃体内、视网膜下、前房)和眼周(例如眼球筋膜囊下区域)递送,以及肌内递送伴随逆行递送到运动神经元。
在一些实施方案中,用于控制转基因表达的ceDNA载体在液体配制物中通过直接注射(例如立体定向注射)施用至CNS中的期望区域或隔室中。在其它实施方案中,可以通过局部施加至期望区域或通过鼻内施用气溶胶配制物来提供ceDNA载体。可以通过局部施加液滴来施用至眼睛。作为另一替代方案,ceDNA载体能够作为固体、缓释型配制物施用(参见例如美国专利第7,201,898号)。在另外的实施方案中,ceDNA载体可用于逆行转运,以治疗、改善和/或预防涉及运动神经元的疾病和病症(例如肌萎缩性侧索硬化(ALS);脊髓性肌萎缩(SMA)等)。例如,可以将ceDNA载体递送到肌肉组织,它可以从肌肉组织迁移到神经元中。
IX.ceDNA载体的其它用途
如本文所述的组合物和ceDNA载体能用于表达靶基因或转基因以用于各种目的。在一些实施方案中,所得转基因编码的蛋白质或功能RNA旨在用于研究目的,例如建立含有转基因的体细胞转基因动物模型,例如研究转基因产物的功能。在另一个实例中,转基因编码的蛋白质或功能RNA旨在用于建立动物疾病模型。在一些实施方案中,所得转基因编码一种或多种可用于治疗、预防或改善哺乳动物受试者的疾病状态或病症的肽、多肽或蛋白质。所得转基因能够足量转移至受试者(例如在其中表达),以治疗与所述基因的表达降低、缺乏表达或功能障碍有关的疾病。在一些实施方案中,所得转基因能够在受试者中足量表达,以治疗与基因产物的表达、活性增加或基因的不当上调有关的疾病,基因产物的表达、活性增加或基因的不当上调使得所得转基因抑制或以其它方式引起其表达减少。在又其它实施方案中,所得转基因置换或补充了原生基因的缺陷拷贝。所属领域的普通技术人员应了解,转基因可以不是自身转录的基因的开放阅读框架,相反,其可以是靶基因的启动子区域或抑制子区域,并且ceDNA载体可以修饰此类区域,结果使如此调节所关注基因的表达。
在一些实施方案中,转基因编码的蛋白质或功能RNA旨在用于建立动物疾病模型。在一些实施方案中,转基因编码一种或多种适用于治疗或预防哺乳动物受试者的疾病状态的肽、多肽或蛋白质。转基因能够足量转移至患者(例如在其中表达),以治疗与所述基因的表达降低、表达缺乏或功能异常有关的疾病。
X.使用方法
如本文所公开的用于控制转基因表达的ceDNA载体还能够用于将所关注的核苷酸序列(例如转基因)递送到靶细胞(例如宿主细胞)的方法。所述方法尤其可以是将转基因递送到有需要的受试者的细胞且治疗所关注疾病的方法。本发明允许ceDNA载体所编码的转基因(例如蛋白质、抗体、核酸,例如miRNA等)体内表达于受试者的细胞中,以便转基因的表达产生治疗效果。在ceDNA载体的体内和体外递送模式中均可以看到这些结果。
另外,本发明提供一种将转基因递送到有需要的受试者的细胞中的方法,包含多次施用包含所关注的所述核酸或转基因的本发明ceDNA载体以将转基因表达滴定到所期望水平。
ceDNA载体核酸以足以转染所期望的组织细胞和提供足够的基因转移和表达水平而无不当副作用的量施用。常规和药学上可接受的施用途径包括但不限于静脉内(例如在脂质体配制物中)、直接递送到选定的器官(例如门静脉内递送到肝脏)、肌内和其它胃肠外施用途径。如果需要,可以组合施用途径。
闭合端DNA载体(例如ceDNA载体)递送不限于递送基因替代物。举例来说,如本文所述的常规产生(例如使用基于细胞的产生方法或合成产生的闭合端ceDNA载体)(例如ceDNA载体)可以联合为了提供基因疗法的一部分而提供的其它递送系统使用。可以与根据本公开的合成产生的ceDNA载体组合的系统的一个非限制性实例包括分别递送一种或多种用于转基因的有效基因表达的辅因子或免疫抑制因子的系统。
本发明还提供了一种治疗受试者的疾病的方法,所述方法包含将治疗有效量的ceDNA载体任选地与药学上可接受的载体一起引入受试者的有需要的靶细胞(特别是肌肉细胞或组织)中。虽然用于控制转基因表达的载体能够在载剂存在下引入,但是不需要此类载剂。所选ceDNA载体包含适用于治疗疾病的所关注的核苷酸序列。具体地说,ceDNA载体可以包含与控制元件可操作地连接的期望的外源DNA序列,当引入受试者中时,所述控制元件能够指导由外源DNA序列编码的期望的多肽、蛋白质或寡核苷酸的转录。ceDNA载体可以通过如上文和本文其它地方提供的任何合适的途径施用。
本文提供的组合物和载体能用于递送转基因以用于不同目的。在一些实施方案中,转基因编码的蛋白质或功能RNA旨在用于研究目的,例如建立含有转基因的体细胞转基因动物模型,例如研究转基因产物的功能。在另一个实例中,转基因编码的蛋白质或功能RNA旨在用于建立动物疾病模型。在一些实施方案中,转基因编码一种或多种适用于治疗或预防哺乳动物受试者的疾病状态的肽、多肽或蛋白质。转基因能够足量转移至患者(例如在其中表达),以治疗与所述基因的表达降低、表达缺乏或功能异常有关的疾病。
原则上,表达盒能够包括核酸或任何转基因,所述核酸或任何转基因编码因突变而减少或不存在或过度表达时展现治疗益处的蛋白质或多肽,所述蛋白质或多肽被认为属于本发明的范围内。优选地,本文提供的ceDNA组合物中不存在未插入的细菌DNA,并且优选地不存在细菌DNA。
用于控制转基因表达的ceDNA载体不限于一种物种的ceDNA载体。因而,在另一个方面中,能够将包含不同转基因或相同转基因、但可操作地连接到不同启动子或顺式调控元件的多个ceDNA载体同时或依序递送到靶细胞、组织、器官或受试者。因此,这种策略能够允许多个基因同时进行基因疗法或基因递送。还能够将转基因的不同部分分离到单独的ceDNA载体中(例如转基因的功能所需的不同结构域和/或辅因子),所述ceDNA载体能够同时或在不同时间施用,并且能够是分别可调控的,借此增添转基因的额外表达控制水平。考虑到由于缺乏病毒衣壳而缺乏抗衣壳宿主免疫应答,递送也可以进行多次,并且对于临床环境中的基因疗法来说,重要的是随后增加或减少剂量。可以预期,由于没有衣壳,因此不会发生抗衣壳应答。
本发明还提供了一种治疗受试者的疾病的方法,包含将治疗有效量的如本文所公开的ceDNA载体、任选地与药学上可接受的载剂一起引入受试者的有需要的靶细胞(具体地说,肌肉细胞或组织)。虽然ceDNA载体能够在载剂存在下引入,但此类载剂不是必需的。所建构的ceDNA载体包含可用于治疗疾病的所关注核苷酸序列。具体地说,ceDNA载体可以包含与控制元件可操作地连接的期望的外源DNA序列,当引入受试者中时,所述控制元件能够指导由外源DNA序列编码的期望的多肽、蛋白质或寡核苷酸的转录。用于控制转基因表达的ceDNA载体能够通过如上文和本文中别处所提供的任何适合途径施用。
XI.治疗方法
本文所述的技术还展示了通过多种方式制备所公开的ceDNA载体的方法和其使用方法,包括例如异位、体外和体内施用、方法、诊断程序和/或基因治疗方案。
本文提供了一种治疗受试者的疾病或病症的方法,所述方法包含将治疗有效量的ceDNA载体任选地与药学上可接受的载剂一起引入受试者的有需要的靶细胞(例如肌肉细胞或组织或其它受影响的细胞类型)。虽然ceDNA载体能够在载剂存在下引入,但此类载剂不是必需的。所建构的ceDNA载体包含可用于治疗疾病的所关注核苷酸序列。具体地说,ceDNA载体可以包含与控制元件可操作地连接的期望的外源DNA序列,当引入受试者中时,所述控制元件能够指导由外源DNA序列编码的期望的多肽、蛋白质或寡核苷酸的转录。用于控制转基因表达的ceDNA载体能够通过如上文和本文中别处所提供的任何适合途径施用。
本文公开了ceDNA载体组合物和配制物,其包括本发明的一种或多种ceDNA载体以及一种或多种药学上可接受的缓冲剂、稀释剂或赋形剂。这样的组合物可以包括在一种或多种诊断或治疗药剂盒中,用于诊断、预防、治疗或改善疾病、损伤、病症、创伤或功能障碍的一种或多种症状。在一个方面中,疾病、损伤、病症、创伤或功能障碍是人类疾病、损伤、病症、创伤或功能障碍。
本文所述技术的另一个方面提供了一种向有需要的受试者提供诊断或治疗有效量的ceDNA载体的方法,所述方法包含向有需要的受试者的细胞、组织或器官提供如本文公开的ceDNA载体,提供的量和时间有效地使转基因从ceDNA载体表达,从而为受试者提供诊断或治疗有效量的由ceDNA载体表达的蛋白质、肽、核酸。在另一方面中,受试者是人。
本文描述的技术的另一个方面提供了一种用于诊断、预防、治疗或改善受试者的疾病、病症、功能障碍、损伤、异常病状或创伤的至少一种或多种症状的方法。从总体和一般意义上讲,所述方法至少包括以下步骤:向有需要的受试者施用一种或多种所公开的ceDNA载体,施用的量和时间足以诊断、预防、治疗或改善受试者的疾病、病症、功能障碍、损伤、异常状况或创伤的所述一种或多种症状。在另一方面中,受试者是人。
另一个方面是用于控制转基因表达的ceDNA载体作为治疗或减轻疾病或疾病状态的一种或多种症状的工具的用途。有许多遗传性疾病中的缺陷基因是已知的,通常分为两类:缺陷状态,通常是酶的,一般以隐性方式遗传;和不平衡状态,其可涉及调节蛋白或结构蛋白,通常但不总是以显性方式遗传。对于缺陷状态疾病来说,ceDNA载体能够用于递送转基因以将正常基因引入患病组织中进行替代疗法,在一些实施方案中,还使用反义突变建立动物疾病模型。对于不平衡的疾病状态来说,ceDNA载体能够用于在模型系统中确立疾病状态,然后可以尝试用于抵消所述疾病状态。因此,本文公开的ceDNA载体和方法允许治疗遗传性疾病。如本文中所用,通过部分或完全拯救导致疾病或使其更严重的缺陷或不平衡,可以治疗疾病状态。
A.宿主细胞:
在一些实施方案中,用于控制转基因表达的ceDNA载体将转基因递送到受试者的宿主细胞中。在一些实施方案中,受试者的宿主细胞是人宿主细胞,包括例如血细胞、干细胞、造血细胞、CD34+细胞、肝细胞、癌细胞、血管细胞、肌肉细胞、胰腺细胞、神经细胞、视觉或视网膜细胞、上皮或内皮细胞、树突状细胞、成纤维细胞或任何其它哺乳动物来源的细胞,包括但不限于肝(即肝)细胞、肺细胞、心脏细胞、胰腺细胞、肠细胞、隔膜细胞、肾(即肾)细胞、神经细胞、血细胞、骨髓细胞或预期进行基因治疗的受试者的任何一种或多种选定的组织。在一方面中,受试者的宿主细胞是人宿主细胞。
本公开还涉及如上所提及的重组宿主细胞,其包括如本文所述的ceDNA载体。因此,对于技术人员而言显而易见的是,可以根据目的使用多种宿主细胞。用于控制转基因表达的包括供体序列的构建体或ceDNA载体引入宿主细胞中,使得供体序列作为如早先所述的染色体整合体保持。术语宿主细胞涵盖由于复制过程中发生的突变而与亲本细胞不同的亲本细胞的任何后代。宿主细胞的选择在很大程度上取决于供体序列和其来源。宿主细胞也可以是真核生物,例如哺乳动物、昆虫、植物或真菌细胞。在一个实施方案中,宿主细胞是人细胞(例如原代细胞、干细胞或永生化细胞系)。在一些实施方案中,能够将用于控制转基因表达的ceDNA载体离体施用于宿主细胞且然后在基因治疗事件之后递送到受试者。宿主细胞可以是任何细胞类型,例如体细胞或干细胞、诱导型多能干细胞或血细胞,例如T细胞或B细胞,或骨髓细胞。在某些实施方案中,宿主细胞是同种异体细胞。例如,T细胞基因组工程可用于癌症免疫疗法、如HIV疗法的疾病调节(例如受体敲除,如CXCR4和CCR5)和免疫缺陷疗法。可靶向B细胞上的MHC受体进行免疫治疗。在一些实施方案中,能够将基因经修饰的宿主细胞(例如骨髓干细胞,例如CD34+细胞,或诱导多能干细胞)移植回到患者中用于表达治疗蛋白。
B.用ceDNA载体治疗的示例性转基因和疾病
ceDNA载体也可用于纠正缺陷基因。作为一个非限制性实例,能够使用如本文公开的ceDNA载体递送杜氏肌肉营养不良症(Duchene Muscular Dystrophy)的DMD基因。
用于控制转基因表达的ceDNA载体或其组合物能够用于治疗任何遗传性疾病。作为一个非限制性实例,ceDNA载体或其组合物例如能够用于治疗转甲状腺素蛋白淀粉样变性(ATTR),这是一种孤儿病,其中突变蛋白错误折叠并聚集在神经、心脏、胃肠系统等。本文中预期使用本文所述的ceDNA载体系统通过使突变疾病基因(mutTTR)缺失能够治疗所述疾病。遗传疾病的此类疗法能够中断疾病进展,并且能够使已确立的疾病消退或使所述疾病的至少一种症状减少至少10%。
在另一个实施方案中,用于控制转基因表达的ceDNA载体能够用于治疗鸟氨酸转氨甲酰酶缺乏症(OTC缺乏症)、高氨血症或减弱新生儿或婴儿的氨解毒能力的其它尿素循环病症。与所有先天性代谢疾病一样,本文中预期相较于野生型对照,即使酶活性部分恢复(例如至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或至少99%)也可足以减少OTC的至少一种症状和/或改善患有OTC缺乏症的受试者的生活品质。在一个实施方案中,能够将编码OTC的核酸插入白蛋白内源启动子的后面以便体内蛋白质置换。
在另一个实施方案中,用于控制转基因表达的ceDNA载体通过递送编码苯丙氨酸羟化酶的核酸序列而能够用于治疗苯丙酮尿症(PKU),所述苯丙氨酸羟化酶减少饮食苯丙氨酸的积累,饮食苯丙氨酸能够使PKU患病者中毒。与所有先天性代谢疾病一样,本文中预期相较于野生型对照,即使酶活性部分恢复(例如至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或至少99%)也可足以减少PKU的至少一种症状和/或改善患有PKU的受试者的生活品质。在一个实施方案中,能够将编码苯丙氨酸羟化酶的核酸插入白蛋白内源启动子的后面以便体内蛋白质置换。
在另一个实施方案中,用于控制转基因表达的ceDNA载体通过递送核酸序列而能够用于治疗糖原贮积病(GSD),所述核酸序列编码的酶矫正患有GSD的受试者的异常糖原合成或分解。能够使用如本文所述的ceDNA载体和方法递送和表达的酶的非限制性实例包括糖原合成酶、葡萄糖-6-磷酸酯酶、酸-α葡糖苷酶、糖原去分支酶、糖原分支酶、肌肉糖原磷酸化酶、肝糖原磷酸化酶、肌肉磷酸果糖激酶、磷酸化酶激酶、葡萄糖转运蛋白-2(GLUT-2)、醛缩酶A、β-烯醇酶、磷酸化葡萄糖突变酶-1(PGM-1)和糖原蛋白-1。与所有先天性代谢疾病一样,本文中预期相较于野生型对照,即使酶活性部分恢复(例如至少20%、至少30%、至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%或至少99%)也可足以减少GSD的至少一种症状和/或改善患有GSD的受试者的生活品质。在一个实施方案中,能够将编码矫正异常糖原贮积的酶的核酸插入白蛋白内源启动子的后面以便体内蛋白质置换。
还预期将本文所述的ceDNA载体用于治疗以下中的任一种:莱伯先天黑朦(Lebercongenital amaurosisLCA)、聚谷氨酰胺疾病(包括polyQ重复),和α-1抗胰蛋白酶缺乏症(A1AT)。LCA是一种导致失明的罕见先天眼病,其能够由任一种以下基因的突变引起:GUCY2D、RPE65、SPATA7、AIPL1、LCA5、RPGRIP1、CRX、CRB1、NMNAT1、CEP290、IMPDH1、RD3、RDH12、LRAT、TULP1、KCNJ13、GDF6和/或PRPH2。本文中预期如本文所述的ceDNA载体和组合物和方法能够适于递送与LCA相关的一种或多种基因,以矫正引起LCA症状的基因的失误。聚谷氨酰胺疾病包括但不限于:齿状核红核苍白球路易体萎缩(dentatorubropallidoluysian atrophy)、亨廷顿氏病、脊髓和延髓性肌萎缩,以及脊髓小脑共济失调1型、2型、3型(也称为马查多-约瑟夫病(Machado-Joseph disease))、6型、7型和17型。A1AT缺乏症是一种遗传病,其导致α-1抗胰蛋白酶的产生不足,使得血液和肺中的酶的活性降低,进而导致患病受试者出现肺气肿或慢性阻塞性肺病。本文中特别预期使用如本文概述的ceDNA载体或其组合物治疗患有A1AT缺乏症的受试者。本文中预期能够将用于控制转基因表达的ceDNA载体施用于需要治疗的受试者,所述ceDNA载体包含的核酸编码用于治疗LCA、聚谷氨酰胺疾病或A1AT缺乏症的期望蛋白质。
在其它实施例中,包含如本文所述的用于控制转基因表达的ceDNA载体的组合物尤其能够用于递送病毒序列、病原体序列、染色体序列、易位接合点(例如与癌症有关的易位)、非编码RNA基因或RNA序列、疾病相关基因。
所关注的任何核酸或靶基因可以通过如本文所公开的用于控制转基因表达的ceDNA载体递送或表达。靶核酸和靶基因包括(但不限于)编码多肽的核酸,或非编码核酸(例如RNAi、miR等),优选治疗性(例如用于医学、诊断或兽医用途)或免疫原性(例如用于疫苗)多肽。在某些实施方案中,如本文所述的被ceDNA载体所靶向的靶核酸或靶基因编码一种或多种多肽、肽、核糖核酸酶、肽核酸、siRNA、RNAi、反义寡核苷酸、反义多核苷酸、抗体、抗原结合片段或其任何组合。
具体地说,如本文所公开的用于控制转基因表达的ceDNA载体表达的基因靶或转基因能够编码例如(但不限于)用于治疗、预防和/或改善疾病、功能异常、损伤和/或病症的一种或多种症状的蛋白质、多肽、肽、酶、抗体、抗原结合片段,以及其变异体和/或活性片段。在一个方面中,疾病、功能障碍、外伤、损伤和/或病症是人类疾病、功能障碍、外伤、损伤和/或病症。
表达盒还能够编码多肽、有义或反义寡核苷酸,或RNA(编码或非编码;例如siRNA、shRNA、微RNA,和其反义对应物(例如拮抗MiR))。表达盒可包括编码用于实验或诊断目的的报道蛋白的外源序列,所述报道蛋白例如β-内酰胺酶、β-半乳糖苷酶(LacZ)、碱性磷酸酶、胸苷激酶、绿色荧光蛋白(GFP)、氯霉素乙酰转移酶(CAT)、荧光素酶和其它本领域众所周知的报道蛋白。
本文所述的用于控制转基因表达的ceDNA载体中的表达盒、表达构建体中所提供的序列针对宿主细胞进行密码子优化。如本文所用,术语“进行密码子优化”或“密码子优化”是指通过用如小鼠或人等所关注脊椎动物的基因中使用频率较高或最高的密码子替换天然序列(例如原核序列)的至少一个、超过一个或大量密码子来修饰核酸序列以增强其在所述脊椎动物的细胞中的表达的过程。各种物种对特定氨基酸的某些密码子表现出特定的偏好。通常,密码子优化不会改变原始翻译蛋白质的氨基酸序列。能够使用例如Aptagen的Gene
Figure BDA0002685856320001131
密码子优化和定制基因合成平台(Aptagen公司,2190Fox Mill Rd.Suite300,Herndon,Va.20171)或其它公共数据库确定优化密码子。
许多生物体偏向于使用特定密码子编码以便特定氨基酸插入生长的肽链中。密码子偏好或密码子偏向(密码子使用在生物体之间的差异)是由遗传密码的简并性提供的,并且在许多生物体中都有据可查。密码子偏向通常与信使RNA(mRNA)的翻译效率相关,相信翻译效率尤其又取决于所翻译的密码子的特性和特定转移RNA(tRNA)分子的可利用率。所选tRNA在细胞中的优势大体上反映了在肽合成中最常使用的密码子。因此,能够基于密码子优化来定制基因以使指定生物体中的基因表达最优。
考虑到可用于多种动物、植物和微生物物种的基因序列数量庞大,因此能计算出密码子使用的相对频率(Nakamura,Y.等人,《来自国际DNA序列数据库的密码子使用表:2000年状况(Codon usage tabulated from the international DNA sequencedatabases:status for the year 2000)》《核酸研究(Nucl.Acids Res.)》28:292(2000))。
如本文所指出,如本文公开的用于控制转基因表达的ceDNA载体能够编码包括(但不限于)以下的蛋白质或肽,或治疗性核酸序列或治疗剂:一种或多种激动剂、拮抗剂、抗细胞凋亡因子、抑制剂、受体、细胞因子、细胞毒素、促红细胞生成剂、糖蛋白、生长因子、生长因子受体、激素、激素受体、干扰素、白介素、白介素受体、神经生长因子、神经活性肽、神经活性肽受体、蛋白酶、蛋白酶抑制剂、蛋白质脱羧酶、蛋白激酶、蛋白激酶抑制剂、酶、受体结合蛋白、转运蛋白或其一种或多种抑制剂、血清素受体或其一种或多种吸收抑制剂、丝氨酸蛋白酶抑制蛋白(serpins)、丝氨酸蛋白酶抑制蛋白受体、肿瘤抑制剂、诊断分子、化学治疗剂、细胞毒素或其任何组合。
ceDNA载体也适用于消除基因表达。举例来说,在一个实施方案中,用于控制转基因表达的ceDNA载体能够用于表达反义核酸或功能RNA以诱导靶基因的基因表达降低。作为一个非限制性实例,已经在原代人T细胞中成功消除了CXCR4和CCR5(HIV受体)的表达,参见Schumann等人(2015),PNAS 112(33):10437-10442,所述文献以全文引用的方式并入本文中。用于靶向抑制的另一个基因是PD-1,其中ceDNA载体能够表达抑制性核酸或RNAi或功能RNA以抑制PD-1的表达。PD-1在发生恶性肿瘤的长期活跃T细胞上表达免疫检查点细胞表面受体。参见Schumann等人,同上。
在一些实施方案中,ceDNA载体适用于通过表达靶向病变基因的转基因来矫正缺陷基因。美国专利公开2014/0170753的表A-C中列出了可用如本文所公开的ceDNA载体治疗的疾病或病症以及它们和它们的相关基因的非限制性实例,所述美国专利公开以全文引用的方式并入本文中。
在替代实施方案中,ceDNA载体用于将表达治疗蛋白或报道蛋白的表达盒插入安全港基因中,例如非活性内含子中。在某些实施方案中,将无启动子的盒插入安全港基因中。在此类实施方案中,无启动子的盒能够利用安全港基因调控元件(启动子、增强子和信号肽),在安全港基因座插入的一个非限制性实例是插入白蛋白基因座中,此描述于《血液(Blood)》(2015)126(15):1777-1784中,所述文献以全文引用的方式并入本文中。插入白蛋白具有使转基因能够分泌到血液中的益处(参见例如实例22)。另外,能够使用所属领域中已知的技术确定基因组安全港位点,所述技术描述于例如Papapetrou,ER和Schambach,A.《分子疗法(Molecular Therapy)》24(4):678-684(2016)或Sadelain等人,《自然评论·癌症(Nature Reviews Cancer)》12:51-58(2012),所述文献各自的内容以全文引用的方式并入本文中。本文中特别预期,腺相关病毒(AAV)基因组中的安全港位点(例如AAVS1安全港位点)能够与本文所述的方法和组合物一起使用(参见例如Oceguera-Yanez等人,《方法(Methods)》101:43-55(2016)或Tiyaboonchai,A等人,《干细胞研究(Stem Cell Res)》12(3):630-7(2014),所述文献各自的内容以全文引用的方式并入本文中。例如,AAVS1基因组安全港位点能够与如本文所述的ceDNA载体和组合物一起使用,目的是在胚胎干细胞(例如人胚胎干细胞)或诱导的多能干细胞(例如iPS细胞)中进行造血特异性转基因表达和基因静默。另外,本文预期,用于插入染色体19的AASV1安全港位点中的合成或市售的同源定向修复供体模板能够与如本文所述的ceDNA载体或组合物一起使用。举例来说,同源定向修复模板和向导RNA能够在商业上购自例如System Biosciences(加利福尼亚州帕洛阿尔托(Palo Alto,CA))并且克隆到ceDNA载体中。
在一些实施方案中,ceDNA载体用于表达转基因,或敲除或减少T细胞中的靶基因表达,例如对T细胞进行工程改造以改良过继细胞转移和/或CAR-T疗法(参见例如实例24)。在一些实施方案中,如本文所述的用于控制转基因表达的ceDNA载体能够表达敲除基因的转基因。T细胞的治疗性相关敲除的非限制性实例描述于PNAS(2015)112(33):10437-10442,所述文献以全文引用的方式并入本文中。
C.基因治疗的其它疾病:
一般来说,如本文所公开的用于控制转基因表达的ceDNA载体能够根据以上描述用于递送任何转基因以治疗、预防或改善与基因表达有关的任何病症相关的症状。说明性疾病状态包括(但不限于):囊肿性纤维化(和肺的其它疾病)、A型血友病、B型血友病、地中海贫血、贫血和其它血液病症、AIDS、阿尔兹海默氏病、帕金森氏病、亨廷顿氏病、肌萎缩性侧索硬化、癫痫症和其它神经病症、癌症、糖尿病、肌肉萎缩症(例如杜兴氏(Duchenne)、贝克尔(Becker))、赫尔勒氏病(Hurler's disease)、腺苷脱氨酶缺陷、代谢障碍、视网膜变性疾病(和眼部的其它疾病)、线粒体病(例如莱伯氏遗传性视神经病变(Leber's hereditaryoptic neuropathy,LHON)、李氏综合症(Leigh syndrome)和亚急性硬化性脑病变)、肌病(例如颜面肩胛肱骨型肌病(FSHD)和心肌病)、实体器官(例如脑、肝脏、肾脏、心脏)的疾病等等。在一些实施方案中,如本文所公开的ceDNA载体能够有利地用于治疗患有代谢病症(例如鸟氨酸转氨甲酰酶缺陷)的个体。
在一些实施方案中,本文所述的用于控制转基因表达的ceDNA载体能够用于治疗、改善和/或预防由基因或基因产物中的突变引起的疾病或病症。能够用ceDNA载体治疗的示例性疾病或病症包括但不限于:代谢性疾病或病症(例如法布里病(Fabry disease)、戈谢病(Gaucher disease)、苯丙酮尿症(PKU)、糖原贮积病);尿素循环疾病或病症(例如鸟氨酸氨甲酰基转移酶(OTC)缺乏症);溶酶体贮积性疾病或病症(例如异染性脑白质营养不良(MLD)、II型粘多糖贮积病(MPSII;亨特综合征(Hunter syndrome)));肝脏疾病或病症(例如进行性家族性肝内胆汁淤积症(PFIC);血液疾病或病症(例如血友病(甲型和乙型)、地中海贫血和贫血);癌症和肿瘤以及遗传性疾病或病症(例如囊性纤维化)。
作为又另一个方面,在希望调控转基因表达水平(例如编码激素或生长因子的转基因,如本文所述)的情形中,如本文所公开的用于控制转基因表达的ceDNA载体可以用于递送异源核苷酸序列。
相应地,在一些实施方案中,本文所述的用于控制转基因表达的ceDNA载体能够用于矫正导致疾病或病症的基因产物的异常水平和/或功能(例如蛋白质的缺乏或缺陷)。ceDNA载体能够产生功能蛋白和/或调节蛋白质的水平,以减轻或减少由所述蛋白质的缺乏或缺陷引起的特定疾病或病症所产生的症状或为所述疾病或病症带来益处。例如,能够通过产生功能OTC酶来实现OTC缺乏症的治疗;能够通过调节因子VIII、因子IX和因子X的水平来实现A型和B型血友病的治疗;能够通过调节苯丙氨酸羟化酶的水平来实现PKU的治疗;能够分别通过产生功能α半乳糖苷酶或β葡糖脑苷脂酶来实现法布里(Fabry)或戈谢病(Gaucher disease)的治疗;能够分别通过产生功能性芳基硫酸酯酶A或艾杜糖醛酸-2-硫酸酯酶来实现MLD或MPSII的治疗;能够通过产生功能性囊性纤维化跨膜传导调节蛋白来实现囊性纤维化的治疗;能够通过恢复功能性G6Pase酶功能来实现糖原贮积病的治疗;并且能够通过产生功能性ATP8B1、ABCB11、ABCB4或TJP2基因来实现PFIC的治疗。
在替代实施方案中,如本文公开的ceDNA载体能用于在体外或体内向细胞提供反义核酸。例如,在转基因是RNAi分子的情况下,靶细胞中反义核酸或RNAi的表达会削弱细胞对特定蛋白质的表达。因此,为了减少特定蛋白质在有需要的受试者中的表达,可以施用作为RNAi分子或反义核酸的转基因。还可以将反义核酸体外施用于细胞以调控细胞生理,例如优化细胞或组织培养系统。
在一些实施方案中,由控制转基因表达的ceDNA载体编码的示例性转基因包括(但不限于):X、溶酶体酶(例如与泰伊-萨克斯二氏病(Tay-Sachs disease)相关的己糖胺酶A,或与亨特综合症/MPS II相关的艾杜糖醛酸硫酸酯酶)、促红细胞生成素、血管抑制素、内皮抑制素、超氧化物歧化酶、血球蛋白、瘦素、催化酶、酪氨酸羟化酶,以及细胞因子(例如干扰素、β-干扰素、干扰素-γ、白介素-2、白介素-4、白介素12、粒细胞-巨噬细胞集落刺激因子、淋巴毒素等)、肽生长因子和激素(例如促生长素、胰岛素、胰岛素样生长因子1和2、血小板源生长因子(PDGF)、表皮生长因子(EGF)、纤维母细胞生长因子(FGF)、神经生长因子(NGF)、神经营养因子-3和4、脑源性神经营养因子(BDNF)、神经胶质源生长因子(GDNF)、转化生长因子-α和转型生长因子-β等)、受体(例如肿瘤坏死因子受体)。
在一些示例性实施方案中,转基因编码对一个或多个期望的靶标具有特异性的单克隆抗体。通过如本文所公开的方法控制抗体和融合蛋白表达的示例性ceDNA载体公开于2019年2月14日提交的国际申请PCT/US19/18016中,所述国际申请以全文引用的方式并入本文中。
在一些示例性实施方案中,ceDNA载体编码超过一个转基因。在一些示例性实施方案中,转基因编码包含两种不同的所关注多肽的融合蛋白。在一些实施方案中,转基因编码如本文定义的抗体,包括全长抗体或抗体片段。在一些实施方案中,抗体是如本文所定义的抗原结合域或免疫球蛋白可变域序列。其它说明性的转基因序列编码自杀基因产物(胸苷激酶、胞嘧啶脱氨酶、白喉毒素、细胞色素P450、脱氧胞苷激酶和肿瘤坏死因子)、将抗性赋予癌症疗法中所用的药物的蛋白质,以及肿瘤抑制基因产物。
在一个代表性实施方案中,由控制转基因表达的ceDNA载体表达的转基因能够用于治疗有需要的受试者的肌肉萎缩症,所述方法包含:施用治疗、改善或预防有效量的本文所述ceDNA载体,其中ceDNA载体包含编码以下的异源核酸:肌缩蛋白、小型肌缩蛋白、微肌缩蛋白、肌肉抑制素前肽、卵泡抑素、II型活化素可溶性受体、IGF-1、消炎多肽(例如IκB显性突变异体、肌长蛋白(sarcospan)、肌营养相关蛋白(utrophin)、微肌缩蛋白、层粘连蛋白-α2、α-肌聚糖、β-肌聚糖、γ-肌聚糖、δ-肌聚糖、IGF-1、针对肌肉抑制素或肌抑素前肽的抗体或抗体片段,和/或针对肌肉抑制素的RNAi。在特定实施方案中,如本文其它处所述,能够将ceDNA载体施用至骨骼肌、膈肌和/或心肌。
在一些实施方案中,用于控制转基因表达的ceDNA载体能够用于将转基因递送到骨骼肌、心肌或隔膜肌,以便产生通常在血液中循环的多肽(例如酶)或功能RNA(例如RNAi、微RNA、反义RNA),或全身递送到其它组织以治疗、改善和/或预防病症(例如代谢病症,例如糖尿病(例如胰岛素)、血友病(例如VIII)、粘多糖病症(例如斯赖综合症(Sly syndrome)、赫尔勒综合症(Hurler Syndrome)、谢氏综合症(Scheie Syndrome)、贺-谢二氏综合症(Hurler-Scheie Syndrome)、亨特氏综合症(Hunter's Syndrome)、沙费利波综合症(Sanfilippo Syndrome)A、B、C、D、莫基奥综合症(Morquio Syndrome)、马-兰二氏综合症(Maroteaux-Lamy Syndrome)等)或溶酶体贮积病(例如高雪氏疾病(Gaucher's disease)[葡糖脑苷脂酶]、庞贝病(Pompe disease)[溶酶体酸α-葡糖苷酶]或法布里病(Fabrydisease)[.α.-半乳糖苷酶A])或糖原贮积病症(例如庞贝病[溶酶体酸a葡糖苷酶])。适用于治疗、改善和/或预防代谢病症的其它蛋白质在上文描述。
在其它实施方案中,如本文所公开的用于控制转基因表达的ceDNA载体能够用于在治疗、改善和/或预防有需要的受试者的代谢病症的方法中递送转基因。本文描述了说明性的代谢病症和编码多肽的转基因。任选地,多肽是分泌的(例如多肽为呈天然状态分泌的多肽,或例如如本领域已知,通过与分泌信号序列可操作地结合,已被工程化成分泌的多肽)。
本发明的另一个方面涉及一种治疗、改善和/或预防有需要的受试者的先天性心力衰竭或PAD的方法,所述方法包含向哺乳动物受试者施用如本文所述的用于控制转基因表达的ceDNA载体,其中所述ceDNA载体包含编码以下的转基因:例如肌质内质网Ca2+-ATP酶(SERCA2a)、血管生成因子、磷酸酯酶抑制剂I(I-1)、针对受磷蛋白的RNAi;受磷蛋白抑制性或显性负性分子(例如受磷蛋白S16E)、调控受磷酸蛋白基因的锌指蛋白、β2-肾上腺素能受体、β.2-肾上腺素能受体激酶(BARK)、PI3激酶、辣椒素、β.-肾上腺素能受体激酶抑制剂(βARKct)、蛋白质磷酸酯酶1的抑制剂1、S100A1、小白蛋白、腺苷酸环化酶6型、实现G蛋白偶联受体激酶2型基因表达敲低的分子,例如截断的组成型活性βARKct、Pim-1、PGC-1α、SOD-1、SOD-2、EC-SOD、激肽释放酶、HIF、胸腺素-β4、mir-1、mir-133、mir-206和/或mir-208。
如本文所公开的ceDNA载体能够通过任何适合方式施用于受试者的肺,任选地通过施用包含ceDNA载体的可吸入颗粒的气溶胶悬浮液,以便受试者吸入。可吸入颗粒可以是液体或固体。包含ceDNA载体的液体颗粒的气溶胶可以通过任何适合的方式产生,例如用压力驱动的气溶胶喷雾器或超声波喷雾器,如本领域技术人员所知。参见例如美国专利第4,501,729号。包含ceDNA载体的固体颗粒的气溶胶也可以通过制药领域已知的技术,用任何固体颗粒药物气溶胶发生器产生。
在一些实施方案中,可以将ceDNA载体施用于CNS的组织(例如脑、眼睛)。在特定实施方案中,可以施用如本文公开的ceDNA载体以治疗、改善或预防CNS的疾病,包括遗传性病症、神经退化性病症、精神病症和肿瘤。CNS的说明性疾病包括(但不限于)阿尔兹海默氏病、帕金森氏病、亨廷顿氏病、卡纳万疾病(Canavan disease)、李氏疾病(Leigh's disease)、雷夫苏姆氏病(Refsum disease)、妥瑞综合症(Tourette syndrome)、原发侧索硬化症、肌肉萎缩性侧索硬化、渐进性肌肉萎缩、皮克氏疾病(Pick's disease)、肌肉萎缩症、多发性硬化症、重症肌无力、宾斯万格氏疾病(Binswanger's disease)、由于脊髓或头损伤所致的创伤、塔伊萨克斯疾病(Tay Sachs disease)、勒什-纳阳疾病(Lesch-Nyan disease)、癫痫症、大脑梗死;精神病症,包括情绪障碍(例如抑郁、双极性情感障碍、持续性情感障碍、继发性情绪障碍)、精神分裂症、药物依赖性(例如酗酒和其它物质依赖性)、神经官能症(例如焦虑症、强迫症、类躯体化症精神障碍、分离性障碍、哀伤、分娩后抑郁)、精神病(例如幻觉和错觉)、痴呆症、偏执狂、注意缺陷障碍、性心理障碍、睡眠障碍、疼痛病症、饮食或体重失调(例如肥胖症、恶病质、神经性厌食症和贪食症),以及CNS的癌症和肿瘤(例如垂体肿瘤)。
可以用本发明的ceDNA载体治疗、改善或预防的眼病包括涉及视网膜、后束和视神经的眼科病症(例如色素性视网膜炎,糖尿病性视网膜病变和其它视网膜变性疾病、葡萄膜炎、年龄相关性黄斑变性、青光眼)。许多眼科疾病和病症与以下三种类型适应症中的一种或多种有关:(1)血管产生、(2)炎症和(3)变性。在一些实施方案中,如本文所公开的用于控制转基因表达的ceDNA载体能用于递送抗血管生成因子;消炎因子;延缓细胞变性、促进细胞保留或促进细胞生长以及前述组合的因子。例如,糖尿病性视网膜病的特征是血管产生。糖尿病性视网膜病变能够通过在眼内(例如在玻璃体中)或眼周(例如眼球筋膜囊下区)递送一种或多种抗血管生成因子来治疗。一种或多种神经营养因子也可以在眼内(例如玻璃体内)或眼周共同递送。可用本发明的ceDNA载体治疗、改善或预防的其它眼病包括:地图样萎缩、血管性或“湿性”黄斑变性、斯塔氏病(Stargardt disease)、莱伯先天性黑朦(LCA)、亚瑟综合征(Usher syndrome)、弹性假黄瘤(PXE)、x-连锁色素性视网膜炎(XLRP)、x-连锁视网膜劈裂症(XLRS)、无脉络膜症、莱伯遗传性视神经病变(LHON)、色盲、锥杆细胞营养不良、福斯角膜内皮营养不良(Fuchs endothelial corneal dystrophy)、糖尿病性黄斑水肿以及眼部癌症和肿瘤。
在一些实施方案中,炎性眼部疾病或病症(例如葡萄膜炎)能够通过本发明的ceDNA载体治疗、改善或预防。一种或多种消炎因子能够通过眼内(例如玻璃体或前房)施用如本文公开的用于控制转基因表达的ceDNA载体来表达。在其它实施方案中,以视网膜变性为特征的眼部疾病或病症(例如色素性视网膜炎)能够通过本发明的ceDNA载体来治疗、改善或预防。如本文公开的编码一种或多种神经营养因子的ceDNA载体的眼内施用(例如玻璃体施用)能用于治疗这类基于视网膜变性的疾病。在一些实施方案中,涉及血管生成和视网膜变性(例如年龄相关性黄斑变性)二者的疾病或病症能用本发明的ceDNA载体治疗。年龄相关性黄斑变性能够通过在眼内(例如玻璃体)施用编码一种或多种神经营养因子的如本文公开的ceDNA载体和/或在眼内或眼周(例如在眼球筋膜囊下区中)施用编码一种或多种抗血管生成因子的如本文公开的ceDNA载体来治疗。青光眼的特征是眼压升高和视网膜神经节细胞丧失。青光眼的治疗包括使用如本文公开的ceDNA载体来施用一种或多种保护细胞免受兴奋性毒性损害的神经保护剂。因此,此类药剂包括N-甲基-D-天冬氨酸(NMDA)拮抗剂、细胞因子和神经营养因子,能够使用如本文公开的ceDNA载体在眼内递送,任选地在玻璃体内递送。
在其它实施方案中,如本文公开的用于控制转基因表达的ceDNA载体可用于治疗癫痫,例如减少癫痫的发作、发生或严重程度。治疗性治疗癫痫的功效能够通过行为(例如晃动、眼睛或嘴巴转动(tick))和/或电图方式(大多数癫痫具有标志性的电图异常)来评估。因此,如本文公开的用于控制转基因表达的ceDNA载体也能用于治疗以随时间发生多次癫痫为标志的癫痫症。在一个代表性实施方案中,使用如本文公开的ceDNA载体将生长抑素(或其活性片段)施用于脑以治疗垂体肿瘤。根据这个实施方案,如本文公开的编码生长抑素(或其活性片段)的ceDNA载体通过微输注施用到垂体中。同样,此类疗法能用于治疗肢端肥大症(垂体生长激素分泌异常)。生长抑素的核酸序列(例如GenBank登录号J00306)和氨基酸序列(例如GenBank登录号P01166;含有加工的活性肽生长抑素-28和生长抑素-14)是本领域已知的。在特定实施方案中,如美国专利第7,071,172号中所述,ceDNA载体能够编码包含分泌信号的转基因。
本发明的另一个方面涉及如本文所述的控制转基因表达的ceDNA载体用于产生反义RNA、RNAi或其它功能RNA(例如核酶)以便体内全身递送到受试者的用途。因此,在一些实施方案中,ceDNA载体能包含编码以下的转基因:反义核酸、核酶(例如如美国专利第5,877,022号中所述)、影响剪接体介导的反式剪接的RNA(参见Puttaraju等人,(1999)《自然生物技术》17:246;美国专利第6,013,487号;美国专利第6,083,702号)、介导基因静默的干扰RNA(RNAi)(参见Sharp等人,(2000)《科学》287:2431)或其它非翻译RNA,例如“向导”RNA(Gorman等人,(1998)《《美国国家科学院院刊》》95:4929;授予Yuan等人的美国专利第5,869,248号)等等。
在一些实施方案中,用于控制转基因表达的ceDNA载体能够进一步包含编码报道多肽(例如酶,如绿色荧光蛋白或碱性磷酸酶)的转基因。在一些实施方案中,编码可用于实验或诊断目的的报道蛋白的转基因选自下列中的任何一种:β-内酰胺酶、β-半乳糖苷酶(LacZ)、碱性磷酸酶、胸苷激酶、绿色荧光蛋白(GFP)、氯霉素乙酰转移酶(CAT)、荧光素酶和本领域众所周知的其它转基因。在一些方面中,包含编码报道多肽的转基因的ceDNA载体可用于诊断目的或用作ceDNA载体在其所施用的受试者中的活性的标志物。
在一些实施方案中,用于控制转基因表达的ceDNA载体能够包含与宿主染色体上的基因座共享同源性并与其重组的转基因或异源核苷酸序列。此方法可用于矫正宿主细胞中的遗传缺陷。
在一些实施方案中,用于控制转基因表达的ceDNA载体能够包含转基因,所述转基因能够用于在受试者中表达免疫原性多肽,例如用于疫苗接种。转基因可以编码所属领域中已知的任何所关注免疫原,包括(但不限于)来自人免疫缺陷病毒、流感病毒、gag蛋白、肿瘤抗原、癌症抗原、细菌抗原、病毒抗原等的免疫原。
D.使用ceDNA载体测试成功的基因表达
所属领域中众所周知的分析能够用于测试ceDNA载体递送基因的效率,所述测试能够在体外和体内模型中进行。所属领域的技术人员能够通过测量所期望的转基因的mRNA和蛋白质水平(例如逆转录PCR、蛋白质印迹分析和酶联免疫吸附分析(ELISA))来评估ceDNA对所期望的转基因的敲入或敲除。通过对基因组靶DNA进行深度测序能够评估ceDNA引起的核酸改变(例如点突变或DNA区域的缺失)。在一个实施方案中,ceDNA包含能够用于评估所期望的转基因表达的报道蛋白,例如通过荧光显微术或发光读盘器检查报道蛋白的表达。体内施用时,蛋白质功能分析能够用于测试所指定的基因和/或基因产物的功能,以确定基因表达是否已经成功地发生。举例来说,设想囊性纤维化跨膜传导调控因子基因(CFTR)中的点突变抑制CFTR使阴离子(例如Cl-)移动通过阴离子通道的能力,通过利用ceDNA载体将功能(即,非突变)CFTR基因递送到受试者能够矫正所述点突变。施用ceDNA载体之后,所属领域的技术人员能够评估阴离子移动通过阴离子通道的能力,以确定CFTR基因是否已递送和表达。技术人员将能够确定在体外或体内测量蛋白质功能的最佳测试方法。
本文中预期转基因通过ceDNA载体在细胞或受试者中的基因表达效应能够持续至少1个月、至少2个月、至少3个月、至少4个月、至少5个月、至少6个月、至少10个月、至少12个月、至少18个月、至少2年、至少5年、至少10年、至少20年,或能够持久存在。
在一些实施方案中,本文所述的表达盒、表达构建体或ceDNA载体中的转基因能够针对宿主细胞进行密码子优化。如本文所用,术语“进行密码子优化”或“密码子优化”是指通过用如小鼠或人(例如人源化)等所关注脊椎动物的基因中使用频率较高或最高的密码子替换天然序列(例如原核序列)的至少一个、超过一个或大量密码子来修饰核酸序列以增强其在所述脊椎动物的细胞中的表达的过程。各种物种对特定氨基酸的某些密码子表现出特定的偏好。通常,密码子优化不会改变原始翻译蛋白质的氨基酸序列。使用例如Aptagen的Gene
Figure BDA0002685856320001211
密码子优化和定制基因合成平台(Aptagen公司)或其它公共数据库能够确定优化密码子。
XII.施用
本文所公开的用于控制转基因表达的ceDNA载体的示例性施用模式包括口服、直肠、经粘膜、鼻内、吸入(例如经由气溶胶)、颊内(例如舌下)、阴道、鞘内、眼内、透皮、内皮内、子宫内(或卵内)、肠胃外(例如静脉内、皮下、皮内、颅内、肌肉内[包括施用于骨骼、隔膜和/或心肌]、胸膜内、脑内和关节内)、体表(例如皮肤和粘膜表面,包括气管表面,以及透皮施用)、淋巴内等等,以及直接的组织或器官注射(例如注射到肝脏、眼、骨骼肌、心肌、隔膜肌,或脑)。
能够向受试者的任何部位施用用于控制转基因表达的ceDNA载体,包括(但不限于)选自由以下组成的群组的部位:脑、骨骼肌、平滑肌、心脏、膈膜、气道上皮、肝脏、肾脏、脾脏、胰腺、皮肤和眼睛。还能够将用于控制转基因表达的ceDNA载体施用于肿瘤(例如肿瘤或淋巴结内或附近)。在任何给定情况下最合适的途径将取决于所治疗、改善和/或预防的病状的性质和严重程度,以及所使用的特定ceDNA载体的性质。另外,ceDNA容许通过单个载体或多个ceDNA载体(例如ceDNA混合物)施用超过一种转基因。
根据本发明将本文公开的用于控制转基因表达的ceDNA载体施用于骨骼肌包括(但不限于)施用于肢体(例如上臂、下臂、大腿和/或小腿)、背、颈、头(例如舌头)、胸、腹、骨盆/会阴和/或指(趾)中的骨骼肌。如本文公开的ceDNA载体可以通过静脉内施用、动脉内施用、腹膜内施用、肢体灌注(任选地,腿和/或手臂的隔离肢体灌注;参见例如Arruda等人,(2005)《血液》105:3458-3464)和/或直接肌肉注射而递送到骨骼肌。在特定实施方案中,如本文公开的ceDNA载体通过肢体灌注、任选地隔离肢体灌注(例如静脉内或关节内施用)来施用于受试者(例如患有肌肉萎缩症如DMD的受试者)的肢体(臂和/或腿)。在某些实施方案中,如本文所公开的用于控制转基因表达的ceDNA载体能够在不利用“流体动力学”技术的情况下施用。
将如本文所公开的控制转基因表达的ceDNA载体施用于心肌包括施用于左心房、右心房、左心室、右心室和/或隔膜。如本文所述的ceDNA载体可以通过静脉内施用、动脉内施用、例如主动脉内施用、直接心脏注射(例如注入左心房、右心房、左心室、右心室)和/或冠状动脉灌注而递送到心肌。施用于膈肌能够采用任何适合的方法,包括静脉内施用、动脉内施用和/或腹膜内施用。施用于平滑肌能够采用任何适合的方法,包括静脉内施用、动脉内施用和/或腹膜内施用。在一个实施方案中,能够施用于存在于平滑肌内、附近和/或平滑肌上的内皮细胞。
在一些实施方案中,根据本发明的控制转基因表达的ceDNA载体施用于骨骼肌、膈肌和/或心肌(例如以治疗、改善和/或预防肌肉萎缩症或心脏病(例如PAD或充血性心力衰竭)。
A.离体治疗
在一些实施方案中,从受试者取出细胞,将ceDNA载体引入其中,然后将细胞替换回受试者中。从受试者取出细胞进行离体处理、然后再引回到受试者中的方法是本领域已知的(参见例如美国专利第5,399,346号;其公开内容整体并入本文中)。可替代地,将ceDNA载体引入另一个受试者的细胞,引入培养细胞中,或引入任何其它合适来源的细胞中,并将细胞施用于有需要的受试者。
用ceDNA载体转导的细胞优选与医药载剂组合以“治疗有效量”施用于受试者。本领域技术人员将了解,治疗效果不必是完全的或治愈的,只要给受试者提供了一些益处即可。
在一些实施方案中,用于控制转基因表达的ceDNA载体能够编码转基因(有时称为异源核苷酸序列),所述转基因是适合在体外、离体或体内、在细胞中产生的任何多肽。例如,与如本文所论述的治疗方法中使用ceDNA载体相反,在一些实施方案中,可以将ceDNA载体引入培养细胞中并从中分离表达的基因产物,例如用于产生抗原或疫苗。
兽医和医学应用中均可使用ceDNA载体。如上所述的离体基因递送方法的合适受试者包括禽类(例如鸡、鸭、鹅、鹌鹑、火鸡和野鸡)和哺乳动物(例如人、牛、绵羊、山羊、马、猫、犬和兔),以哺乳动物为优选。人类受试者是最优选的。人类受试者包括新生儿、婴儿、少年和成人。
本文描述的技术的一个方面涉及一种将转基因递送到细胞的方法。典型地,在体外方法中,可以使用如本文所公开的方法以及所属领域中已知的其它方法将控制转基因表达的ceDNA载体引入细胞中。本文公开的ceDNA载体优选以生物学有效量施用于细胞。如果将ceDNA载体在体内施用于细胞(例如施用于受试者),则ceDNA载体的生物学有效量是足以使转基因在靶细胞中转导和表达的量。
B.单位剂型
在一些实施方案中,医药组合物宜以单位剂型呈递。单位剂型通常将适于医药组合物的一种或多种特定施用途径。在一些实施方案中,单位剂型适于通过吸入施用。在一些实施方案中,单位剂型适于通过汽化器施用。在一些实施方案中,单位剂型适于通过喷雾器施用。在一些实施方案中,单位剂型适于通过气雾器施用。在一些实施方案中,单位剂型适于口服施用、经颊施用或舌下施用。在一些实施方案中,单位剂型适于静脉内、肌内或皮下施用。在一些实施方案中,单位剂型适合鞘内或脑室内施用。在一些实施方案中,配制医药组合物以供局部施用。可以与载体材料组合以产生单一剂型的活性成分的量将通常是化合物产生治疗效果的量。
XIII.各种应用
本文提供的组合物和ceDNA载体能够用于递送转基因以用于不同目的,如上文所述。在一些实施方案中,转基因能够编码蛋白质或功能RNA,且在一些实施方案中,可以是被修饰的蛋白质或功能RNA以用于研究目的,例如建立含有一个或多个突变或被矫正的基因序列的体细胞转基因动物模型,例如研究靶基因的功能。在另一个实例中,转基因编码蛋白质或功能RNA以建立动物疾病模型。
在一些实施方案中,转基因编码一种或多种适用于治疗、改善或预防哺乳动物受试者的疾病状态的肽、多肽或蛋白质。用于控制转基因表达的ceDNA载体所表达的转基因以足以治疗与异常基因序列有关的疾病的量施用于患者,从而能够产生以下中的任何一种或多种:靶基因的表达减少、靶基因的表达或功能异常的缺乏。
在一些实施方案中,设想ceDNA载体用于诊断和筛选方法中,其中使转基因瞬时或稳定表达于细胞培养系统中,或替代地,表达于转基因动物模型中。
本文描述的技术的另一个方面提供一种转导哺乳动物细胞群的方法。从总体和一般意义上讲,所述方法至少包括以下步骤:将包含有效量的一种或多种如本文公开的ceDNA的组合物引入所述群体的一个或多个细胞中。
另外,本发明提供了组合物以及治疗和/或诊断试剂盒,其包括一种或多种所公开的ceDNA载体或ceDNA组合物,所述ceDNA载体或ceDNA组合物与一种或多种另外的成分一起配制,或备有一个或多个关于其使用的说明书。
如本文所公开的控制转基因表达的ceDNA载体所施用的细胞可以是任何类型,包括(但不限于)神经细胞(包括末梢和中枢神经系统的细胞,具体地说,脑细胞)、肺细胞、视网膜细胞、上皮细胞(例如肠道和呼吸道上皮细胞)、肌肉细胞、树突状细胞、胰脏细胞(包括胰岛细胞)、肝细胞、心肌细胞、骨细胞(例如骨髓干细胞)、造血干细胞、脾细胞、角质细胞、纤维母细胞、内皮细胞、前列腺细胞、生殖细胞等等。可替代地,细胞可以是任何祖细胞。作为另一个替代方案,细胞可以是干细胞(例如神经干细胞、肝干细胞)。作为又一个替代方案,细胞可以是癌细胞或肿瘤细胞。此外,如上文指出,细胞可以来自任何物种来源。
本文所述技术的一些实施方案能够根据任一个以下编号段落定义:
1.一种包含ceDNA载体的组合物,其能够加打以相对于此前表达水平增加转基因表达水平,所述ceDNA载体包含与可操作地连接到启动子的转基因多核苷酸序列侧接的不对称或对称ITR序列,其中所述ITR中的至少一个是复制胜任型ITR。
2.段落1的组合物,其中所述ceDNA载体对所述转基因表达选自至少42天、至少84天和至少132天的时间段。
3.段落1的组合物,其中所述转基因是选自以下中的任一种的基因药物:核酸、抑制剂、肽或多肽、抗体或抗体片段、融合蛋白、抗原、拮抗剂、激动剂或RNAi分子。
4.一种用于增加细胞中的转基因表达水平的方法,所述方法包含:
a.在第一时间点向细胞施用预致敏剂量的组合物,以达成异源核酸序列的表达,以及
b.在第二时间点向所述细胞施用一定剂量的组合物,相较于在第一时间点施用所述组合物之后所达成的所述异源核酸的表达水平,增加所述异源核酸序列表达水平,或增加所述异源核酸序列的表达水平以达成所期望的表达水平,
其中在所述第一和第二时间点施用的所述组合物包含具有共价闭合端(ceDNA)的非病毒无衣壳DNA载体,其中所述ceDNA载体包含可操作地定位于两个不对称或对称AAV反向末端重复序列(ITR)之间的编码转基因的异源核酸序列,所述ITR之一包含功能AAV末端解析位点和Rep结合位点,并且所述ITR之一包含相对于另一ITR的缺失、插入或取代,
其中所述ceDNA当用对所述ceDNA载体具有单个识别位点的限制酶消化时,当在非变性凝胶上分析时,相较于线性非连续DNA对照,存在线性连续DNA的特征色带。
5.段落4的方法,其中所述两个不对称或对称的反向末端重复序列(ITR)是AAVITR。
6.段落4到5的方法,其中包含功能末端解析位点和Rep结合位点的所述ITR是野生型AAV ITR。
7.段落4到6中任一段的方法,其中所述AAV ITR是AAV-2ITR。
8.段落4到7中任一段的方法,其中所述两个不对称或对称ITR是选自由以下组成的组的ITR对:(i)SEQ ID NO:1和SEQ ID NO:4;以及(ii)SEQ ID NO:3和SEQ ID NO:2。
9.段落4到8中任一段的方法,其中所述ceDNA载体与药学上可接受的载剂和/或赋形剂组合施用。
10.段落4到9中任一段的方法,其中所述第二时间点是所述第一时间点之后的至少30天,或至少60天,或60到90天之间,或90到120天之间,或约3到6个月之间。
11.段落4到10中任一段的方法,其中所述异源核酸序列编码治疗转基因并且所述转基因的期望表达水平是治疗有效量。
12.段落4到11中任一段的方法,其中所述ceDNA载体获自载体多核苷酸,其中所述载体多核苷酸编码可操作地定位于两个不对称或对称的反向末端重复序列(ITR)之间的异源核酸,所述ITR中的至少一个包含功能末端解析位点和Rep结合位点,并且所述ITR之一包含相对于另一ITR的缺失、插入或取代;Rep蛋白的存在诱导所述载体多核苷酸在昆虫细胞中的复制和所述DNA载体在昆虫细胞中的产生,所述DNA载体可获自包含以下步骤的方法:
a.在诱导所述无衣壳非病毒DNA载体在所述昆虫细胞内产生的有效条件和足够时间下,在Rep蛋白存在下培育含有所述载体多核苷酸的昆虫细胞群,所述载体多核苷酸缺乏病毒衣壳编码序列,其中所述昆虫细胞不包含在所述昆虫细胞内产生无衣壳非病毒DNA;以及
b.从所述昆虫细胞中收获且分离出所述无衣壳非病毒DNA;
其中从所述昆虫细胞中分离出的所述无衣壳非病毒DNA的存在能够如下确认:使用对所述DNA载体具有单个识别位点的限制酶对从所述昆虫细胞中分离出的DNA进行消化,以及在非变性凝胶上分析消化的DNA物质,相较于线性非连续DNA,确认线性连续DNA的特征色带的存在。
13.段落4到11中任一段落的方法,其进一步包含在所述第二时间点之后的一个或多个时间点,向所述细胞施用一定剂量的所述组合物,相较于在所述第二时间点或此前时间点施用所述组合物之后所达成的所述异源核酸的表达水平,增加所述异源核酸序列的表达水平,或增加所述异源核酸序列的表达水平以达成所期望的表达水平,
其中在所述第二时间点之后的一个或多个时间点施用的所述组合物包含具有共价闭合端的非病毒无衣壳DNA载体(ceDNA),其中所述ceDNA载体包含可操作地定位于两个不对称或对称的AAV反向末端重复序列(ITR)之间的编码转基因的异源核酸序列,所述ITR之一包含功能AAV末端解析位点和Rep结合位点,且所述ITR之一包含相对于另一ITR的缺失、插入或取代,
其中所述ceDNA当用对所述ceDNA载体具有单个识别位点的限制酶消化时,当在非变性凝胶上分析时,相较于线性非连续DNA对照,存在线性连续DNA的特征色带。
14.段落4到13中任一段的方法,其中在所述第一、第二或任何后续时间点中的任一时间点施用的所述ceDNA载体与药学上可接受的载剂和/或赋形剂组合施用。
15.段落1到14中任一段的方法,其中在所述第一、第二或任何后续时间点施用的所述ceDNA载体是包含所述相同转基因或经修饰的转基因的相同ceDNA载体。
16.段落1到15中任一段的方法,其中在所述第一、第二或任何后续时间点施用的所述ceDNA载体是包含所述相同转基因或经修饰的转基因的不同ceDNA载体。
17.段落16的方法,其中所述不同ceDNA载体具有可操作地连接到所述相同转基因或可操作地连接到经修饰的转基因的不同启动子。
18.段落1到17中任一段的方法,其中所述转基因是基因药物。
19.一种用于治疗受试者的疾病的方法,所述方法包含:
a.在第一时间点向所述受试者施用预致敏剂量的包含具有共价闭合端的非病毒无衣壳DNA载体(ceDNA)的组合物,以达成异源核酸序列的表达,以及
b.在第二时间点向所述受试者施用一定剂量的包含具有共价闭合端的非病毒无衣壳DNA载体(ceDNA)的组合物,相较于在所述第一时间点施用所述组合物之后所达成的所述异源核酸的表达水平,增加所述异源核酸序列的表达水平,或增加所述异源核酸序列的表达水平以达成所期望的表达水平,借此治疗所述受试者的所述疾病,
其中在所述第一和第二时间点施用的所述ceDNA载体包含可操作地定位于两个不对称或对称AAV反向末端重复序列(ITR)之间的编码转基因的异源核酸序列,所述ITR之一包含功能AAV末端解析位点和Rep结合位点,且所述ITR之一包含相对于另一个ITR的缺失、插入或取代,
其中所述ceDNA载体当用对所述ceDNA载体具有单个识别位点的限制酶消化时,当在非变性凝胶上分析时,相较于线性非连续DNA对照,存在线性连续DNA的特征色带。
20.段落19的方法,其中所述两个不对称或对称的反向末端重复序列(ITR)是AAVITR。
21.段落19到20的方法,其中包含功能末端解析位点和Rep结合位点的所述ITR是野生型AAV ITR。
22.段落19到21中任一段的方法,其中所述AAV ITR是AAV-2ITR。
23.段落19到22中任一段的方法,其中所述两个不对称ITR是选自由以下组成的组的ITR对:(i)SEQ ID NO:1和SEQ ID NO:4;以及(ii)SEQ ID NO:3和SEQ ID NO:2。
24.段落19到23中任一段的方法,其中所述ceDNA载体与药学上可接受的载剂和/或赋形剂组合施用。
25.段落19到24中任一段的方法,其中所述第二时间点是所述第一时间点之后的至少30天,或至少60天,或60到90天之间,或90到120天之间,或约3到6个月之间。
26.段落19到25中任一段的方法,其中在所述第二时间点施用所述组合物之后所达成的转基因的期望表达水平是所述转基因的治疗有效量。
27.段落19到26中任一段的方法,其进一步包含在所述第二时间点之后的一个或多个时间点,向所述受试者施用一定剂量的包含ceDNA载体的组合物,相较于在所述第二时间点或此前时间点施用所述组合物之后所达成的所述异源核酸的表达水平,增加所述异源核酸序列的表达水平,或使所述异源核酸序列的表达水平增加到所期望的表达水平,
其中在所述第二时间点之后的一个或多个时间点施用的所述组合物包含具有共价闭合端的非病毒无衣壳DNA载体(ceDNA),其中所述ceDNA载体包含可操作地定位于两个不对称或对称的AAV反向末端重复序列(ITR)之间的编码转基因的异源核酸序列,所述ITR之一包含功能AAV末端解析位点和Rep结合位点,且所述ITR之一包含相对于另一ITR的缺失、插入或取代,
其中所述ceDNA当用对所述ceDNA载体具有单个识别位点的限制酶消化时,当在非变性凝胶上分析时,相较于线性非连续DNA对照,存在线性连续DNA的特征色带。
28.段落19到27中任一段的方法,其中在所述第二时间点之后的一个或多个时间点施用所述组合物之后所达成的转基因的期望表达水平是所述转基因的治疗有效量。
29.段落19到28中任一段的方法,其中在所述第一、第二或任何后续时间点施用的所述ceDNA载体与药学上可接受的载剂一起施用。
30.段落19到29中任一段的方法,其中所述第二时间点之后的一个或多个时间点是此前时间点之后的至少30天,或至少60天,或60到90天,或90到120天,或约3到6个月。
31.段落19到30中任一段的方法,其中在所述第一、第二或任何后续时间点施用的所述ceDNA载体是包含所述相同转基因或经修饰的转基因的相同ceDNA载体。
32.段落19到30中任一段的方法,其中在所述第一、第二或任何后续时间点施用的所述ceDNA载体是包含所述相同转基因或经修饰的转基因的不同ceDNA载体。
33.段落31的方法,其中所述不同ceDNA载体具有可操作地连接到所述相同转基因或可操作地连接到经修饰的转基因的不同启动子。
34.段落19或33中任一段的方法,其中所述ceDNA载体获自载体多核苷酸,其中所述载体多核苷酸编码可操作地定位于两个不对称或对称的反向末端重复序列(ITR)之间的异源核酸,所述ITR中的至少一个包含功能末端解析位点和Rep结合位点,并且所述ITR之一包含相对于另一ITR的缺失、插入或取代;Rep蛋白的存在诱导所述载体多核苷酸在昆虫细胞中的复制和所述DNA载体在昆虫细胞中的产生,所述DNA载体可获自包含以下步骤的方法:
a.在诱导所述无衣壳非病毒DNA载体在所述昆虫细胞内产生的有效条件和足够时间下,在Rep蛋白存在下培育含有所述载体多核苷酸的昆虫细胞群,所述载体多核苷酸缺乏病毒衣壳编码序列,其中所述昆虫细胞不包含在所述昆虫细胞内产生无衣壳非病毒DNA;以及
b.从所述昆虫细胞中收获且分离出所述无衣壳非病毒DNA;
其中从所述昆虫细胞中分离出的所述无衣壳非病毒DNA的存在能够如下确认:使用对所述DNA载体具有单个识别位点的限制酶对从所述昆虫细胞中分离出的DNA进行消化,以及在非变性凝胶上分析消化的DNA物质,相较于线性非连续DNA,确认线性连续DNA的特征色带的存在。
35.段落19到34中任一段的方法,其中所述转基因是基因药物。
36.一种包含ceDNA载体的组合物,其能够加打以保持所述转基因的持续表达水平,所述ceDNA载体包含与可操作地连接到启动子的转基因多核苷酸序列侧接的不对称或对称ITR序列,其中所述ITR中的至少一个是复制胜任型ITR。
37.段落36的组合物,其中所述ceDNA载体对所述转基因表达选自至少42天、至少84天和至少132天的时间段。
38.段落36的组合物,其中所述转基因是选自以下中的任一种的基因药物:核酸、抑制剂、肽或多肽、抗体或抗体片段、抗原、拮抗剂、激动剂或RNAi分子。
39.一种维持转基因在细胞中的表达水平的方法,所述方法包含:
a.在第一时间点向细胞施用预致敏剂量的组合物,以达成异源核酸序列的表达,以及
b.在第二时间点向所述细胞施用一定剂量的组合物,以补偿在所述第一时间点施用所述组合物之后发生的所述异源核酸序列的表达水平的任何降低,
其中在所述第一和第二时间点施用的所述组合物包含具有共价闭合端(ceDNA)的非病毒无衣壳DNA载体,其中所述ceDNA载体包含可操作地定位于两个不对称或对称AAV反向末端重复序列(ITR)之间的编码转基因的异源核酸序列,所述ITR之一包含功能AAV末端解析位点和Rep结合位点,并且所述ITR之一包含相对于另一ITR的缺失、插入或取代,
其中所述ceDNA当用对所述ceDNA载体具有单个识别位点的限制酶消化时,当在非变性凝胶上分析时,相较于线性非连续DNA对照,存在线性连续DNA的特征色带。
40.段落39的方法,其中所述两个不对称或对称的反向末端重复序列(ITR)是AAVITR。
41.段落39到40的方法,其中包含功能末端解析位点和Rep结合位点的所述ITR是野生型AAV ITR。
42.段落39到41中任一段的方法,其中所述AAV ITR是AAV-2ITR。
43.段落39到42中任一段的方法,其中所述两个不对称ITR是选自由以下组成的组的ITR对:(i)SEQ ID NO:1和SEQ ID NO:4;以及(ii)SEQ ID NO:3和SEQ ID NO:2。
44.段落39到43中任一段的方法,其中所述ceDNA载体与药学上可接受的载剂和/或赋形剂组合施用。
45.段落39到44中任一段的方法,其中所述第二时间点是所述第一时间点之后的至少30天,或至少60天,或60到90天之间,或90到120天之间,或约3到6个月之间。
46.段落39到45中任一段的方法,其中所述异源核酸序列编码治疗转基因且所述转基因的持续表达水平是治疗有效量。
47.段落39到46中任一段的方法,其中所述ceDNA载体获自载体多核苷酸,其中所述载体多核苷酸编码可操作地定位于两个不对称反向末端重复序列(ITR)之间的异源核酸,所述ITR中的至少一个包含功能末端解析位点和Rep结合位点,并且所述ITR之一包含相对于另一ITR的缺失、插入或取代;Rep蛋白的存在诱导所述载体多核苷酸在昆虫细胞中的复制和所述DNA载体在昆虫细胞中的产生,所述DNA载体可获自包含以下步骤的方法:
a.在诱导所述无衣壳非病毒DNA载体在所述昆虫细胞内产生的有效条件和足够时间下,在Rep蛋白存在下培育含有所述载体多核苷酸的昆虫细胞群,所述载体多核苷酸缺乏病毒衣壳编码序列,其中所述昆虫细胞不包含在所述昆虫细胞内产生无衣壳非病毒DNA;以及
b.从所述昆虫细胞中收获且分离出所述无衣壳非病毒DNA;
其中从所述昆虫细胞中分离出的所述无衣壳非病毒DNA的存在能够如下确认:使用对所述DNA载体具有单个识别位点的限制酶对从所述昆虫细胞中分离出的DNA进行消化,以及在非变性凝胶上分析消化的DNA物质,相较于线性非连续DNA,确认线性连续DNA的特征色带的存在。
48.段落39到47中任一段的方法,其进一步包含在所述第二时间点之后的一个或多个时间点,向所述细胞施用另一剂量的所述组合物,相较于在所述第二时间点或此前时间点施用所述组合物之后所达成的异源核酸的表达水平,增加所述异源核酸序列的表达水平,或增加所述异源核酸序列的表达水平以保持所期望的持续表达水平,
其中在所述第二时间点之后的一个或多个时间点施用的所述组合物包含具有共价闭合端的非病毒无衣壳DNA载体(ceDNA),其中所述ceDNA载体包含可操作地定位于两个不对称或对称的AAV反向末端重复序列(ITR)之间的编码转基因的异源核酸序列,所述ITR之一包含功能AAV末端解析位点和Rep结合位点,且所述ITR之一包含相对于另一ITR的缺失、插入或取代,
其中所述ceDNA当用对所述ceDNA载体具有单个识别位点的限制酶消化时,当在非变性凝胶上分析时,相较于线性非连续DNA对照,存在线性连续DNA的特征色带。
49.段落39到48中任一段的方法,其中在所述第一、第二或任何后续时间点中的任一时间点施用的所述ceDNA载体与药学上可接受的载剂和/或赋形剂组合施用。
50.段落39到49中任一段的方法,其中在所述第一、第二或任何后续时间点施用的所述ceDNA载体是包含所述相同转基因或经修饰的转基因的相同ceDNA载体。
51.段落39到50中任一段的方法,其中在所述第一、第二或任何后续时间点施用的所述ceDNA载体是包含所述相同转基因或经修饰的转基因的不同ceDNA载体。
52.段落51的方法,其中所述不同ceDNA载体具有可操作地连接到所述相同转基因或可操作地连接到经修饰的转基因的不同启动子。
53.段落1到52中任一段的方法,其中所述转基因是基因药物。
54.一种用于治疗受试者的疾病的方法,所述方法包含:
a.在第一时间点向所述受试者施用预致敏剂量的包含具有共价闭合端的非病毒无衣壳DNA载体(ceDNA)的组合物,以达成异源核酸序列的表达,以及
b.在第二时间点向所述受试者施用一定剂量的包含具有共价闭合端的非病毒无衣壳DNA载体(ceDNA)的组合物,相较于在所述第一时间点施用所述组合物之后所达成的异源核酸的表达水平,使所述异源核酸序列的表达水平保持在所期望的持续水平,借此治疗所述受试者的所述疾病,
其中在所述第一和第二时间点施用的所述ceDNA载体包含可操作地定位于两个不对称或对称AAV反向末端重复序列(ITR)之间的编码转基因的异源核酸序列,所述ITR之一包含功能AAV末端解析位点和Rep结合位点,且所述ITR之一包含相对于另一个ITR的缺失、插入或取代,
其中所述ceDNA载体当用对所述ceDNA载体具有单个识别位点的限制酶消化时,当在非变性凝胶上分析时,相较于线性非连续DNA对照,存在线性连续DNA的特征色带。
55.段落54的方法,其中所述两个不对称或对称的反向末端重复序列(ITR)是AAVITR。
56.段落54或55的方法,其中包含功能末端解析位点和Rep结合位点的所述ITR是野生型AAV ITR。
57.段落54到56中任一段的方法,其中所述AAV ITR是AAV-2ITR。
58.段落54到57中任一段的方法,其中所述两个不对称ITR是选自由以下组成的组的ITR对:(i)SEQ ID NO:1和SEQ ID NO:4;以及(ii)SEQ ID NO:3和SEQ ID NO:2。
59.段落54到58中任一段的方法,其中所述ceDNA载体与药学上可接受的载剂和/或赋形剂组合施用。
60.段落54到59中任一段的方法,其中所述第二时间点是所述第一时间点之后的至少30天,或至少60天,或60到90天之间,或90到120天之间,或约3到6个月之间。
61.段落54到60中任一段的方法,其中在所述第二时间点施用所述组合物之后所达成的转基因的期望表达水平是所述转基因的治疗有效量。
62.段落54到61中任一段的方法,其进一步包含在所述第二时间点之后的一个或多个时间点向所述受试者施用一定剂量的包含ceDNA载体的所述组合物,相较于在所述第二时间点施用所述组合物之后所达成的异源核酸的表达水平,增加所述异源核酸序列的表达水平,以便保持所述异源核酸的所期望的持续表达水平,
其中在所述第二时间点之后的一个或多个时间点施用的所述组合物包含具有共价闭合端的非病毒无衣壳DNA载体(ceDNA),其中所述ceDNA载体包含可操作地定位于两个不对称或对称的AAV反向末端重复序列(ITR)之间的编码转基因的异源核酸序列,所述ITR之一包含功能AAV末端解析位点和Rep结合位点,且所述ITR之一包含相对于另一ITR的缺失、插入或取代,
其中所述ceDNA当用对所述ceDNA载体具有单个识别位点的限制酶消化时,当在非变性凝胶上分析时,相较于线性非连续DNA对照,存在线性连续DNA的特征色带。
63.段落54到62中任一段的方法,其中在所述第二时间点之后的一个或多个时间点施用所述组合物之后所达成的转基因的期望表达水平是所述转基因的治疗有效量。
64.段落54到63中任一段的方法,其中在所述第一、第二或任何后续时间点施用的所述ceDNA载体与药学上可接受的载剂一起施用。
65.段落54到64中任一段的方法,其中所述第二时间点之后的一个或多个时间点是此前时间点之后的至少30天,或至少60天,或60到90天,或90到120天,或约3到6个月。
66.段落54到65中任一段的方法,其中在所述第一、第二或任何后续时间点施用的所述ceDNA载体是包含所述相同转基因或经修饰的转基因的相同ceDNA载体。
67.段落54到65中任一段的方法,其中在所述第一、第二或任何后续时间点施用的所述ceDNA载体是包含所述相同转基因或经修饰的转基因的不同ceDNA载体。
68.段落67的方法,其中所述不同ceDNA载体具有可操作地连接到所述相同转基因或可操作地连接到经修饰的转基因的不同启动子。
69.段落54到68中任一段的方法,其中所述ceDNA载体获自载体多核苷酸,其中所述载体多核苷酸编码可操作地定位于两个不对称或对称的反向末端重复序列(ITR)之间的异源核酸,所述ITR中的至少一个包含功能末端解析位点和Rep结合位点,并且所述ITR之一包含相对于另一ITR的缺失、插入或取代;Rep蛋白的存在诱导所述载体多核苷酸在昆虫细胞中的复制和所述DNA载体在昆虫细胞中的产生,所述DNA载体可获自包含以下步骤的方法:
c.在诱导所述无衣壳非病毒DNA载体在所述昆虫细胞内产生的有效条件和足够时间下,在Rep蛋白存在下培育含有所述载体多核苷酸的昆虫细胞群,所述载体多核苷酸缺乏病毒衣壳编码序列,其中所述昆虫细胞不包含在所述昆虫细胞内产生无衣壳非病毒DNA;以及
d.从所述昆虫细胞中收获且分离出所述无衣壳非病毒DNA;
其中从所述昆虫细胞中分离出的所述无衣壳非病毒DNA的存在能够如下确认:使用对所述DNA载体具有单个识别位点的限制酶对从所述昆虫细胞中分离出的DNA进行消化,以及在非变性凝胶上分析消化的DNA物质,相较于线性非连续DNA,确认线性连续DNA的特征色带的存在。
70.段落54到69中任一段的方法,其中所述转基因是基因药物。
实例
以下实例是为了说明而非限制而提供。本领域普通技术人员将了解,可以从本文所述的任何野生型或修饰ITR中构建ceDNA载体,并且以下示例性方法可以用于构建和评估这类ceDNA载体的活性。尽管所述方法以某些ceDNA载体为例,但与描述一致,它们可应用于任何ceDNA载体。
实例1:使用基于昆虫细胞的方法构建ceDNA载体
PCT/US18/49996的实例1中描述了使用多核苷酸构建体模板产生ceDNA载体,所述文献以全文引用的方式并入本文中。例如,用于产生本发明的ceDNA载体的多核苷酸构建体模板可以是ceDNA-质粒、ceDNA-杆粒和/或ceDNA-杆状病毒。不受理论束缚,在容许的宿主细胞中,在例如Rep存在下,具有两个对称ITR(其中至少一个ITR相对于野生型ITR序列经修饰)和表达构建体的多核苷酸构建体模板复制而产生ceDNA载体。ceDNA载体产生经历两个步骤:第一,通过Rep蛋白从模板主链(例如ceDNA-质粒、ceDNA-杆粒、ceDNA-杆状病毒基因组等)中切除(“拯救”)模板;以及第二,Rep介导所切除的ceDNA载体复制。
产生ceDNA载体的一种示例性方法是从如本文所述的ceDNA-质粒产生。参考图1A和1B,每种ceDNA-质粒的多核苷酸构建体模板均包括左修饰ITR和右修饰ITR,在ITR序列之间具有以下:(i)增强子/启动子;(ii)转基因的克隆位点;(iii)转录后反应元件(例如土拨鼠肝炎病毒转录后调控元件(WPRE));和(iv)聚腺苷酸化信号(例如来自牛生长激素基因(BGHpA))。在每个组分之间还引入了独特的限制性核酸内切酶识别位点(R1-R6)(图1A和图1B中所示),以便于将新的遗传组分引入构建体中的特定位点。将R3(PmeI)GTTTAAAC(SEQID NO:123)和R4(PacI)TTAATTAA(SEQ ID NO:124)酶位点工程改造成克隆位点以引入转基因的开放阅读框架。将这些序列克隆到从ThermoFisher Scientific获得的pFastBac HT B质粒中。
ceDNA-杆粒的产生:
依循根据制造商说明书的方案,用测试或对照质粒转化DH10Bac感受态细胞(MAX
Figure BDA0002685856320001351
DH10BacTM感受态细胞,赛默飞世尔)。诱导DH10Bac细胞中质粒与杆状病毒穿梭载体之间重组,以产生重组ceDNA-杆粒。通过在含有X-gal和IPTG,利用抗生素选择转化体并维持杆粒和转座酶质粒的细菌琼脂平板上大肠杆菌(E.coli)中基于蓝白筛选来筛选正向选择(Φ80dlacZΔM15标志物提供了来自杆粒载体的β-半乳糖苷酶基因的α-互补)来选择重组杆粒。挑选由转座产生的破坏β-半乳糖苷指示基因的白色群落且在10ml培养基中培养。
从大肠杆菌中分离重组ceDNA-杆粒,并使用FugeneHD将其转染至Sf9或Sf21昆虫细胞中以产生感染性杆状病毒。将附着性Sf9或Sf21昆虫细胞在T25烧瓶内的50ml培养基中于25℃下培养。四天后,从细胞中去除培养基(含有P0病毒),通过0.45μm过滤器过滤,从细胞或细胞残骸中分离出感染性杆状病毒颗粒。
任选地,第一代杆状病毒(P0)通过在50到500ml培养基中感染初始Sf9或Sf21昆虫细胞来扩增。将细胞在回转式振荡培育箱的悬浮培养液中、在130rpm下、在25℃下维持,监测细胞直径和存活率,直到细胞达到18-19nm直径(从14-15nm的初始直径)和~4.0E+6个细胞/毫升的密度。感染后第3天到第8天,利用离心去除细胞和残骸、然后通过0.45μm过滤器过滤来收集培养基中的P1杆状病毒颗粒。
收集包含测试构建体的ceDNA-杆状病毒,并测定杆状病毒的感染活性或滴度。具体来说,用P1杆状病毒按下列稀释度处理4×20ml 2.5E+6个细胞/毫升的Sf9细胞培养物:1/1000、1/10,000、1/50,000、1/100,000,并且在25-27℃下培育。通过细胞直径增加和细胞周期停滞的速率以及4至5天中每天细胞存活率的变化来测定感染性。
使“Rep质粒”在pFASTBACTM-Dual表达载体(赛默飞世尔)中产生,所述表达载体包含Rep78(SEQ ID NO:131或133)或Rep68(SEQ ID NO:130)和Rep52(SEQ ID NO:132)或Rep40(SEQ ID NO:129)。依循制造商提供的方案,将Rep质粒转化到DH10Bac感受态细胞(MAX
Figure BDA0002685856320001352
DH10BacTM感受态细胞(赛默飞世尔))中。诱导DH10Bac细胞中Rep质粒与杆状病毒穿梭载体之间重组,以产生重组杆粒(“Rep杆粒”)。通过在含有X-gal和IPTG的细菌琼脂平板上大肠杆菌中包括蓝白筛选的正向选择(Φ80dlacZΔM15标志物提供了来自杆粒载体的β-半乳糖苷酶基因的α-互补)来选择重组杆粒-。挑选分离的白色菌落,并接种到10ml选择培养基(含卡那霉素、遗传霉素(gentamicin)、四环素的LB肉汤)中。从大肠杆菌中分离出重组杆粒(Rep杆粒),并将Rep杆粒转染到Sf9或Sf21昆虫细胞中,以产生感染性杆状病毒。
将Sf9或Sf21昆虫细胞在50ml培养基中培养4天,并从培养物中分离感染性重组杆状病毒(“Rep杆状病毒”)。任选地,第一代Rep杆状病毒(P0)通过感染初始Sf9或Sf21昆虫细胞来扩增且在50到500ml培养基中培养。在感染后第3天至第8天,通过离心或过滤或其它分级分离方法分离细胞来收集培养基中的P1杆状病毒颗粒。收集Rep杆状病毒并测定杆状病毒的感染活性。具体来说,用P1杆状病毒按下列稀释度处理4×20ml 2.5×106个细胞/毫升的Sf9细胞培养物:1/1000、1/10,000、1/50,000、1/100,000,并培育。通过细胞直径增加和细胞周期停滞的速率以及4至5天中每天细胞存活率的变化来测定感染性。
ceDNA载体产生和表征
参考图4B,然后将含有(1)含有ceDNA-杆粒或ceDNA-杆状病毒的样品和(2)上述Rep杆状病毒二者之一的Sf9昆虫细胞培养基分别以1:1000和1:10,000的比率加入到新鲜的Sf9细胞培养物(2.5E+6个细胞/毫升,20ml)中。然后将细胞在25℃下以130rpm培养。共同感染4-5天后,检测细胞直径和存活率。当细胞直径达到18-20nm且存活率为约70-80%时,将细胞培养物离心,去除培养基,并收集细胞集结粒。首先将细胞集结粒悬浮于适量的水性介质,即水或缓冲液中。使用Qiagen MIDI PLUSTM提纯方案(Qiagen,每个柱处理0.2mg细胞集结粒质量)从细胞中分离且提纯ceDNA载体。
初始基于260nm下的UV吸光度,测定从Sf9昆虫细胞产生和提纯的ceDNA载体的产量。
可以通过如图4D所示在天然或变性条件下的琼脂糖凝胶电泳进行鉴定来评估ceDNA载体,其中(a)在限制性核酸内切酶裂解和凝胶电泳分析后,对比天然凝胶,变性凝胶上存在以两倍大小迁移的特征色带;以及(b)在未裂解物质的变性凝胶上存在单体和二聚体(2x)色带是ceDNA载体存在的特征。
通过用限制性核酸内切酶消化从共同感染的Sf9细胞(如本文所述)获得的DNA,进一步分析分离的ceDNA载体的结构,所述限制性核酸内切酶是针对以下条件选择的:a)在ceDNA载体内仅存在单个切割位点;和b)所得到的片段足够大,以便在0.8%变性琼脂糖凝胶上进行分级分离时被清楚看到(>800bp)。如图4D和图4E所示,具有非连续结构的线性DNA载体以及具有线性且连续结构的ceDNA载体可以通过它们反应产物的大小来区分-例如,预计具有非连续结构的DNA载体将产生1kb和2kb片段,而具有连续结构的非衣壳化载体预计产生2kb和4kb片段。
因此,为了以定性方式证明分离的ceDNA载体是根据定义所要求那样共价闭合端的,将样品用在特定DNA载体序列的背景下被鉴定为具有单个限制位点的限制性核酸内切酶消化,优选产生两个大小不等的裂解产物(例如1000bp和2000bp)。在变性凝胶(其将两条互补的DNA链分开)上进行消化和电泳后,线性、非共价闭合的DNA将以1000bp和2000bp大小分解,而共价闭合的DNA(即ceDNA载体)将以2倍大小分解(2000bp和4000bp),这是因为两条DNA链是连接的并且现在伸展且长度翻倍(尽管是单链)。此外,由于多聚体DNA载体的端对端连接,对单体、二聚体和n聚体形式的DNA载体的消化都将分解为相同大小的片段(参见图4D)。
如本文中所用,短语“通过在天然凝胶和变性条件下的琼脂糖凝胶电泳鉴定DNA载体的分析法”是指通过进行限制性核酸内切酶消化、然后对消化产物进行电泳评估来评估ceDNA闭合端的分析法。后面是一种这样的示例性分析,尽管本领域普通技术人员将了解,对这个实例可以进行许多本领域已知的变化。选择限制性核酸内切酶作为所关注ceDNA载体的单切酶,其将产生DNA载体长度的大约1/3x和2/3x的产物。由此使原生凝胶与变性凝胶上的色带解析。变性之前,重要的是从样品中除去缓冲液。Qiagen PCR清洁试剂盒或脱盐“离心柱”,例如GE HEALTHCARE ILUSTRATMMICROSPINTMG-25柱,是核酸内切酶消化的一些本领域已知的选项。所述测定包括例如:i)用适当的限制性核酸内切酶消化DNA;2)施加于例如Qiagen PCR清洁试剂盒,用蒸馏水洗脱;iii)加入10x变性溶液(10x=0.5M NaOH、10mMEDTA),加入10X染料,不进行缓冲,并与通过添加入10X变性溶液至4x而制备的DNA序列梯一起,在预先与1mM EDTA和200mM NaOH一起培育以确保凝胶和凝胶盒中的NaOH浓度均匀的0.8-1.0%凝胶上进行分析,并在1x变性溶液(50mM NaOH、1mM EDTA)存在下跑动凝胶。本领域普通技术人员将了解基于所得物的大小和期望的计时使用什么电压来跑动电泳。电泳后,将凝胶排出并在1x TBE或TAE中中和,并转移至含1x SYBR金的蒸馏水或1x TBE/TAE。然后使用例如赛默飞世尔
Figure BDA0002685856320001371
金核酸凝胶染色剂(DMSO中的10,000X浓缩液)和落射荧光(蓝色)或UV(312nm)能够使色带可视化。
产生的ceDNA载体的纯度可以使用任何本领域已知的方法来评估。作为一个示例性和非限制性方法,通过对ceDNA载体的荧光强度与标准进行比较,能够估计ceDNA-质粒对样品的总体UV吸光度的贡献。举例来说,若基于UV吸光度将4μg ceDNA载体装载于凝胶上并且ceDNA载体荧光强度等效于已知是1μg的2kb色带,则存在1μg ceDNA载体,且ceDNA载体是总UV吸收材料的25%。然后将凝胶上的色带强度相对于色带所代表的输入计算值作图,举例来说,如果总ceDNA载体是8kb,并且所切除的比较色带是2kb,则色带强度将按照总输入的25%作图,在此情况下,对于1.0μg输入,色带强度是0.25μg。使用ceDNA载体质粒滴定来绘制标准曲线,然后使用回归线方程计算ceDNA载体色带的量,然后可用于测定ceDNA载体所占的总输入的百分比或纯度百分比。
出于说明目的,实例1描述了使用基于昆虫细胞的方法和多核苷酸构建体模板产生ceDNA载体,并且还描述于PCT/US18/49996的实例1中,所述文献以全文引用的方式并入本文中。举例来说,根据实例1用于产生本发明的ceDNA载体的多核苷酸构建体模板可以是ceDNA-质粒、ceDNA-杆粒,和/或ceDNA-杆状病毒。不受理论束缚,在容许的宿主细胞中,在例如Rep存在下,具有两个对称ITR(其中至少一个ITR相对于野生型ITR序列经修饰)和表达构建体的多核苷酸构建体模板复制而产生ceDNA载体。ceDNA载体产生经历两个步骤:第一,通过Rep蛋白从模板主链(例如ceDNA-质粒、ceDNA-杆粒、ceDNA-杆状病毒基因组等)中切除(“拯救”)模板;以及第二,Rep介导所切除的ceDNA载体复制。
在使用昆虫细胞的方法中产生ceDNA载体的示例性方法是通过如本文所述的ceDNA-质粒。参考图1A和1B,每种ceDNA-质粒的多核苷酸构建体模板均包括左修饰ITR和右修饰ITR,在ITR序列之间具有以下:(i)增强子/启动子;(ii)转基因的克隆位点;(iii)转录后反应元件(例如土拨鼠肝炎病毒转录后调控元件(WPRE));和(iv)聚腺苷酸化信号(例如来自牛生长激素基因(BGHpA))。在每个组分之间还引入了独特的限制性核酸内切酶识别位点(R1-R6)(图1A和图1B中所示),以便于将新的遗传组分引入构建体中的特定位点。将R3(PmeI)GTTTAAAC(SEQ ID NO:123)和R4(PacI)TTAATTAA(SEQ ID NO:124)酶位点工程改造成克隆位点以引入转基因的开放阅读框架。将这些序列克隆到从ThermoFisherScientific获得的pFastBac HT B质粒中。
ceDNA-杆粒的产生:
依循根据制造商说明书的方案,用测试或对照质粒转化DH10Bac感受态细胞(MAX
Figure BDA0002685856320001381
DH10BacTM感受态细胞,赛默飞世尔)。诱导DH10Bac细胞中质粒与杆状病毒穿梭载体之间重组,以产生重组ceDNA-杆粒。通过在含有X-gal和IPTG,利用抗生素选择转化体并维持杆粒和转座酶质粒的细菌琼脂平板上大肠杆菌(E.coli)中基于蓝白筛选来筛选正向选择(Φ80dlacZΔM15标志物提供了来自杆粒载体的β-半乳糖苷酶基因的α-互补)来选择重组杆粒。挑选由转座产生的破坏β-半乳糖苷指示基因的白色群落且在10ml培养基中培养。
从大肠杆菌中分离重组ceDNA-杆粒,并使用FugeneHD将其转染至Sf9或Sf21昆虫细胞中以产生感染性杆状病毒。将附着性Sf9或Sf21昆虫细胞在T25烧瓶内的50ml培养基中于25℃下培养。四天后,从细胞中去除培养基(含有P0病毒),通过0.45μm过滤器过滤,从细胞或细胞残骸中分离出感染性杆状病毒颗粒。
任选地,第一代杆状病毒(P0)通过在50到500ml培养基中感染初始Sf9或Sf21昆虫细胞来扩增。将细胞在回转式振荡培育箱的悬浮培养液中、在130rpm下、在25℃下维持,监测细胞直径和存活率,直到细胞达到18-19nm直径(从14-15nm的初始直径)和~4.0E+6个细胞/毫升的密度。感染后第3天到第8天,利用离心去除细胞和残骸、然后通过0.45μm过滤器过滤来收集培养基中的P1杆状病毒颗粒。
收集包含测试构建体的ceDNA-杆状病毒,并测定杆状病毒的感染活性或滴度。具体来说,用P1杆状病毒按下列稀释度处理4×20ml 2.5E+6个细胞/毫升的Sf9细胞培养物:1/1000、1/10,000、1/50,000、1/100,000,并且在25-27℃下培育。通过细胞直径增加和细胞周期停滞的速率以及4至5天中每天细胞存活率的变化来测定感染性。
使“Rep质粒”在pFASTBACTM-Dual表达载体(赛默飞世尔)中产生,所述表达载体包含Rep78(SEQ ID NO:131或133)或Rep68(SEQ ID NO:130)和Rep52(SEQ ID NO:132)或Rep40(SEQ ID NO:129)。依循制造商提供的方案,将Rep质粒转化到DH10Bac感受态细胞(MAX
Figure BDA0002685856320001391
DH10BacTM感受态细胞(赛默飞世尔))中。诱导DH10Bac细胞中Rep质粒与杆状病毒穿梭载体之间重组,以产生重组杆粒(“Rep杆粒”)。通过在含有X-gal和IPTG的细菌琼脂平板上大肠杆菌中包括蓝白筛选的正向选择(Φ80dlacZΔM15标志物提供了来自杆粒载体的β-半乳糖苷酶基因的α-互补)来选择重组杆粒-。挑选分离的白色菌落,并接种到10ml选择培养基(含卡那霉素、遗传霉素(gentamicin)、四环素的LB肉汤)中。从大肠杆菌中分离出重组杆粒(Rep杆粒),并将Rep杆粒转染到Sf9或Sf21昆虫细胞中,以产生感染性杆状病毒。
将Sf9或Sf21昆虫细胞在50ml培养基中培养4天,并从培养物中分离感染性重组杆状病毒(“Rep杆状病毒”)。任选地,第一代Rep杆状病毒(P0)通过感染初始Sf9或Sf21昆虫细胞来扩增且在50到500ml培养基中培养。在感染后第3天至第8天,通过离心或过滤或其它分级分离方法分离细胞来收集培养基中的P1杆状病毒颗粒。收集Rep杆状病毒并测定杆状病毒的感染活性。具体来说,用P1杆状病毒按下列稀释度处理4×20ml 2.5×106个细胞/毫升的Sf9细胞培养物:1/1000、1/10,000、1/50,000、1/100,000,并培育。通过细胞直径增加和细胞周期停滞的速率以及4至5天中每天细胞存活率的变化来测定感染性。
ceDNA载体产生和表征
然后将Sf9昆虫细胞培养基分别按照1:1000和1:10,000的比率添加到新制的Sf9细胞培养基(2.5E+6个细胞/毫升,20ml)中,所述昆虫细胞培养基含有:(1)含有ceDNA杆粒或ceDNA杆状病毒的样品;和(2)上述Rep杆状病毒。然后将细胞在25℃下以130rpm培养。共同感染4-5天后,检测细胞直径和存活率。当细胞直径达到18-20nm且存活率为约70-80%时,将细胞培养物离心,去除培养基,并收集细胞集结粒。首先将细胞集结粒悬浮于适量的水性介质,即水或缓冲液中。使用Qiagen MIDI PLUSTM提纯方案(Qiagen,每个柱处理0.2mg细胞集结粒质量)从细胞中分离且提纯ceDNA载体。
初始基于260nm下的UV吸光度,测定从Sf9昆虫细胞产生和提纯的ceDNA载体的产量。使用实例5中所述的电泳方法能够评估所提纯的ceDNA载体的正确闭合端构型。
实例2:通过切除从双链DNA分子产生合成的ceDNA
ceDNA载体的合成产生描述于2019年1月18日提交的国际申请PCT/US19/14122的实例2到6中,所述国际申请以全文引用的方式并入本文中。一种使用合成方法产生ceDNA载体的示例性方法,所述合成方法涉及切除双链DNA分子。简单来说,使用双链DNA构建体能够产生ceDNA载体,参见例如PCT/US19/14122的图7A-8E。在一些实施方案中,双链DNA构建体是ceDNA质粒,例如参见例如2018年12月6日提交的国际专利申请PCT/US2018/064242的图6)。
在一些实施方案中,制备ceDNA载体的构建体包含如本文所述的调控开关。
出于说明的目的,实例2描述了ceDNA载体的产生,所述ceDNA载体是使用此方法产生的示例性闭合端DNA载体。然而,虽然这个实例中以ceDNA载体为例来说明产生闭合端DNA载体的体外合成产生方法,其通过切除包含ITR和表达盒(例如异源核酸序列)的双链多核苷酸、随后如本文所述将自由的3'和5'端接合来实现,但所属领域的普通技术人员了解,能够如上所说明修饰双链DNA多核苷酸分子,以便产生任何所期望的闭合端DNA载体,包括(但不限于)狗骨状DNA、哑铃状DNA等等。
所述方法包括(i)从双链DNA构建体中切除编码表达盒的序列和(ii)在一个或多个ITR处形成发夹和(iii)通过接合(例如通过T4 DNA连接酶)将自由的5'与3'端连接。
双链DNA构建体按照5'到3'次序包含:第一限制性核酸内切酶位点;上游ITR;表达盒;下游ITR;和第二限制性核酸内切酶位点。然后使双链DNA构建体与一种或多种限制核酸内切酶接触,以在两个限制性核酸内切酶位点处均产生双链断裂。一种内切核酸酶能够靶向两个位点,或不同内切核酸酶能够靶向每个位点,只要ceDNA载体模板中不存在限制位点即可。由此将限制性核酸内切酶位点之间的序列从双链DNA构建体的其余部分中切除。接合后,形成闭合端DNA载体。
所述方法中使用的一个或两个ITR可以是野生型ITR。也可以使用经修饰的ITR,其中修饰能够包括来自野生型ITR的一个或多个核苷酸在形成B和B'臂和/或C和C'臂的序列中缺失、插入或取代(参见例如图3B和3D),并且可以具有两个或更多个发夹环或单个发夹环。通过对现有寡核苷酸进行基因修饰或通过重新生物学和/或化学合成能够产生发夹环经修饰的ITR。
在一个非限制性实例中,左和右ITR-6(SEQ ID NO:111和112)在B-B'和C-C'臂中包括来自AAV2的野生型ITR的40个核苷酸的缺失。经修饰的ITR中剩余的核苷酸预测可形成单个发夹结构。展开结构的吉布斯自由能(Gibbs free energy)是约-54.4千卡/摩尔。还可以对ITR产生其它修饰,包括功能Rep结合位点或Trs位点的任选缺失。
实例3:经由寡核苷酸构建来产生ceDNA
使用涉及组装不同寡核苷酸的合成方法产生ceDNA载体的另一种示例性方法提供于PCT/US19/14122的实例3中,其中ceDNA载体是通过合成5'寡核苷酸和3'ITR寡核苷酸并且将ITR寡核苷酸与包含表达盒的双链多核苷酸接合来产生。PCT/US19/14122的图11B显示了将5'ITR寡核苷酸和3'ITR寡核苷酸与包含表达盒的双链多核苷酸接合的示例性方法。
如本文所公开,ITR寡核苷酸能够包含WT-ITR或经修饰的ITR(参见例如PCT/US19/14122的图6A、6B、7A和7B,其全文并入本文中)。示例性ITR寡核苷酸包括(但不限于)SEQ IDNO:134-145(参见例如PCT/US19/14122的表7)。经修饰的ITR能够包括形成B和B'臂和/或C和C'臂的序列中的野生型ITR中的一个或多个核苷酸的缺失、插入或取代。通过基因修饰或生物学和/或化学合成能够产生用于无细胞合成的ITR寡核苷酸,所述ITR寡核苷酸包含如本文所述的WT-ITR或mod-ITR。如本文所论述,实例2和3中的ITR寡核苷酸能够包含WT-ITR,或呈对称或不对称构型的经修饰的ITR(mod-ITR),如本文所论述。
实例4:经由单链DNA分子产生ceDNA
使用合成方法产生ceDNA载体的另一种示例性方法提供于PCT/US19/14122的实例4中,并且其使用包含两个有义ITR的单链线性DNA,所述两个有义ITR侧接有义表达盒序列并且共价连接到与反义表达盒侧接的两个反义ITR,然后将所述单链线性DNA的末端接合以形成闭合端单链分子。一个非限制性实例包含合成和/或产生单链DNA分子、使所述分子的各部分粘接以形成具有二级结构的一个或多个碱基对区域的单一线性DNA分子,然后使自由的5'与3'端彼此接合以形成闭合的单链分子。
用于产生ceDNA载体的示例性单链DNA分子从5'至3'包括:
第一有义ITR;
有义表达盒序列;
第二有义ITR;
第二反义ITR;
反义表达盒序列;和
第一反义ITR。
实例4的示例性方法中使用的单链DNA分子能够通过本文所述的任何DNA合成方法形成,例如体外DNA合成,或如下提供:用核酸酶使DNA构建体(例如质粒)裂解且使所得dsDNA片段解链以得到ssDNA片段。
通过将温度降低到低于有义和反义序列对的解链温度计算值能够实现粘接。解链温度依赖于特定核苷酸碱基含量和所用溶液的特征,例如盐浓度。任何指定序列的解链温度和溶液组合容易由所属领域的普通技术人员计算而得。
所粘接分子的自由5'和3'端能够彼此接合,或与发夹分子接合而形成ceDNA载体。适合的示例性接合方法和发夹分子描述于实例2和3中。
实例5:ceDNA的提纯和/或产生确认
通过本文所述方法(包括例如实例1中所述的基于昆虫细胞的产生方法或实例2到4中所述的合成产生方法)产生的任一种DNA载体产物能够使用所属领域的技术人员通常已知的方法加以提纯,例如去除杂质、未使用的组分或副产物;且/或能够加以分析,从而确认所产生的DNA载体(在此情况下是ceDNA载体)是所期望的分子。用于提纯DNA载体(例如ceDNA)的示例性方法是使用Qiagen Midi Plus提纯方案(Qiagen)和/或凝胶提纯。
以下是用于确认ceDNA载体身份的示例性方法。
如图4C和4D所示,通过在天然或变性条件下进行琼脂糖凝胶电泳来评估鉴定ceDNA载体,其中(a)在限制性核酸内切酶裂解和凝胶电泳分析之后,变性凝胶上存在着特征色带,其以两倍于原生凝胶上的尺寸迁移;和(b)变性凝胶上存在着未裂解物质的单体和二聚体(2x)色带,这是ceDNA载体存在的特征。
分离出的ceDNA载体的结构进一步如下分析:用根据以下所选的限制核酸内切酶消化经提纯的DNA:a)ceDNA载体内仅存在单个切割位点;和b)所得片段当在0.8%变性琼脂糖凝胶上分级分离时大得足以清晰可见(>800bp)。如图4C和4D中所说明,具有非连续结构的线性DNA载体和具有线性连续结构的ceDNA载体能够根据其反应产物的尺寸区分,举例来说,具有非连续结构的DNA载体预期产生1kb和2kb片段,而具有连续结构的ceDNA载体预期产生2kb和4kb片段。
因此,为了以定性方式证明分离的ceDNA载体是根据定义所要求那样共价闭合端的,将样品用在特定DNA载体序列的背景下被鉴定为具有单个限制位点的限制性核酸内切酶消化,优选产生两个大小不等的裂解产物(例如1000bp和2000bp)。在变性凝胶(其将两条互补的DNA链分开)上进行消化和电泳后,线性、非共价闭合的DNA将以1000bp和2000bp大小分解,而共价闭合的DNA(即ceDNA载体)将以2倍大小分解(2000bp和4000bp),这是因为两条DNA链是连接的并且现在伸展且长度翻倍(尽管是单链)。另外,由于多聚体DNA载体存在端对端连接,因此DNA载体的单体、二聚和n聚形式的消化都将解析为相同尺寸的片段(参见图4D和4E)。
如本文所用,短语“通过在天然凝胶和变性条件下进行琼脂糖凝胶电泳来鉴定DNA载体的分析”是指一种通过执行限制性核酸内切酶消化、随后对消化产物进行电泳评估来评估ceDNA闭合端的分析。后面是一种这样的示例性分析,尽管本领域普通技术人员将了解,对这个实例可以进行许多本领域已知的变化。选择限制性核酸内切酶作为所关注ceDNA载体的单切酶,其将产生DNA载体长度的大约1/3x和2/3x的产物。由此使原生凝胶与变性凝胶上的色带解析。变性之前,重要的是从样品中除去缓冲液。Qiagen PCR提纯试剂盒或脱盐“离心柱”(例如GE HEALTHCARE ILUSTRA MICROSPIN G-25柱)是本领域中已知用于内切核酸酶消化的一些选项。分析包括例如:i)用适当限制性核酸内切酶消化DNA;2)施加于例如Qiagen PCR提纯试剂盒,用蒸馏水洗脱;iii)添加10x变性溶液(10x=0.5M NaOH、10mMEDTA),添加10X染料,不缓冲,且分析,且通过在预先用1mM EDTA和200mM NaOH培育的0.8-1.0%凝胶上添加10X变性溶液直至4x来制备DNA梯,以确保凝胶和凝胶盒中的NaOH浓度均一;以及在1x变性溶液(50mM NaOH、1mM EDTA)存在下跑凝胶。本领域普通技术人员将了解基于所得物的大小和期望的计时使用什么电压来跑动电泳。电泳后,将凝胶排出并在1xTBE或TAE中中和,并转移至含1x SYBR金的蒸馏水或1x TBE/TAE。然后使用例如赛默飞世尔
Figure BDA0002685856320001441
金核酸凝胶染色剂(DMSO中的10,000X浓缩液)和落射荧光(蓝色)或UV(312nm)能够使色带可视化。前述基于凝胶的方法通过从凝胶色带中分离出ceDNA载体且允许其复性而能够根据提纯目的调整。
产生的ceDNA载体的纯度可以使用任何本领域已知的方法来评估。作为一个示例性和非限制性方法,通过对ceDNA载体的荧光强度与标准进行比较,能够估计ceDNA-质粒对样品的总体UV吸光度的贡献。举例来说,若基于UV吸光度将4μg ceDNA载体装载于凝胶上并且ceDNA载体荧光强度等效于已知是1μg的2kb色带,则存在1μg ceDNA载体,且ceDNA载体是总UV吸收材料的25%。然后将凝胶上的色带强度相对于色带所代表的输入计算值作图,举例来说,如果总ceDNA载体是8kb,并且所切除的比较色带是2kb,则色带强度将按照总输入的25%作图,在此情况下,对于1.0μg输入,色带强度是0.25μg。使用ceDNA载体质粒滴定来绘制标准曲线,然后使用回归线方程计算ceDNA载体色带的量,然后可用于测定ceDNA载体所占的总输入的百分比或纯度百分比。
实例6:ceDNA的可控转基因表达:加打施用能够维持和/或增加体内ceDNA载体的转基因表达
使用包含CAG启动子(SEQ ID NO:72)和侧接于不对称ITR(例如5'WT-ITR(SEQ IDNO:2)与3'mod-ITR(SEQ ID NO:3)之间的荧光素酶转基因(SEQ ID NO:56)的ceDNA质粒,根据以上实例1所述的方法产生ceDNA载体,且在不同体内治疗方案中进行评估。实例6到10所述的所有后续实验中都使用这种ceDNA载体。在实例6中,提纯ceDNA载体且配制成脂质纳米颗粒(LNP ceDNA)且注射到每只CD-
Figure BDA0002685856320001442
IGS小鼠的尾静脉中。脂质体是用适合的脂质掺混物配制而成,所述脂质掺混物包含四种组分以形成脂质纳米颗粒(LNP)脂质体,包括阳离子脂质、辅助脂质、胆固醇和PEG-脂质。
为了评估ceDNA载体在体内在长时间段内对转基因的持续表达,通过尾静脉的静脉内注射将存在于无菌PBS中的LNP-ceDNA施用于大约5到7周龄的CD-
Figure BDA0002685856320001451
IGS小鼠。评估三个不同剂量组:0.1mg/kg、0.5mg/kg和1.0mg/kg,每组十只小鼠(除1.0mg/kg之外,每组15只小鼠)。第0天施用注射液。每组五只小鼠在第28天另外注射相同剂量。静脉内施用于CD-
Figure BDA0002685856320001456
IGS小鼠(查尔斯河实验室(Charles River Laboratories);野生型小鼠)之后,通过IVIS成像来测量荧光素酶表达。在第3、4、7、14、21、28、31、35和42天,以及在第42第到第110天之间常规地(例如每周、每两周,或每10天或每2周)腹膜内注射150mg/kg荧光素底物之后,通过IVIS成像来评估荧光素酶表达。结果示于图6中。这个图是显示荧光素酶转基因表达的图形,如3种不同施用方案之后的至少第132天通过IVIS成像所测量。
为了研究表达荧光素酶的LNP-ceDNA的加打(例如再施用)对经LNP-ceDNA治疗的受试者的作用,进行扩展研究。具体地说,评估其以确定一次或多次额外施用ceDNA载体是否能够增加表达水平。
在此研究中,第0天和第28天初始静脉内施用1.0mg/kg(即,预致敏剂量)之后,通过IVIS评估ceDNA载体的荧光素酶表达在CD-
Figure BDA0002685856320001453
IGS小鼠中的生物分布(A组)。ceDNA载体的第二次施用是在第84天,经由尾静脉注射3mg/kg(B组)或10mg/kg(C组),以1.2mL施用于尾静脉。在此研究中,A、B和C组各自使用五(5)只CD-
Figure BDA0002685856320001452
小鼠。如上文所述,在第49、56、63和70天额外给药之前,且在第84天和第91、98、105、112和132天加打后,对小鼠中的荧光素酶表达进行IVIS成像。评估且检测到所有三个组A、B和C的荧光素酶表达直到至少110天(所评估的最长时间段)。
显示LNP-ceDNA-Luc加打(即,ceDNA组合物再施用)使荧光素酶表达水平增加,如通过在荧光素存在下评估荧光素酶活性所测定。结果示于图6中,其是显示荧光素酶转基因表达的图形,如3种不同施用方案之后的至少110天通过IVIS成像所测量(A、B和C组)。在研究期间,对于尚未给予任何额外加打(1mg/kg预致敏剂量(即,A组)治疗的小鼠观察到稳定的荧光素酶表达。已施用3mg/kg ceDNA载体加打的B组小鼠的辐射度观察值相对于C组小鼠增加大约七倍。惊人地,加打10mg/kg ceDNA载体的小鼠的荧光素酶辐射度观察值相对于未接受任何加打的小鼠(A组)增加17倍。
在第0和28天静脉内施用1mg/kg ceDNA载体于尾静脉之后,A组的CD-
Figure BDA0002685856320001454
IGS小鼠显示荧光素酶表达。B组和C组显示在第一时间点(第0天)施用1mg/kg ceDNA载体且在第二时间点第84天加打施用ceDNA载体的CD-
Figure BDA0002685856320001455
IGS小鼠的荧光素酶表达。意外的是,ceDNA载体的第二次施用(即,加打)使表达增加至少7倍,甚至高达17倍。
意外的是,B组加打施用的ceDNA载体的剂量(即,量)的3倍增加(即,加打施用3mg/kg)引起荧光素酶表达增加7倍。还意外的是,C组加打施用ceDNA载体的量增加10倍(即,加打施用10mg/kg)引起荧光素酶表达增加17倍。因此,ceDNA的第二次施用(即,加打)使表达增加至少7倍,甚至高达17倍。这表明,加打引起的转基因表达增加大于预期且依赖于ceDNA载体在加打施用时的剂量或量,且似乎与第0天的初始预致敏施用引起的初始转基因表达协同作用。也就是说,转基因表达的剂量依赖性增加不具有相加作用;相反,转基因表达水平具有剂量依赖性且大于在每个时间点所施用的ceDNA载体的量的总和。
相较于未在第二时间点给予ceDNA载体的对照小鼠(A组),B组和C组均显示荧光素酶表达有明显的剂量依赖性增加。综合而言,这些数据表明ceDNA载体对转基因的表达能够通过在至少第二时间点加打(即,再施用)ceDNA载体、以剂量依赖性方式增加。
综合而言,图6中的这些数据表明ceDNA载体引起的转基因表达水平能够在持续的水平保持至少84天且至少在第二时间点加打施用ceDNA载体之后能够在体内增加。
实例7:LNP配制的ceDNA载体在体内的持续转基因表达
评估具有不同脂质纳米颗粒的实例6的结果在体内、在小鼠中的再现性。小鼠在第0天给予包含由CAG启动子驱动的荧光素酶转基因的ceDNA载体,所述ceDNA载体囊封于与实例6中所用不同的LNP中或包含polyC、但缺乏ceDNA或荧光素酶基因的相同LNP中。具体地说,大约4周龄的雄性CD-
Figure BDA0002685856320001461
小鼠在第0天通过单次注射0.5mg/kg LNP-TTX-荧光素酶或对照LNP-polyC(静脉内经由侧向尾静脉施用)来处理。第14天,动物经由腹膜内注射2.5mL/kg全身性给予150mg/kg荧光素。荧光素施用之后的大约15分钟,使用体内成像系统(“IVIS”)对每只动物进行成像。
如图7中所示,观察到所有四只经ceDNA处理的小鼠的肝脏中存在明显荧光,并且除注射部位之外,在动物中观察到的其它荧光极少,表明LNP介导ceDNA构建体发生肝脏特异性递送且递送的ceDNA载体在施用之后至少两周能够控制其转基因的持续表达。
实例8:体内施用ceDNA载体引起的转基因在肝脏中的持续表达
在单独实验中,评估LNP递送的ceDNA在经处理动物的肝脏内的定位。将包含所关注的功能转基因的ceDNA载体囊封于实例7所用的相同LNP中且以0.5mg/kg的剂量水平、通过体内静脉内注射施用于小鼠。6小时之后,终结小鼠且取肝脏样品,用福尔马林固定且使用标准方案进行石蜡包埋。进行
Figure BDA0002685856320001462
原位杂交分析,以使用对ceDNA转基因具特异性的探针使组织内的ceDNA载体可视化且利用显色反应和苏木精染色(Advanced CellDiagnostics)进行检测。图8显示了结果,其表明ceDNA存在于肝细胞中。
实例9:ceDNA在体内发生的持续眼转基因表达
评估ceDNA载体转基因表达在除肝脏之外的组织中的可持续性,以测定在眼施用之后,ceDNA载体在体内的耐受性和表达。第0天,向大约9周龄的雄性史泊格多利大鼠(Sprague Dawley rats)视网膜下注射使用jet
Figure BDA0002685856320001471
转染试剂(Polyplus)配制的5μL包含荧光素酶转基因的ceDNA载体或使用jet
Figure BDA0002685856320001472
配制的编码荧光素酶的质粒DNA,两者浓度均为0.25μg/μL。每组测试四只大鼠。给动物服镇静剂且使用33号针在右眼视网膜下注射测试制品。每只动物的左眼不处理。注射之后立即利用光学相干断层扫描或眼底成像来检查眼以便确认视网膜下水泡的存在。大鼠根据标准程序用丁基原啡因(buprenorphine)和体表抗生素软膏处理。
第7、14、21、28和35天,两组动物在荧光素施用后的5到15分钟,经由腹膜内注射(2.5mL/kg)全身性给予150mg/kg新制荧光素,所有动物均在异氟醚麻醉下的同时使用IVIS成像。在5分钟暴露期间,获得包含眼的所关注区域内的总通量[p/s]和平均通量(p/s/sr/cm2)。结果作为每个处理组的经处理的眼(“注射”)的平均辐射度相对于每个处理组的未处理眼(“未注射”)的平均辐射度的图形表示(图9B)。在ceDNA载体处理的眼中容易检测到明显的荧光,但在质粒处理的眼中则弱得多(图9A)。35天之后,将质粒注射的大鼠终结,同时继续研究ceDNA处理的大鼠,在第42、49、56、63、70和99天进行荧光素注射和IVIS成像。结果表明,通过单次注射引入大鼠眼中的ceDNA载体介导体内转基因表达,且所述表达在高水平持续到注射之后的至少99天。
实例10:ceDNA载体对Rag2小鼠的持续给予和加打。
在ceDNA载体的基因表达盒所编码的一个或多个转基因表达于宿主环境(例如细胞或受试者)的情形中,在所表达的蛋白质被认为是外来蛋白质的情况下,宿主将可能建立适应性免疫应答,这可能使表达产物发生非期望的耗竭,从而会潜在地与表达的缺乏发生混淆。在一些情况下,与正常宿主环境异源的报道分子可能会发生这种情况。相应地,评估Rag2小鼠模型体内的ceDNA载体转基因表达,所述小鼠模型缺乏B和T细胞且因此未建立针对非原生鼠蛋白质(例如荧光素酶)的适应性免疫应答。简单来说,c57bl/6和Rag2基因敲除小鼠在第0天,经由尾静脉注射,静脉内给予0.5mg/kg的经LNP囊封的表达荧光素酶的ceDNA载体或polyC对照物,且在第21天,某些小鼠加打相同剂量水平的相同的经LNP囊封的ceDNA载体。所有测试组各自由4只小鼠组成。如实例9中所述,每周按时间间隔注射荧光素之后,进行IVIS成像。
与从IVIS分析中观察到的总通量相比,在给予LNP-ceDNA载体-Luc的野生型小鼠中观察到的荧光(所表达的荧光素酶的存在的间接测量)在第21天之后逐渐减少,而施用相同疗法的Rag2小鼠在第42天实验期间显示相对恒定持续的荧光素酶表达(图10A)。在野生型小鼠中观察到减少的大约第21天时间点对应于预期可能会产生适应性免疫应答的时间范围。LNP-ceDNA载体再施用于Rag2小鼠引起表达明显增加,在此研究中追踪其的至少21天期间,所述表达的明显增加被维持(图10B)。结果表明,当ceDNA载体在宿主中表达非原生蛋白质时,适应性免疫可以起作用,并且在从初始施用的20+天时间范围内观察到的表达的减少可以使混杂的适应性免疫应答而非表达的衰减(或除其之外)信号传导到所表达的分子。值得注意的是,当原生蛋白质在宿主中表达时,这个应答预期较低,其中预期宿主将所表达的分子正确地识别为自身的且将不产生此类免疫应答。
实例11:肝脏特异性表达和CpG调节对持续表达的影响
如实例10中所述,非期望的宿主免疫应答在一些情况下可能会人为地抑制原本是一个或多个期望转基因从所引入的ceDNA载体中的持续表达。采取两种方法来评估避免和/或抑制潜在宿主免疫应答对来自ceDNA载体的持续表达的影响。首先,由于前述实例中所用的ceDNA-Luc载体处于组成型CAG启动子的控制下,因此使用肝脏特异性启动子(hAAT)或不同组成型启动子(hEF-1)制备类似构建体,以了解避免长时间暴露于骨髓细胞或非肝脏组织是否减少所观察到的任何免疫效应。其次,对某些ceDNA-荧光素酶构建体进行工程改造以使CpG含量减小(一种已知的用于宿主免疫反应的触发事件)。将此类工程化和启动子开关的ceDNA载体施用于小鼠后,测量ceDNA编码的荧光素酶基因表达。
使用三种不同ceDNA载体,每种编码作为转基因的荧光素酶。第一种ceDNA载体具有数目较多的未甲基化CpG(约350)且包含组成型CAG启动子(“ceDNA CAG”);第二种具有中等数目个未甲基化CpG(约60)且包含肝脏特异性hAAT启动子(“ceDNA hAAT低CpG”);并且第三种是第二种的甲基化形式,使得其不含有未甲基化CpG,并且也包含hAAT启动子(“ceDNAhAAT无CpG”)。ceDNA载体原本是相同的。如上文所述制备载体。
四组大约4周龄的四只雄性CD-
Figure BDA0002685856320001481
小鼠用囊封于LNP中的ceDNA载体之一或polyC对照物处理。第0天,每只小鼠施用0.5mg/kg ceDNA载体的单次静脉内尾静脉注射液,体积为5mL/kg。在第-1、-、1、2、3、7天和随后每周记录体重,直到小鼠终结为止。在第0、1和35天,获取全血和血清样品。第7、14、21、28和35天和随后每周使用体内成像系统(IVIS)执行体内成像。为了成像,每只小鼠经由腹膜内注射2.5mL/kg来注射150mg/kg荧光素。15分钟之后,使每只小鼠麻醉并且成像。第93天终结小鼠且收集末端组织,包括肝脏和脾脏。第0天给药之后的6小时进行细胞因子测量。
虽然所有经ceDNA处理的小鼠在第7天和第14天显示明显的荧光,但是ceDNA CAG小鼠中的荧光在第14天之后快速减少且在研究的其余时间内逐渐减少。相比之下,ceDNAhAAT低CpG和无CpG处理的小鼠的总通量保持在稳定的高水平(图11)。这表明,将ceDNA载体递送特异性引向肝脏使得载体的转基因表达在单次注射之后的至少77天期间持续、持久。CpG最小化或完全缺乏CpG含量的构建体具有相似的持久、持续表达特征,而高CpG组成型启动子构建体的表达随时间展现衰减,表明ceDNA载体引入引起的宿主免疫活化可以起到减少此类载体在受试者中的所观察到的任何表达的作用。这些结果提供了按照所期望水平定制应答持续时间的替代方法,这是通过在观察到宿主免疫应答(一种潜在的转基因特异性应答)的情况下选择组织限制性启动子和/或改变ceDNA载体的CpG含量来实现。
参考文献
在本说明书和本文的实施例中引用的所有出版物和参考文献,包括但不限于专利和专利申请,都以全文引用的方式并入本文中,如同每个单独的出版物或参考文献被明确且单独地指出像充分阐述一样,以引用的方式并入本文中一般。本申请要求优先权的任何专利申请也以上述针对出版物和参考文献的方式通过引用并入本文中。
Figure IDA0002685856370000011
Figure IDA0002685856370000021
Figure IDA0002685856370000031
Figure IDA0002685856370000041
Figure IDA0002685856370000051
Figure IDA0002685856370000061
Figure IDA0002685856370000071
Figure IDA0002685856370000081
Figure IDA0002685856370000091
Figure IDA0002685856370000101
Figure IDA0002685856370000111
Figure IDA0002685856370000121
Figure IDA0002685856370000131
Figure IDA0002685856370000141
Figure IDA0002685856370000151
Figure IDA0002685856370000161
Figure IDA0002685856370000171
Figure IDA0002685856370000181
Figure IDA0002685856370000191
Figure IDA0002685856370000201
Figure IDA0002685856370000211
Figure IDA0002685856370000221
Figure IDA0002685856370000231
Figure IDA0002685856370000241
Figure IDA0002685856370000251
Figure IDA0002685856370000261
Figure IDA0002685856370000271
Figure IDA0002685856370000281
Figure IDA0002685856370000291
Figure IDA0002685856370000301
Figure IDA0002685856370000311
Figure IDA0002685856370000321
Figure IDA0002685856370000331
Figure IDA0002685856370000341
Figure IDA0002685856370000351
Figure IDA0002685856370000361
Figure IDA0002685856370000371
Figure IDA0002685856370000381
Figure IDA0002685856370000391
Figure IDA0002685856370000401
Figure IDA0002685856370000411
Figure IDA0002685856370000421
Figure IDA0002685856370000431
Figure IDA0002685856370000441
Figure IDA0002685856370000451
Figure IDA0002685856370000461
Figure IDA0002685856370000471
Figure IDA0002685856370000481
Figure IDA0002685856370000491
Figure IDA0002685856370000501
Figure IDA0002685856370000511
Figure IDA0002685856370000521
Figure IDA0002685856370000531
Figure IDA0002685856370000541
Figure IDA0002685856370000551
Figure IDA0002685856370000561
Figure IDA0002685856370000571
Figure IDA0002685856370000581
Figure IDA0002685856370000591
Figure IDA0002685856370000601
Figure IDA0002685856370000611
Figure IDA0002685856370000621
Figure IDA0002685856370000631
Figure IDA0002685856370000641
Figure IDA0002685856370000651
Figure IDA0002685856370000661
Figure IDA0002685856370000671
Figure IDA0002685856370000681
Figure IDA0002685856370000691
Figure IDA0002685856370000701
Figure IDA0002685856370000711
Figure IDA0002685856370000721
Figure IDA0002685856370000731
Figure IDA0002685856370000741
Figure IDA0002685856370000751
Figure IDA0002685856370000761
Figure IDA0002685856370000771
Figure IDA0002685856370000781
Figure IDA0002685856370000791
Figure IDA0002685856370000801
Figure IDA0002685856370000811
Figure IDA0002685856370000821
Figure IDA0002685856370000831
Figure IDA0002685856370000841
Figure IDA0002685856370000851

Claims (53)

1.一种调控转基因在受试者中的表达的方法,其包含:
a.向受试者施用足量的无衣壳闭合端DNA(ceDNA)载体以表达可测量水平的所述转基因,所述载体包含含有至少一个转基因的核酸盒,所述转基因可操作地连接到介于侧接的反向末端重复序列(ITR)之间的启动子,其中所述转基因编码治疗疾病的所期望蛋白质;并且
b.通过向所述受试者施用至少第二剂量的所述ceDNA载体来滴定所述ceDNA载体,以使得所期望的蛋白质的所述转基因表达在预定水平维持预定的时间或使所期望的蛋白质的所述转基因表达增加到预定水平,所述ceDNA载体包含所述至少一个介于侧接的ITR之间的转基因。
2.根据权利要求1所述的方法,其中在步骤(a)之后评估所述受试者以确定所述滴定剂量。
3.根据权利要求2所述的方法,其中所述评估是在步骤(a)之后确定所述受试者的疾病状态或所期望的蛋白质在所述受试者中的表达水平。
4.一种调控转基因在受试者中的表达的方法,其包含:
a.向所述受试者施用足量的无衣壳闭合端DNA(ceDNA)载体以表达可测量水平的所述转基因,所述载体包含含有至少一个转基因的核酸盒,所述转基因可操作地连接到介于侧接的反向末端重复序列(ITR)之间的启动子,其中所述转基因编码所期望的蛋白质;以及
b.向所述受试者施用至少第二剂量的所述ceDNA载体,所述ceDNA载体包含至少一个介于侧接的ITR之间的转基因,以(i)使所期望的蛋白质的表达在预定水平持续预定的时间或(ii)将所期望的蛋白质的表达调节到预定水平。
5.根据权利要求4所述的方法,其中所述ceDNA载体的第二次施用不产生足以妨碍所期望的蛋白质的表达达到预定水平的免疫反应。
6.根据权利要求1至5中任一项所述的方法,其中所述ceDNA载体与药学上可接受的载剂组合施用。
7.根据权利要求1至6中任一项所述的方法,其中所述第二次施用是在所述转基因的表达水平相对于所期望水平降低时进行。
8.根据权利要求1至7中任一项所述的方法,其中所述第二次施用是在第一次施用之后的至少90天进行。
9.根据权利要求1至8中任一项所述的方法,其中所述转基因编码治疗蛋白且所述转基因的期望表达水平是所述治疗蛋白的治疗有效量。
10.根据权利要求1至9中任一项所述的方法,其中所述ceDNA载体存在至少三次施用,并且所述施用都没有对所述ceDNA载体产生妨碍所期望的蛋白质的表达达到所述预定水平的免疫应答。
11.根据权利要求1至10中任一项所述的方法,其中所述施用定期进行。
12.根据权利要求1至11中任一项所述的方法,其中所述第二次施用是为了使所期望的蛋白质的表达水平增加。
13.根据权利要求1至12中任一项所述的方法,其中所述第二次施用是为了使所期望的蛋白质的表达在表达的预定水平延长。
14.根据权利要求1至13中任一项所述的方法,其中所期望的蛋白质是抑制蛋白。
15.根据权利要求1至14中任一项所述的方法,其中所述抑制蛋白是抗体或融合蛋白。
16.根据权利要求1至15中任一项所述的方法,其中所期望的蛋白质替换缺陷蛋白质或未被表达的蛋白质。
17.根据权利要求1至5中任一项所述的方法,其中所述启动子是诱导型或可抑制型启动子。
18.根据权利要求1至17中任一项所述的方法,其中所述转基因处于调控开关的控制下。
19.根据权利要求1至18中任一项所述的方法,其中在第一、第二或任何后续时间点施用的所述ceDNA载体是包含所述相同转基因或经修饰的转基因的相同类型的ceDNA载体。
20.根据权利要求1至19中任一项所述的方法,其中所述第二ceDNA载体具有可操作地连接到所述相同转基因或经修饰的转基因的不同启动子。
21.根据权利要求1至20中任一项所述的方法,其中所述两个反向末端重复序列(ITR)是AAV ITR。
22.根据权利要求1至21中任一项所述的方法,其中至少一个ITR包含功能末端解析位点和Rep结合位点。
23.根据权利要求22所述的方法,其中所述AAV ITR是AAV-2ITR。
24.根据权利要求1至23中任一项所述的方法,其中所述侧接的ITR是对称或不对称的。
25.根据权利要求1至23中任一项所述的方法,其中所述侧接的ITR是对称或基本对称的。
26.根据权利要求1至23中任一项所述的方法,其中所述侧接的ITR是不对称的。
27.根据权利要求1至26中任一项所述的方法,其中所述ITR中的一个或两个是野生型,或其中所述ITR中的两个都是野生型。
28.根据权利要求1至27中任一项所述的方法,其中所述侧接的ITR来自不同的病毒血清型。
29.根据权利要求1至28中任一项所述的方法,其中所述ITR中的一个或两个包含选自表2、4A、4B或5中的序列的序列。
30.根据权利要求1至29中任一项所述的方法,其中所述ITR中的至少一个是由野生型AAV ITR序列通过影响所述ITR的整体三维构象的缺失、添加或取代而变成。
31.根据权利要求1至30中任一项所述的方法,其中所述ITR中的一个或两个衍生自选自以下的AAV血清型:AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11和AAV12。
32.根据权利要求1至31中任一项所述的方法,其中所述ITR中的一个或两个是合成的。
33.根据权利要求1至32中任一项所述的方法,其中所述ITR中的一个或两个不是野生型ITR,或其中所述ITR中的两个都不是野生型。
34.根据权利要求1至33中任一项所述的方法,其中所述ITR中的一个或两个是通过在选自A、A'、B、B'、C、C'、D和D'的至少一个ITR区域中进行缺失、插入和/或取代而被修饰。
35.根据权利要求1至34中任一项所述的方法,其中所述缺失、插入和/或取代使得通常由所述A、A'、B、B'、C或C'区域形成的茎-环结构的全部或一部分发生缺失。
36.根据权利要求1至34中任一项所述的方法,其中所述ITR中的一个或两个是通过缺失、插入和/或取代而被修饰,所述缺失、插入和/或取代使得通常由所述B和B'区域形成的茎-环结构的全部或一部分发生缺失。
37.根据权利要求1至36中任一项所述的方法,其中所述ITR中的一个或两个是通过缺失、插入和/或取代而被修饰,所述缺失、插入和/或取代使得通常由所述C和C'区域形成的茎-环结构的全部或一部分发生缺失。
38.根据权利要求1至37中任一项所述的方法,其中所述ITR中的一个或两个是通过缺失、插入和/或取代而被修饰,所述缺失、插入和/或取代使得通常由所述B和B'区域形成的茎-环结构的一部分和/或通常由所述C和C'区域形成的茎-环结构的一部分发生缺失。
39.根据权利要求1至38中任一项所述的方法,其中所述ITR中的一个或两个在通常包含由所述B和B'区域形成的第一茎-环结构和由所述C和C'区域形成的第二茎-环结构的区域中包含单个茎-环结构。
40.根据权利要求1至39中任一项所述的方法,其中所述ITR中的一个或两个在通常包含由所述B和B'区域形成的第一茎-环结构和由所述C和C'区域形成的第二茎-环结构的区域中包含单个茎和两个环。
41.根据权利要求1至40中任一项所述的方法,其中两个ITR以使得当所述ITR相对于彼此呈反向时产生整体三维对称性的方式改变。
42.根据权利要求1至41中任一项所述的方法,其中至少一个异源核苷酸序列处于至少一个调控开关的控制下。
43.根据权利要求42所述的方法,其中至少一个调控开关是选自二进制调控开关、小分子调控开关、密码调控开关、基于核酸的调控开关、转录后调控开关、辐射控制的或超声波控制的调控开关、低氧介导的调控开关、发炎应答调控开关、剪切活化调控开关,和杀灭开关。
44.根据权利要求1至43中任一项所述的方法,其中所述受试者患有选自以下的疾病或病症:癌症、自身免疫疾病、神经退化性病症、高胆固醇血症、急性器官排斥反应、多发性硬化症、绝经后骨质疏松症、皮肤病状、哮喘或血友病。
45.根据权利要求44所述的方法,其中所述癌症选自实体肿瘤、软组织肉瘤、淋巴瘤和白血病。
46.根据权利要求44所述的方法,其中所述自身免疫疾病是选自类风湿性关节炎和克罗恩氏病。
47.根据权利要求44所述的方法,其中所述皮肤病状是选自牛皮癣和异位性皮肤炎。
48.根据权利要求44所述的方法,其中所述神经退化性病症是阿尔兹海默氏病。
49.根据权利要求44所述的方法,其进一步包含在所述第二时间点之后的一个或多个时间点,向所述受试者施用一定剂量的所述组合物,相较于在所述第二时间点或此前时间点施用所述组合物之后所达成的异源核酸的表达水平,增加所述异源核酸序列的表达水平,或增加所述异源核酸序列的表达水平以达成所期望的表达水平。
50.根据权利要求1至49中任一项所述的方法,其中所述转基因是选自以下中的任一种的基因药物:核酸、抑制剂、肽或多肽、抗体或抗体片段、融合蛋白、抗原、拮抗剂、激动剂、RNAi分子等。
51.根据权利要求1至50中任一项所述的方法,其中在所述第二时间点或任何后续时间点施用的所述组合物的预定剂量是在所述第一时间点所施用的所述组合物的剂量的2倍与10倍之间的量。
52.根据权利要求1至51中任一项所述的方法,其中在所述第二时间点或任何后续时间点所施用的所述组合物的预定剂量是,相较于在所述第一时间点施用所述组合物之后的所述转基因的表达,使得所述转基因的表达增加至少3倍或至少5倍或至少10倍或2到15倍之间或2到20倍之间的量。
53.根据权利要求1至52中任一项所述的方法,其中在所述第二时间点施用的所述ceDNA载体的所述预定剂量是利用剂量依赖关系来确定,以便所述ceDNA载体使所述转基因在所述细胞中达成所期望的表达水平。
CN201980019861.5A 2018-02-22 2019-02-21 使用闭合端dna(cedna)载体控制转基因的表达 Pending CN111886343A (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201862633882P 2018-02-22 2018-02-22
US201862633795P 2018-02-22 2018-02-22
US201862633757P 2018-02-22 2018-02-22
US62/633,882 2018-02-22
US62/633,757 2018-02-22
US62/633,795 2018-02-22
US201862746762P 2018-10-17 2018-10-17
US62/746,762 2018-10-17
PCT/US2019/018927 WO2019165050A1 (en) 2018-02-22 2019-02-21 Controlled expression of transgenes using close-ended dna (cedna) vectors

Publications (1)

Publication Number Publication Date
CN111886343A true CN111886343A (zh) 2020-11-03

Family

ID=67687406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980019861.5A Pending CN111886343A (zh) 2018-02-22 2019-02-21 使用闭合端dna(cedna)载体控制转基因的表达

Country Status (13)

Country Link
US (1) US20220175970A1 (zh)
EP (1) EP3755803A4 (zh)
JP (2) JP2021513999A (zh)
KR (1) KR20200124250A (zh)
CN (1) CN111886343A (zh)
AU (1) AU2019225937A1 (zh)
BR (1) BR112020017060A2 (zh)
CA (1) CA3092059A1 (zh)
IL (1) IL276658A (zh)
MA (1) MA51915A (zh)
MX (1) MX2020008676A (zh)
SG (1) SG11202007621TA (zh)
WO (1) WO2019165050A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3119310A1 (en) * 2018-11-09 2020-05-14 Generation Bio Co. Modified closed-ended dna (cedna) comprising symmetrical modified inverted terminal repeats
CN115667530A (zh) * 2020-03-24 2023-01-31 世代生物公司 非病毒dna载体和其用于表达因子ix治疗剂的用途
EP4127186A1 (en) * 2020-03-24 2023-02-08 Generation Bio Co. Non-viral dna vectors and uses thereof for expressing gaucher therapeutics
EP4142758A2 (en) * 2020-04-28 2023-03-08 President and Fellows of Harvard College High efficiency gene delivery system
AU2021297351A1 (en) * 2020-06-26 2023-02-02 The Board Of Trustees Of The Leland Stanford Junior University Targeting the human CCR5 locus as a safe harbor for the expression of therapeutic proteins
AU2021314809A1 (en) 2020-07-27 2023-02-23 Anjarium Biosciences Ag Compositions of DNA molecules, methods of making therefor, and methods of use thereof
KR20230046323A (ko) * 2020-08-23 2023-04-05 바이오버라티브 테라퓨틱스 인크. 폐쇄-말단 DNA(ceDNA)의 생산 개선을 위한 변형된 바큘로바이러스 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006130581A2 (en) * 2005-05-31 2006-12-07 Avigen, Inc. Methods for delivering genes
US20110166207A1 (en) * 2002-04-09 2011-07-07 Cornell Research Foundation, Inc. Use of aav integration efficiency element for mediating site-specific integration of a transcription unit
WO2015191508A1 (en) * 2014-06-09 2015-12-17 Voyager Therapeutics, Inc. Chimeric capsids
WO2017152149A1 (en) * 2016-03-03 2017-09-08 University Of Massachusetts Closed-ended linear duplex dna for non-viral gene transfer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010538675A (ja) * 2007-09-19 2010-12-16 アムステルダム モレキュラー セラピューティクス ビー.ブイ. タンパク質産生の改善のためのaav複製機構の使用
EP2500434A1 (en) * 2011-03-12 2012-09-19 Association Institut de Myologie Capsid-free AAV vectors, compositions, and methods for vector production and gene delivery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110166207A1 (en) * 2002-04-09 2011-07-07 Cornell Research Foundation, Inc. Use of aav integration efficiency element for mediating site-specific integration of a transcription unit
WO2006130581A2 (en) * 2005-05-31 2006-12-07 Avigen, Inc. Methods for delivering genes
US20090208563A1 (en) * 2005-05-31 2009-08-20 Linda May Rothblum Watkins Method for delivering genes
WO2015191508A1 (en) * 2014-06-09 2015-12-17 Voyager Therapeutics, Inc. Chimeric capsids
WO2017152149A1 (en) * 2016-03-03 2017-09-08 University Of Massachusetts Closed-ended linear duplex dna for non-viral gene transfer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LINA LI ET AL.: "Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer", PLOS ONE, vol. 8, no. 8, pages 69879 *

Also Published As

Publication number Publication date
EP3755803A1 (en) 2020-12-30
EP3755803A4 (en) 2022-01-19
BR112020017060A2 (pt) 2020-12-15
MA51915A (fr) 2020-12-30
JP2021513999A (ja) 2021-06-03
IL276658A (en) 2020-09-30
MX2020008676A (es) 2020-09-25
JP2024028931A (ja) 2024-03-05
US20220175970A1 (en) 2022-06-09
KR20200124250A (ko) 2020-11-02
CA3092059A1 (en) 2019-08-29
AU2019225937A1 (en) 2020-08-13
RU2020131041A (ru) 2022-03-22
SG11202007621TA (en) 2020-09-29
WO2019165050A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
US20210071197A1 (en) Closed-ended dna vectors obtainable from cell-free synthesis and process for obtaining cedna vectors
US20200283794A1 (en) Modified closed-ended dna (cedna)
CN111527200A (zh) 使用修饰的封闭端DNA(ceDNA)的基因编辑
CN111886343A (zh) 使用闭合端dna(cedna)载体控制转基因的表达
US20220127625A1 (en) Modulation of rep protein activity in closed-ended dna (cedna) production
US20230024354A1 (en) Non-viral dna vectors and uses thereof for expressing phenylalanine hydroxylase (pah) therapeutics
CN113316640A (zh) 包含对称的被修饰的反向末端重复序列的被修饰的封闭端dna(cedna)
CA3211687A1 (en) Non-viral dna vectors and uses thereof for expressing pfic therapeutics
CN113874513A (zh) 非病毒dna载体及其用于表达fviii治疗剂的用途
US20230134550A1 (en) Non-viral dna vectors and uses thereof for expressing gaucher therapeutics
WO2023122303A2 (en) Scalable and high-purity cell-free synthesis of closed-ended dna vectors
CN116507730A (zh) 封闭端dna载体及其用于表达苯丙氨酸羟化酶(pah)的用途
CN116529369A (zh) 非病毒dna载体及其用于表达fviii治疗剂的用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination