CN111847525B - 一种水葫芦绿色合成磁性纳米Fe3O4颗粒的方法及应用 - Google Patents

一种水葫芦绿色合成磁性纳米Fe3O4颗粒的方法及应用 Download PDF

Info

Publication number
CN111847525B
CN111847525B CN202010740973.4A CN202010740973A CN111847525B CN 111847525 B CN111847525 B CN 111847525B CN 202010740973 A CN202010740973 A CN 202010740973A CN 111847525 B CN111847525 B CN 111847525B
Authority
CN
China
Prior art keywords
particles
water hyacinth
magnetic nano
solution
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010740973.4A
Other languages
English (en)
Other versions
CN111847525A (zh
Inventor
李艳宾
张琴
丁鹏飞
张永贵
童旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN202010740973.4A priority Critical patent/CN111847525B/zh
Publication of CN111847525A publication Critical patent/CN111847525A/zh
Application granted granted Critical
Publication of CN111847525B publication Critical patent/CN111847525B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Compounds Of Iron (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种水葫芦绿色合成磁性纳米Fe3O4颗粒的方法及应用,将水葫芦新鲜叶片提取液和0.2mol/LFe3+以及Fe2+溶液混合,调节两次pH值,连续搅拌反应,进一步经永磁体分离、抽滤、无水乙醇和蒸馏水洗涤、真空干燥、研磨、过筛,制得绿色合成的磁性纳米Fe3O4颗粒。该方法合成的磁性纳米Fe3O4颗粒以一定浓度添加至稻草水解液发酵产氢系统,具有显著的促进生物氢合成和水解糖利用的效果,使得最佳添加浓度下获得的累积产氢量、葡萄糖利用率、木糖利用率较之对照处理分别提高22.6%、6.5%、6.7%。本发明具有绿色环保、工艺简单易行、制备条件温和、原料廉价易得等优点。

Description

一种水葫芦绿色合成磁性纳米Fe3O4颗粒的方法及应用
技术领域
本发明涉及磁性纳米材料的制备方法及应用领域,特别涉及水葫芦绿色合成磁性纳米Fe3O4颗粒及应用,尤其涉及由水葫芦叶提取液制备的磁性纳米Fe3O4颗粒在调控细菌发酵木质纤维素水解液产氢中的应用效果,应用于生物氢能源高效合成与调控领域。
背景技术
纳米Fe3O4的传统制备以物理和化学合成方法为主,目前,普遍使用的共沉淀法是在包含两种或两种以上的金属粒子的可溶性盐溶液中加入适当的沉淀剂,使金属粒子均匀沉淀或结晶出来,在脱水或热分解制得纳米微粉。共沉淀法有两种:一种是水解法,即将一定摩尔比的三价铁盐与二价铁盐混合液直接加入到强碱性水溶液中,铁盐在强碱性水溶液中瞬间水解结晶形成磁性铁氧体纳米粒子。另一种是滴定水解法,将稀碱溶液滴加到一定摩尔比的三价铁盐与二价铁盐的混合溶液中,是混合液的pH值逐渐升高,当pH达到6~7时水解生成磁性纳米Fe3O4粒子。该方法虽然原理简单,但实际制备过程中存在许多复杂的中间反应和副产物,此外,溶液的浓度,Fe2+和Fe3+的比值,反应和熟化温度,溶液的pH值,洗涤方式等,均对磁性纳米粒子的粒径、形态、结构及性能有很大影响。此法对于多组分来说,要求各组分具有相同或相近的水解或沉淀条件,因而工艺具有一定的局限性。
上述方法对设备要求较高,能耗较大,成本较高,易造成二次污染,从而限制了其在工农业生产中的应用。因此,寻求一种绿色合成方法实现纳米Fe3O4的环境友好型制备并拓展其应用领域显得尤为重要。
天然植物及其组织含有丰富的多酚、黄酮、有机酸和生物碱类等活性化合物,这些活性成分在植物提取液与金属离子的反应中能起到稳定剂和促进剂的作用。有研究采用桉树叶提取液制备纳米铁,与传统方法合成的纳米铁相比,桉树叶基纳米铁团聚程度更小,更易稳定保存。还有研究采用杜比乌叶提取液制备的纳米铁呈立方结构的类球形颗粒,比传统硼氢化钠合成的纳米铁对自由基的清除能力更强。
水葫芦,学名凤眼莲,是湖泊、池沼等水域中常见的水生杂草,将水葫芦有效转化利用,变废为宝,既可获得廉价的原料来源,又可获得高值化的产品。近年来,有一些研究报道采用水葫芦为原料能合成一定金属纳米颗粒,如,纳米银、纳米氧化锌、纳米零价铁颗粒。也有人采用水葫芦作为原料,制备了纳米铁改性水葫芦生物碳,用于重金属镉的吸附及其废水的处理。迄今,尚未见采用水葫芦为原料制备磁性纳米Fe3O4颗粒(Fe3O4-NPs)的研究报道。
磁性Fe3O4-NPs具有磁性强、导磁性好、高磁导率、低剩磁,且分散性好、不容易聚团等特点,在社会生产诸多领域应用广泛。近年来,有一些研究通过添加一定浓度磁性Fe3O4-NPs至暗发酵产氢系统以改善系统的产氢性能。从作用机理来看,Fe3O4-NPs首先可以为产氢发酵系统提供Fe元素,结合于氢酶活性中心位点,从而促进生物氢的合成;其次,Fe3O4-NPs的添加能够通过强化铁氧化还原酶分泌从而促进产氢。此外,作为一种纳米颗粒,Fe3O4-NPs还具有表面和量子尺寸效应及较强的电子亲和性,从而有利于电子从NADPH转移到氢酶及质子还原耦合氢气的产生。为此,Fe3O4-NPs添加至暗发酵产氢系统的应用逐渐受到研究者的广泛关注。
综上,基于廉价的水葫芦原料,开发成本低廉、制备工艺简单、条件温和的磁性Fe3O4-NPs绿色合成方法,并将获得的磁性Fe3O4-NPs作为促进暗发酵产氢系统生物氢合成的添加剂具有重要的科学意义和良好的应用前景,成为纳米材料应用及生物制氢领域亟待解决的技术问题。
发明内容
本发明所要解决的技术问题:以水葫芦为原料之一,开发成本低廉、制备工艺简单、条件温和的磁性Fe3O4-NPs绿色合成方法,并将获得的磁性Fe3O4-NPs作为促进暗发酵产氢系统生物氢合成的添加剂。
为解决上述技术问题,本发明提供以下的技术方案:
一种水葫芦绿色合成磁性纳米Fe3O4颗粒的制备方法,包括以下步骤:
(1)采用新鲜水葫芦叶研磨制备水葫芦叶提取液;
(2)室温下,向水葫芦叶提取液中加入一定体积的铁盐溶液,所述铁盐溶液中含Fe3+和Fe2+,Fe3+和Fe2+的总浓度为0.2mol/L,获得的混合液置于恒温磁力搅拌器上,边搅拌边逐滴加入新配制的1mol/L NaOH溶液至pH值调节为7,55℃连续搅拌反应1h,再滴加1mol/L NaOH溶液至pH值为11,继续搅拌反应0.5h;
(3)反应完成后,将步骤(2)的反应液静置,用永磁体对Fe3O4-NPs进行分离,抽滤,获得的滤渣,用无水乙醇和蒸馏水分别洗涤3-5次,置于真空干燥箱中烘干至恒重;
(4)将步骤(3)制得的产品取出研磨,过200目筛,即得绿色合成的磁性纳米Fe3O4颗粒。
优选地,所述铁盐溶液中Fe3+:Fe2+摩尔比为2:1。
优选地,所述水葫芦叶提取液的制备方法为取5g新鲜水葫芦叶并先后用自来水、蒸馏水清洗干净,置于研钵中,用研杵将叶片研磨成泥获得提取物,加100mL蒸馏水洗涤提取物3~5次,合并转入烧杯中,进一步加热煮沸10分钟,冷却后过滤并定容至100mL,得水葫芦叶提取液。
优选地,所述铁盐溶液与水葫芦叶提取液的体积比为1~2:1。
一种上述磁性纳米Fe3O4颗粒的应用,具体步骤如下:
(a)将制得的磁性纳米Fe3O4颗粒以一定浓度添加至稻草水解液发酵培养基中,搅拌并采用超声处理使纳米Fe3O4颗粒充分分散于稻草水解液发酵培养基中,灭菌冷却之后,按照10%接种量接种产氢细菌Klebsiella sp.种子液进行发酵培养;
(b)获得的发酵培养物,定期检测氢气体积、葡萄糖和木糖浓度及菌体生长OD值。
优选地,所述磁性纳米Fe3O4颗粒按终浓度10~40mg/L添加至稻草水解液发酵培养基中。
本发明获得的有益效果:
1)本发明采用水葫芦叶片为原材料,分布广泛且成本低廉,其转化利用既降低了成本且变废为宝,操作步骤简单,反应条件温和、容易控制。
2)本发明纳米材料制备过程中,以水葫芦叶片提取物中的活性组分作为稳定剂和促进剂,避免了有毒有害化学试剂的使用及其造成环境的二次污染,具有环境友好和安全可行的特点;
3)本发明所制得的磁性纳米Fe3O4颗粒具有显著的促进生物氢合成和水解糖利用的效果,使得最佳添加浓度下获得的累积产氢量、葡萄糖利用率、木糖利用率较之对照处理分别提高22.6%、6.5%、6.7%。因此可作为良好的促产氢添加剂应用于木质纤维素水解液发酵产氢中。
附图说明
图1为本发明磁性纳米Fe3O4颗粒的强磁体分离图。
图2为本发明磁性纳米Fe3O4颗粒的X射线衍射(XRD)图。
图3为本发明磁性纳米Fe3O4颗粒的扫描电子显微镜(SEM)图。
图4为本发明磁性纳米Fe3O4颗粒的透射电子显微镜(TEM)图。
图5为本发明以磁性纳米Fe3O4颗粒为添加剂的累积产氢量曲线。
图6为本发明以磁性纳米Fe3O4颗粒为添加剂的葡萄糖和木糖利用结果。
图7为本发明以磁性纳米Fe3O4颗粒为添加剂的菌体生长曲线。
具体实施方式
下面通过对实施例的描述,对本发明的具体实施方式作进一步详细的说明,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。
实施例1:按如下方法制备磁性纳米Fe3O4颗粒:
(1)取5g新鲜水葫芦叶并先后用自来水、蒸馏水清洗干净,置于研钵中,用研杵将叶片研磨成泥获得提取物,加100mL蒸馏水洗涤提取物3~5次,合并转入烧杯中,进一步加热煮沸10分钟,冷却后过滤并定容至100mL,得水葫芦叶提取液。
(2)室温下,向制得的水葫芦叶提取液中加入1:1体积的铁盐溶液,铁盐溶液中Fe3+以及Fe2+的总浓度为0.2mol/L,Fe3+:Fe2+摩尔比为2:1,获得的混合液置于恒温磁力搅拌器上,边搅拌边逐滴加入新配制的1mol/LNaOH溶液至pH值调节为7,55℃连续搅拌反应1h,再滴加1mol/L NaOH溶液至pH值为11,继续反应0.5h;
(3)反应完成后,将反应液静置,用永磁体对Fe3O4-NPs进行分离,抽滤,获得的滤渣,用无水乙醇和蒸馏水分别洗涤3次,置于真空干燥箱中烘干至恒重。再将烘干的产品取出研磨,过200目筛,即得绿色合成的磁性纳米Fe3O4颗粒。该方法制备的Fe3O4-NPs产量约2.38g/100mL提取液,将此样品命名为样品S1。
实施例2
(1)取5g新鲜水葫芦叶并先后用自来水、蒸馏水清洗干净,置于研钵中,用研杵将叶片研磨成泥获得提取物,加100mL蒸馏水洗涤提取物3~5次,合并转入烧杯中,进一步加热煮沸10分钟,冷却后过滤并定容至100mL,得水葫芦叶提取液。(2)室温下,向制得的水葫芦叶提取液中加入1:1.5体积的铁盐溶液,铁盐溶液中Fe3+以及Fe2+的总浓度为0.2mol/L,Fe3+:Fe2+摩尔比为2:1,获得的混合液置于恒温磁力搅拌器上,边搅拌边逐滴加入新配制的1mol/L NaOH溶液至pH值调节为7,55℃连续搅拌反应1h,再滴加1mol/L NaOH溶液至pH值为11,继续反应0.5h;(3)反应完成后,将反应液静置,用永磁体对Fe3O4-NPs进行分离,抽滤,获得的滤渣,用无水乙醇和蒸馏水分别洗涤3次,置于真空干燥箱中烘干至恒重。再将烘干的产品取出研磨,过200目筛,即得绿色合成的磁性纳米Fe3O4颗粒。该方法制备的Fe3O4-NPs产量约4.36g/100mL提取液,将此样品命名为样品S2。
实施例3
(1)取5g新鲜水葫芦叶并先后用自来水、蒸馏水清洗干净,置于研钵中,用研杵将叶片研磨成泥获得提取物,加100mL蒸馏水洗涤提取物3~5次,合并转入烧杯中,进一步加热煮沸10分钟,冷却后过滤并定容至100mL,得水葫芦叶提取液。(2)室温下,向制得的水葫芦叶提取液中加入1:2体积的铁盐溶液,铁盐溶液中Fe3+以及Fe2+的总浓度为0.2mol/L,Fe3 +:Fe2+摩尔比为2:1,获得的混合液置于恒温磁力搅拌器上,边搅拌边逐滴加入新配制的1mol/L NaOH溶液至pH值调节为7,55℃连续搅拌反应1h,再滴加1mol/L NaOH溶液至pH值为11,继续反应0.5h;(3)反应完成后,将反应液静置,用永磁体对Fe3O4-NPs进行分离,抽滤,获得的滤渣,用无水乙醇和蒸馏水分别洗涤3次,置于真空干燥箱中烘干至恒重。再将烘干的产品取出研磨,过200目筛,即得绿色合成的磁性纳米Fe3O4颗粒。该方法制备的Fe3O4-NPs产量约2.43g/100mL提取液,将此样品命名为样品S3。
实施例4
对绿色合成的磁性纳米Fe3O4颗粒进行表征,XRD图谱如附图2所示,在2θ=21.2、35.1、41.4、50.5、63.0、67.3、74.3处的衍射峰对应晶面(111)、(220)、(311)、(400)、(422)、(511)和(440),与标准卡片JCPDS NO.19-0629相符合,为磁铁矿(磁性纳米Fe3O4颗粒),尖晶石结构。其中,样品S2的符合度最高,样品中衍射峰较尖锐,且没有其它衍射峰,表明其较纯净。由SEM图(附图3)可知,纳米颗粒表面形貌较一致,形态规则,TEM图(附图4)显示纳米颗粒呈大小不一的球形,根据软件Nano Measurer 1.2粒径分布分析,颗粒粒径大小主要分布在5-33nm,平均粒径约为13nm。
实施例5
选取磁性Fe3O4-NPs产量最高且表征符合度最高的样品S2,按终浓度0、10、20、30、40mg/L添加至稻草水解液发酵产氢系统,稻草水解液发酵产氢系统参考文献朱晓鹏,侯梦云,杨姣春,et al.Klebsiella sp.分批发酵棉秆水解糖液产氢动力学研究[J].食品工业,2017,038(009):201-204.中的方法进行构建,采用稻草替代棉杆作为植物组织原料制备可发酵糖液培养基。
按不同的处理精确称量磁性Fe3O4纳米颗粒,添加至相应发酵糖液培养基中,采用充分搅拌结合超声波处理的方式使磁性Fe3O4纳米颗粒有效地分散于发酵培养基中,灭菌冷却之后,按照10%接种量接种产氢细菌Klebsiella sp.种子液,定期采用排氢氧化钠溶液法检测产氢量,逐日累积,检测120h内的累积产氢量,分析添加绿色合成的磁性纳米Fe3O4颗粒对稻草水解液发酵产氢系统生物氢合成的影响,结果见附图5。从图中曲线变化可看出,在较低添加浓度范围内(10~20mg/L),菌株发酵120h的累积产氢量高于对照处理(0mg/L)的,尤以磁性Fe3O4-NPs添加浓度为20mg/L的累积产氢量最高达4000mL/L以上,较对照组(0mg/L)处理的提高约20%,即该添加浓度处理能有效促进菌株合成生物氢。当Fe3O4-NPs添加浓度提高至30mg/L时,累积产氢量较低浓度有降低趋势,若继续提高添加浓度至40mg/L,累积产氢量降低,甚至低于对照处理的。
实施例6
参照实施例5提供的方法添加磁性纳米Fe3O4颗粒至稻草水解液发酵产氢系统并接种产氢细菌Klebsiella sp.,定期检测发酵液中葡萄糖和木糖的浓度,分析纳米Fe3O4颗粒添加对稻草水解液发酵培养基中葡萄糖和木糖利用率的影响,结果见附图6。图6结果显示,所有磁性纳米Fe3O4颗粒的处理均有利于菌株利用稻草水解液中的葡萄糖和木糖,在添加浓度为20mg/L时,葡萄糖、木糖利用率最高,分别达95.4%、95.5%,较对照处理(0mg/L)的分别提高了6.6%、6.7%。
实施例7
参照实施例5提供的方法添加磁性纳米Fe3O4颗粒至稻草水解液发酵产氢系统并接种产氢细菌Klebsiella sp.,动态检测发酵培养物的菌体浓度(OD600),分析纳米Fe3O4颗粒添加对产氢细菌菌体生长的影响,结果见附图7。图7结果显示,所有添加纳米Fe3O4颗粒的处理均有利于菌株的生长,在添加浓度为10mg/L时,菌体生长OD600达4.5以上,较之对照处理的提高约40%。
对照实施例1:其余均与实施例1相同,不同之处在于采用参考文献中桉树叶提取液替换水葫芦叶提取液。
对照实施例2:其余均与实施例1相同,不同之处在于采用参考文献中杜比乌叶提取液替换水葫芦叶提取液。
对照实施例1和2经实际反应验证后均无法利用本申请的反应条件合成磁性纳米Fe3O4颗粒。这可能是由于不同植物提取液的生物活性物质组成相差较大,在反应体系中所起的作用大相径庭,其在相同反应体系中的生成物也就完全不同。
综上所述,本发明采用水葫芦叶片为原材料,分布广泛且成本低廉,其转化利用既降低了成本且变废为宝,操作步骤简单,反应条件温和、容易控制。本发明纳米材料制备过程中,以水葫芦叶片提取物中的活性组分作为稳定剂和促进剂,避免了有毒有害化学试剂的使用及其造成环境的二次污染,具有环境友好和安全可行的特点;本发明所制得的磁性纳米Fe3O4颗粒具有显著的促进生物氢合成和水解糖利用的效果,使得最佳添加浓度下获得的累积产氢量、葡萄糖利用率、木糖利用率较之对照处理分别提高22.6%、6.5%、6.7%。因此可作为良好的促产氢添加剂应用于木质纤维素水解液发酵产氢中。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内;本发明未涉及的技术均可通过现有技术加以实现。

Claims (5)

1.一种水葫芦绿色合成磁性纳米Fe3O4颗粒的制备方法,其特征在于,包括以下步骤:
(1)采用新鲜水葫芦叶研磨制备水葫芦叶提取液;
(2)室温下,向水葫芦叶提取液中加入一定体积的铁盐溶液,所述铁盐溶液中含Fe3+和Fe2+,Fe3+和Fe2+的总浓度为0.2mol/L,获得的混合液置于恒温磁力搅拌器上,边搅拌边逐滴加入新配制的1mol/L NaOH溶液至pH值调节为7,55℃连续搅拌反应1h,再滴加1mol/LNaOH溶液至pH值为11,继续搅拌反应0.5h;
(3)反应完成后,将步骤(2)的反应液静置,用永磁体对Fe3O4-NPs进行分离,抽滤,获得的滤渣,用无水乙醇和蒸馏水分别洗涤3-5次,置于真空干燥箱中烘干至恒重;
(4)将步骤(3)制得的产品取出研磨,过200目筛,即得绿色合成的磁性纳米Fe3O4颗粒;
所述水葫芦叶提取液的制备方法为取5g新鲜水葫芦叶并先后用自来水、蒸馏水清洗干净,置于研钵中,用研杵将叶片研磨成泥获得提取物,加100mL蒸馏水洗涤提取物3~5次,合并转入烧杯中,进一步加热煮沸10分钟,冷却后过滤并定容至100mL,得水葫芦叶提取液。
2.根据权利要求1中所述的一种水葫芦绿色合成磁性纳米Fe3O4颗粒的制备方法,其特征在于:所述铁盐溶液中Fe3+:Fe2+摩尔比为2:1。
3.根据权利要求1中所述的一种水葫芦绿色合成磁性纳米Fe3O4颗粒的制备方法,其特征在于:所述铁盐溶液与水葫芦叶提取液的体积比为1:1。
4.一种如权利要求1-3中任一项所述磁性纳米Fe3O4颗粒的应用,其特征在于,具体步骤如下:
(a)将制得的磁性纳米Fe3O4颗粒以一定浓度添加至稻草水解液发酵培养基中,搅拌并采用超声处理使纳米Fe3O4颗粒充分分散于稻草水解液发酵培养基中,灭菌冷却之后,按照10%接种量接种产氢细菌Klebsiella sp.种子液进行发酵培养;
(b)获得的发酵培养物,定期检测氢气体积、葡萄糖和木糖浓度及菌体生长OD值。
5.根据权利要求4中所述的一种磁性纳米Fe3O4颗粒的应用,其特征在于:所述磁性纳米Fe3O4颗粒按终浓度10~40mg/L添加至稻草水解液发酵培养基中。
CN202010740973.4A 2020-07-29 2020-07-29 一种水葫芦绿色合成磁性纳米Fe3O4颗粒的方法及应用 Active CN111847525B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010740973.4A CN111847525B (zh) 2020-07-29 2020-07-29 一种水葫芦绿色合成磁性纳米Fe3O4颗粒的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010740973.4A CN111847525B (zh) 2020-07-29 2020-07-29 一种水葫芦绿色合成磁性纳米Fe3O4颗粒的方法及应用

Publications (2)

Publication Number Publication Date
CN111847525A CN111847525A (zh) 2020-10-30
CN111847525B true CN111847525B (zh) 2023-06-13

Family

ID=73528430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010740973.4A Active CN111847525B (zh) 2020-07-29 2020-07-29 一种水葫芦绿色合成磁性纳米Fe3O4颗粒的方法及应用

Country Status (1)

Country Link
CN (1) CN111847525B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410617B (zh) * 2022-02-09 2023-05-30 安徽工程大学 一种提高产氢细菌生物氢合成的固定化方法及应用
CN114524470B (zh) * 2022-02-24 2023-06-02 安徽工程大学 一种铁酸镍纳米粒子及其绿色合成方法和应用
CN115780485B (zh) * 2022-11-23 2023-06-06 北京朝阳环境集团有限公司 一种餐厨垃圾处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019127031A1 (zh) * 2017-12-26 2019-07-04 四川金色未来科技有限公司 用于锂电池的能源复合材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101512003A (zh) * 2005-05-16 2009-08-19 蒙大拿州立大学 用于光催化制氢的复合纳米材料及其使用方法
WO2007101253A2 (en) * 2006-02-28 2007-09-07 Auburn Universtity In-situ immobilization of metals in contaminated sites using stabilized nanoparticles
CN105198003A (zh) * 2015-08-17 2015-12-30 商丘师范学院 一种制备顺磁性四氧化三铁纳米粒子的方法
CN106609294B (zh) * 2015-10-22 2020-08-28 中国科学院过程工程研究所 一种强化双菌发酵纤维素产氢的方法
CN106180755A (zh) * 2016-08-15 2016-12-07 华南师范大学 一种利用水葫芦提取液绿色合成纳米零价铁的方法及应用
US9901903B1 (en) * 2017-09-14 2018-02-27 King Saud University Biosynthesized magnetic metal nanoparticles for oil spill remediation
CN110628829B (zh) * 2019-10-22 2023-03-21 江苏省农业科学院 一种厌氧发酵生产甲烷的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019127031A1 (zh) * 2017-12-26 2019-07-04 四川金色未来科技有限公司 用于锂电池的能源复合材料及其制备方法

Also Published As

Publication number Publication date
CN111847525A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
CN111847525B (zh) 一种水葫芦绿色合成磁性纳米Fe3O4颗粒的方法及应用
CN111847530B (zh) 一种水葫芦制备氧化镍纳米颗粒的方法及应用
CN1304362C (zh) 一种金属氨基酸螯合物的制备方法
CN109569552B (zh) 一种磁性/非磁性碳酸镧钠除磷吸附剂及其合成方法
CN107262037B (zh) 一种海泡石羟基氧化铁活性炭复合吸附剂的制备与应用
Li et al. Effects of Fe0 and Ni0 nanoparticles on hydrogen production from cotton stalk hydrolysate using Klebsiella sp. WL1316: evaluation of size and concentration of the nanoparticles
Zhang et al. Green synthesis of magnetite nanoparticle and its regulatory effect on fermentative hydrogen production from lignocellulosic hydrolysate by Klebsiella sp.
CN112960781A (zh) 一种基于生物纳米杂合体系的有机污染物降解方法
CN112675805B (zh) 一种羟基磷灰石纳米线复合二硫化钼吸附剂的制备方法
CN109896722A (zh) 一种用于污泥深度脱水的球状纳米过氧化钙制备方法
CN101698157A (zh) 利用发酵秸秆制备的阴离子交换剂及其制备方法和应用
CN111500493B (zh) 一种芽孢杆菌及其合成纳米硒的方法
Zhang et al. Enhanced biohydrogen production influenced by magnetic nanoparticles supplementation using Enterobacter cloacae
CN114524470B (zh) 一种铁酸镍纳米粒子及其绿色合成方法和应用
CN101289380B (zh) 一种利用马氏珠母贝贝壳制备丙酸钙的方法
Zhang et al. Green synthesis of nickel ferrite nanoparticles for efficient enhancement of lignocellulosic hydrolysate-based biohydrogen production
CN104774875B (zh) 一种利用水生拉恩氏菌制备生物纳米硒的方法
CN114410617B (zh) 一种提高产氢细菌生物氢合成的固定化方法及应用
CN1508192A (zh) 一种纳米氧化铁红的制备方法
CN101696028B (zh) 油水两相界面间制备氧化锌纳米晶的方法
CN109926016A (zh) 一种吸附材料、其制备方法及其应用
CN104925870A (zh) 一种溶剂热法制备纳米四氧化三铁的方法
CN112973738B (zh) 一种磁性自组装MoS2@Fe3O4@Cu2O光催化剂的制备方法及其应用
CN112371104B (zh) 一种钛酸钙/钛酸铋复合光催化剂及其制备方法和应用
CN108017092B (zh) 一种四氧化三铁及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant