CN106609294B - 一种强化双菌发酵纤维素产氢的方法 - Google Patents
一种强化双菌发酵纤维素产氢的方法 Download PDFInfo
- Publication number
- CN106609294B CN106609294B CN201510695350.9A CN201510695350A CN106609294B CN 106609294 B CN106609294 B CN 106609294B CN 201510695350 A CN201510695350 A CN 201510695350A CN 106609294 B CN106609294 B CN 106609294B
- Authority
- CN
- China
- Prior art keywords
- bacteria
- cellulose
- fermentation
- sugar
- fermenting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 151
- 239000001257 hydrogen Substances 0.000 title claims abstract description 151
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 151
- 238000000855 fermentation Methods 0.000 title claims abstract description 142
- 230000004151 fermentation Effects 0.000 title claims abstract description 141
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 99
- 229920002678 cellulose Polymers 0.000 title claims abstract description 77
- 239000001913 cellulose Substances 0.000 title claims abstract description 77
- 238000005728 strengthening Methods 0.000 title claims abstract description 9
- 241000894006 Bacteria Species 0.000 claims abstract description 164
- 238000000034 method Methods 0.000 claims abstract description 70
- 239000002105 nanoparticle Substances 0.000 claims abstract description 54
- 230000000593 degrading effect Effects 0.000 claims abstract description 14
- 239000001963 growth medium Substances 0.000 claims abstract 2
- 235000010980 cellulose Nutrition 0.000 claims description 72
- 238000011081 inoculation Methods 0.000 claims description 43
- 229920000168 Microcrystalline cellulose Polymers 0.000 claims description 25
- 230000001580 bacterial effect Effects 0.000 claims description 25
- 235000019813 microcrystalline cellulose Nutrition 0.000 claims description 25
- 239000008108 microcrystalline cellulose Substances 0.000 claims description 25
- 229940016286 microcrystalline cellulose Drugs 0.000 claims description 25
- 239000002245 particle Substances 0.000 claims description 15
- 230000008569 process Effects 0.000 claims description 7
- 230000001954 sterilising effect Effects 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 2
- 239000002609 medium Substances 0.000 claims 11
- FRXSZNDVFUDTIR-UHFFFAOYSA-N 6-methoxy-1,2,3,4-tetrahydroquinoline Chemical compound N1CCCC2=CC(OC)=CC=C21 FRXSZNDVFUDTIR-UHFFFAOYSA-N 0.000 claims 1
- 238000003501 co-culture Methods 0.000 abstract description 10
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 abstract description 9
- 230000027756 respiratory electron transport chain Effects 0.000 abstract description 6
- 230000015556 catabolic process Effects 0.000 abstract description 5
- 238000006731 degradation reaction Methods 0.000 abstract description 5
- 239000000835 fiber Substances 0.000 abstract description 2
- 230000001737 promoting effect Effects 0.000 abstract description 2
- 229940088594 vitamin Drugs 0.000 abstract 1
- 229930003231 vitamin Natural products 0.000 abstract 1
- 235000013343 vitamin Nutrition 0.000 abstract 1
- 239000011782 vitamin Substances 0.000 abstract 1
- 150000003722 vitamin derivatives Chemical class 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 37
- 230000000694 effects Effects 0.000 description 16
- 239000007788 liquid Substances 0.000 description 16
- 238000012360 testing method Methods 0.000 description 13
- 238000012549 training Methods 0.000 description 13
- 238000009825 accumulation Methods 0.000 description 12
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 241000193448 Ruminiclostridium thermocellum Species 0.000 description 8
- 230000003203 everyday effect Effects 0.000 description 8
- 229920005549 butyl rubber Polymers 0.000 description 7
- 238000011010 flushing procedure Methods 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 241000193454 Clostridium beijerinckii Species 0.000 description 6
- 241000193446 Thermoanaerobacterium thermosaccharolyticum Species 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 239000006249 magnetic particle Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 5
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 150000004053 quinones Chemical class 0.000 description 5
- 241001135751 Geobacter metallireducens Species 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000002028 Biomass Substances 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000000975 dye Substances 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 230000000813 microbial effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- PCFMUWBCZZUMRX-UHFFFAOYSA-N 9,10-Dihydroxyanthracene Chemical compound C1=CC=C2C(O)=C(C=CC=C3)C3=C(O)C2=C1 PCFMUWBCZZUMRX-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 241000209149 Zea Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 230000001461 cytolytic effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- CSFWPUWCSPOLJW-UHFFFAOYSA-N lawsone Chemical compound C1=CC=C2C(=O)C(O)=CC(=O)C2=C1 CSFWPUWCSPOLJW-UHFFFAOYSA-N 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- 241000589158 Agrobacterium Species 0.000 description 1
- 101000633752 Bitis arietans Snaclec 6 Proteins 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001147708 Clostridium thermopalmarium Species 0.000 description 1
- 241000827781 Geobacillus sp. Species 0.000 description 1
- 241001568673 Geobacteraceae Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- -1 ffect Species 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002029 lignocellulosic biomass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229940031182 nanoparticles iron oxide Drugs 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 150000004666 short chain fatty acids Chemical class 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 230000004127 xylose metabolism Effects 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
Abstract
本发明涉及一种强化双菌发酵纤维素产氢的方法,尤其涉及一种通过添加磁性Fe3O4纳米颗粒促进双菌发酵纤维素产氢的方法,其通过采用含有磁性Fe3O4纳米颗粒的纤维素培养基对纤维素降解菌和糖发酵菌进行共培养,磁性Fe3O4纳米颗粒的添加促进了双菌种间的电子传递,进而提高纤维素降解率和产氢量。本发明所述方法中采用的磁性Fe3O4纳米颗粒可以重复回收利用,无污染,能够节约生产成本,方法操作简单,易于放大,添加磁性Fe3O4纳米颗粒的双菌体系比不添加体系,产氢量提高幅度可达35%。
Description
技术领域
本发明属于可再生能源技术领域,涉及一种强化双菌发酵产氢的方法,尤其涉及一种通过添加磁性Fe3O4纳米颗粒促进双菌发酵纤维素产氢的方法。
背景技术
为应对当今世界面临严峻的能源和环境危机,利用生物质产生可再生能源逐渐受到人们的重视。氢作为能源载体具有能量密度高,绿色无污染等突出优点,是真正意义上的绿色可再生能源。其具有较广的应用范围,可直接用作燃料,也可通过燃料电池通过电化学反应直接转换成电能,用于交通运输等,还可用作各种能源的中间载体。
目前,氢能源主要来源于一次能源(煤、石油和天然气)的转化。传统制备技术虽然过程效率高,技术成熟,但其设备投资大,加速不可再生能源消耗的同时也对环境造成污染。
生物制氢技术具有原料来源广,条件温和,绿色无污染等诸多优点,但目前国内外大多数研究者采用的都是容易降解的物质,如葡萄糖、蔗糖、淀粉和短链脂肪酸等作为产氢研究的主要原料,这些原料价格昂贵,因而相比物理及化学法产氢成本高。
利用木质纤维素类生物质产氢可降低氢发酵成本(Mudhoo A等,Biohydrogenproduction and bioprocess enhancement:a review.Critical Reviews inBiotechnology,2011,31:250-263),因而受到越来越多研究者的关注。Zhao等人选择菌种Clostridium beijerinckii发酵产氢,但是由于这种菌类只可以代谢单糖或二糖,较高的原料成本无疑限制了以纤维素为底物的发酵产氢应用(Zhao X等,Hydrogen productionby the newly isolated Clostridium beijerinckii RZF-1108.BioresourceTechnology,2011,102:8432-8436)。
研究发现通过微生物共培养(Geng A等,Effect of key factors on hydrogenproduction from cellulose in a co-culture of Clostridium thermocellum andClostridium thermopalmarium.Bioresource Technology,2010,101:4029-4033;Lu Y等,Enhancing the cellulose-degrading activity of cellulolytic bacteria CTL-6(Clostridium thermocellum)by co-culture with non-cellulolytic bacteria W2-10(Geobacillus sp.).Applied Biochemistry Biotechnology,2013,171:1578-1588)可以提高木质纤维素水解产物的产氢量。目前已有文献公开了一种双菌发酵产氢的方法(Li等,Dynamic microwave-assisted alkali pretreatment of cornstalk to enhancehydrogen production via co-culture fermentation of Clostridium thermocellumand Clostridium thermosaccharolyticum,Biomass & Bioenergy,2014,64:220-229),以纤维素降解菌Clostridium thermocellum和糖发酵菌Thermoanaerobacteriumthermosaccharolyticum的双菌共培养促进产氢研究,以玉米秆制备纤维素作为底物进行发酵,价格低廉,且双菌发酵的产氢量相比单菌发酵有显著提高。但是,其产氢量及纤维素降解率仍不够高,有待进一步提升。
研究发现添加胞外电子穿梭体(Extracellular electron shuttle,EES)(ZhangX等,Interactions between Clostridium beijerinckii and Geobactermetallireducens in co-culture fermentation with anthrahydroquinone-2,6-disulfonate(AH2QDS)for enhanced biohydrogen production fromxylose.Biotechnology and Bioengineering,2013,110:164-172;Ye X等,Anthrahydroquinone-2,6,-disulfonate(AH2QDS)increases hydrogen molar yield andxylose utilization in growing cultures of Clostridium beijerinckii.AppliedMicrobiology and Biotechnology,2011,92:855-864)的手段,可以提高木质纤维素水解产物的产氢量。目前常用的电子穿梭体包括:醌类、染料和木素等,(Malvankar NS andLovley DR,Microbial nanowires for bioenergy applications.Current Opinion inBiotechnology,2014,27:88-95)。其中,醌类和染料电子穿梭体因有毒而产生环境污染并危害人体健康,而且,醌类、染料和木素作为电子穿梭体使用时,不能回收再利用,因而这些电子穿梭体成本较高,无疑会限制这些材料的工业应用。
添加胞外电子穿梭体蒽氢醌磺酸盐可以促进双菌共培养体系(Clostridiumbeijerinckii和Geobacter metallireducens)的木糖代谢产氢量(Zhang X等,Interactions between Clostridium beijerinckii and Geobacter metallireducensin co-culture fermentation with anthrahydroquinone-2,6-disulfonate(AH2QDS)forenhanced biohydrogen production from xylose.Biotechnology and Bioengineering,2013,110:164-172)。随后,研究者拓展了该双菌体系的底物范围和EES的种类(5-羟茶醌、2-羟-1,4萘醌、富烯酸和腐殖酸)(Lovley DR等,Humic substances as electronacceptors for microbial respiration.Nature,1996,382:445-448;Lovley et al.,1999;Wolf M等,Effects of humic substances and quinones at low concentrationson ferrihydrite reduction by Geobacter metallireducens.Environmental Scienceand Technology,2009,43:5679-5685),同样证明了该体系能够促进氢气的产生。但是,使用木糖作为原料成本较高,且醌类有毒,这就限制了其进一步应用。
磁性氧化铁颗粒具有可回收利用、环境友好等优点,有研究用于促进细菌产甲烷(Li H等,Direct interspecies electron transfer accelerates syntrophicoxidation of butyrate in paddy soil enrichments,environmental microbiology,2014,1-15),其能够改变土杆菌Geobacteraceae的表面并影响其生长过程,提高产甲烷效率。但是目前还未发现将磁性氧化铁应用于双菌产氢领域改善双菌间的相互作用从而提高产氢量的相关研究。
发明内容
为解决现有技术的上述问题,本发明的目的在于提供一种强化双菌发酵产氢的方法,通过使用磁性氧化铁Fe3O4颗粒作为胞外电子穿梭体,来激发双菌的产氢代谢潜力,进一步提高双菌发酵纤维素的氢转化率;同时,本发明所述方法中采用的磁性Fe3O4纳米颗粒还可以重复回收利用,无污染,能够节约生产成本,方法操作简单,易于放大。
本发明所述双菌指纤维素降解菌和糖发酵菌。
为达此目的,本发明采用以下技术方案:
一种强化双菌发酵产氢的方法,所述方法包括:在含有磁性Fe3O4纳米颗粒的培养体系中接种纤维素降解菌和糖发酵菌,进行发酵纤维素产氢。
本发明通过使用磁性氧化铁Fe3O4颗粒作为双菌发酵的胞外电子穿梭体,来激发双菌的产氢代谢潜力,促进双菌间的电子传递,进一步提高双菌发酵纤维素的氢转化率。
优选地,一种强化双菌发酵纤维素产氢的方法,所述方法包括:
(1)向纤维素培养基中加入磁性Fe3O4纳米颗粒,灭菌,得双菌发酵培养基;
(2)向步骤(1)的双菌发酵培养基中接种纤维素降解菌和糖发酵菌,进行发酵纤维素产氢。
本发明采用含有磁性Fe3O4纳米颗粒的纤维素培养基对纤维素降解菌和糖发酵菌进行共培养,促进了纤维素降解菌和糖发酵菌的种间电子传递,进而提高纤维素降解率和产氢量。
本发明所述糖发酵菌指可利用木糖、蔗糖或葡萄糖为碳源和能源生长,并进行发酵代谢产氢的细菌。
本发明中细菌培养、发酵及氢检测用的各种设备,纤维素降解菌和糖发酵菌的预培养方法、预培养使用的培养液、以及发酵产氢方法均采用已有文献报道的内容(Li等,Dynamic microwave-assisted alkali pretreatment of cornstalk to enhancehydrogen production via co-culture fermentation of Clostridium thermocellumand Clostridium thermosaccharolyticum,Biomass & Bioenergy,2014,64:220-229),本发明中微晶纤维素培养基的制备采用现有技术的方法制备,培养温度为55℃。
为了便于参照并采用上述文献实施本发明的部分内容,现对本文献区别与该参照文献进行区别:本发明中发酵培养基与参照文献中使用的培养基的不同之处在于,参照文献中使用玉米秆加碱超声处理得到底物,而本发明直接使用购买的微晶纤维素作为底物,进一步加入了磁性Fe3O4纳米颗粒,影响两菌种间的相互作用,促进两菌种间的电子传递,促进产氢量提高;并深入研究了糖发酵菌和纤维素降解菌的接种比例、两菌种接种时间间隔和磁性氧化铁纳米颗粒添加量等因素对双菌发酵产氢量及纤维素降解率的影响,进而提供了一种强化纤维素原料发酵产氢的方法。
步骤(1)中所述纤维素培养基优选为微晶纤维素培养基,例如可以购自沃凯公司。
步骤(1)中所述磁性Fe3O4纳米颗粒的终浓度控制在0.2-10mM,终浓度例如可为0.2mM、0.3mM、0.4mM、0.5mM、0.8mM、1.0mM、1.5mM、2.0mM、2.5mM、3.0mM、3.5mM、4.0mM、4.5mM、5.0mM、5.5mM、6.0mM、6.3mM、7.0mM、7.5mM、8.0mM、8.6mM、9.0mM、9.5mM、或10.0mM等,优选5-10mM,进一步优选8-10mM;
所述磁性Fe3O4纳米颗粒的终浓度控制在5-10mM的优选的浓度范围内时,磁性Fe3O4纳米颗粒能够与双菌更好的分散并发生作用,双菌种间电子传递增强,更能激发双菌种代谢产氢。
本发明中磁性Fe3O4纳米颗粒的终浓度指磁性Fe3O4纳米颗粒在接种完纤维素降解菌和糖发酵菌的双菌发酵培养基中的浓度。
优选地,所述磁性Fe3O4纳米颗粒的粒径为10-100nm,例如可为10nm、15nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm或100nm等,优选为20-50nm。
本发明所述纤维素降解菌可以具体选自DSM7072、DSM1237、DSM1313、DSM2360或DSM4150中的任意一种或至少两种的混合,优选为DSM7072。所述混合典型但非限制性实例有DSM7072和DSM1237的混合,DSM7072和DSM1313的混合,DSM7072和DSM2360的混合,DSM1237和DSM1313的混合,DSM7072、DSM1237和DSM4150的混合,DSM7072、DSM1237、DSM1313和DSM4150的混合等。
本发明所述糖发酵菌选自DSM869和/或DSM572,优选为DSM869。
本发明所述纤维素降解菌和糖发酵菌均购自德国微生物菌种保藏中心。
优选地,步骤(2)所述纤维素降解菌和糖发酵菌的总接种量控制在5%-15%,所述接种量例如可为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%或15%等,优选8%-10%。
优选地,步骤(2)所述纤维素降解菌和糖发酵菌的接种比例为1:1-1:0.01,例如可为1:1、1:0.95、1:0.92、1:0.9、1:0.85、1:0.8、1:0.77、1:0.75、1:0.72、1:0.7、1:0.65、1:0.6、1:0.55、1:0.5、1:0.45、1:0.42、1:0.4、1:0.35、1:0.3、1:0.28、1:0.25、1:0.2、1:0.18、1:0.15、1:0.1、1:0.09、1:0.07、1:0.05、1:0.03、1:0.02或1:0.01等,优选1:0.9-1:0.6,进一步优选为1:0.9-1:0.8。
本发明以纤维素作为发酵底物进行双菌发酵,一方面纤维素降解菌可以对纤维素进行发酵产氢,另一方面,纤维素降解菌发酵纤维素产生糖类物质,可以作为糖发酵菌的原料进行发酵产氢,当纤维素降解菌和糖发酵菌的接种比例在优选接种比例范围1:0.9-1:0.6时的纤维素降解率和产氢量比该比例为1:0.5-1:0.01时更高。
优选地,步骤(2)中所述接种纤维素降解菌和糖发酵菌的接种间隔时间为0h-48h,0h、1h、1.5h、2h、3.3h、4h、5h、6h、7h、8.5h、9h、10h、11h、12h、13h、14h、15h、16h、17h、18h、19h、20h、21h、22h、23h、24h、27h、30h、34h、36h、40h、42h、45h或48h等,优选为0h-12h,进一步优选6h-11h;
优选地,在优选接种间隔时间6h-11h时,可以兼顾操作简便及较高的产氢量和纤维素分解率,故优选。时间长于12h,产氢量和纤维素分解率提升幅度很小,而且会增加操作的难度和复杂性。
优选地,所述接种纤维素降解菌和糖发酵菌时,先接种纤维素降解菌,再接种糖发酵菌,这是由于糖发酵菌不能分解纤维素,而纤维素降解菌可以分解纤维并产生糖类供糖发酵菌分解产氢。
优选地,所述纤维素降解菌和糖发酵菌在接种前都经过预培养阶段,所述预培养的pH值均独立地为6.1-7.5,例如可为6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7.0、7.1、7.2、7.3、7.4或7.5等,优选6.5-7.0,进一步优选为7.0;所述预培养的温度均独立地为50-55℃,例如可为50℃、51℃、52℃、53℃、54℃或55℃,优选为55℃。
优选地,步骤(2)中发酵纤维素产氢过程的pH值为6.1-7.5,例如可为6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7.0、7.1、7.2、7.3、7.4或7.5等,优选6.5-7.0,进一步优选为7.0。
优选地,步骤(2)中所述发酵纤维素产氢过程的温度为50-55℃,例如可为50℃、51℃、52℃、53℃、54℃或55℃,优选为55℃。
优选地,步骤(2)中所述发酵纤维素产氢的发酵时间为3-9天,例如可为3天、3.5天、4天、5天、5.5天、6天、7天、8天或9天等,优选4-8天。
优选地,一种强化双菌发酵纤维素产氢的方法,所述方法包括:
(1)向纤维素培养基中加入磁性Fe3O4纳米颗粒,灭菌,得双菌发酵培养基;
(2)向步骤(1)的双菌发酵培养基中接种纤维素降解菌(Clostridiumthermocellum)和糖发酵菌(Thermoanaerobacterium thermosaccharolyticum),进行发酵纤维素产氢。
(3)回收磁性Fe3O4纳米颗粒和其上所附着的菌体,重新加入新的培养基,接种,进行第二批次发酵纤维素产氢。
优选地,步骤(3)所述接种的菌体,可以接种与步骤(2)发酵相同的纤维素降解菌和糖发酵菌,也可以接种与步骤(2)发酵不同的本发明所述纤维素降解菌和糖发酵菌。举例说明:可以是步骤(2)发酵使用DSM7072和DSM869,步骤(3)批次发酵加入DSM7072和DSM869;也可以是步骤(2)发酵使用DSM7072和DSM869,步骤(3)批次发酵结束后加入DSM4150和DSM869;还可以是步骤(2)发酵使用DSM7072和DSM869,步骤(3)批次加入DSM2360、DSM1313和DSM572等。
优选地,步骤(3)所述接种时,接种顺序和接种量与回收磁性Fe3O4纳米颗粒前的发酵纤维素产氢时的条件一样。
作为本发明所述方法的优选技术方案,一种强化双菌发酵纤维素产氢的方法,包括如下步骤:
(1)分别预培养纤维素降解菌DSM7072和糖发酵菌DSM869,预培养的pH值为6.1-7.5,预培养的温度为55℃;
(2)在微晶纤维素培养基中,加入粒径为10-100nm的磁性Fe3O4纳米颗粒使Fe3O4纳米颗粒的终浓度为5-10mM,灭菌,得双菌发酵培养基;
(3)将经过预培养的DSM7072和DSM869以1:1-1:0.5的接种比例接种到双菌发酵培养基中,接种时先接入DSM7072,然后间隔0-12h,再接入DSM869,选择pH为6.5-7.0,温度为55℃,进行发酵纤维素产氢;
(4)采用强磁铁磁力吸附磁性颗粒和部分菌体,重新加入培养基,接种,进行第二批次发酵。
在上述优选技术方案中,通过添加磁性Fe3O4纳米颗粒,并调节DSM869和DSM7072的接种比例、两菌种接种时间间隔和磁性Fe3O4纳米颗粒添加量等参数,进行纤维素发酵反应,其产氢量可达到1.6mmol/0.25g纤维素。
本发明所述发酵纤维素产氢过程中,对厌氧发酵瓶中氢气积累量进行实时监测,每天记录氢气积累量数值,达到峰值时结束首批次发酵或第二批次发酵。
相比现有技术,本发明所述强化双菌发酵纤维素产氢的方法的方法具有如下优点:
(1)本发明方法中添加磁性Fe3O4纳米颗粒的双菌体系比不添加磁性Fe3O4纳米颗粒的双菌体系,首批次发酵氢气产量提高了13-32%;第二批次发酵纤维素氢气产量提高了18-35%。
(2)本发明方法中采用磁性Fe3O4纳米颗粒可以重复回收利用,无污染,能够节约生产成本、保护环境,操作简单,易于放大,适用于大规模纤维素发酵产氢。
具体实施方式
为了更好的说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
实施例1
(1)在厌氧瓶中分别进行两菌种的预培养,丁基胶塞密封后进行3次“抽真空-冲氮气”,高压灭菌后接种细菌在55℃、pH 7.0条件下,进行两株细菌种子液的培养,其中两菌种分别为纤维素降解菌DSM7072和糖发酵菌DSM869。
(2)制备微晶纤维素培养基,其中微晶纤维素的使用量为0.25g,然后向培养基中加入450μmol粒径为40nm的磁性Fe3O4纳米颗粒,灭菌,随后将经过预培养的DSM7072和DSM869的菌液接种到发酵培养基中,其中接种比例为DSM7072:DSM869为1:0.8,接种时先接入DSM7072,立即接入DSM869(即间隔时间7h),得到50ml发酵体系,在55℃、pH 7.0条件下培养,进行双菌培养发酵纤维素产氢。简单计算可知磁性Fe3O4纳米颗粒的终浓度为9mM。
(3)发酵过程中实时监测,每天采集厌氧瓶上空气体,检测氢气含量,选取产氢量的最大值。培养4天后,达到最大氢气积累量。
培养效果测试:
本实施例中发酵产氢量为1.43mmol。
实施例2
(1)在厌氧瓶中分别进行两菌种的预培养,丁基胶塞密封后进行3次“抽真空-冲氮气”,高压灭菌后接种细菌在55℃、pH 7.0条件下,进行两株细菌种子液的培养,其中两菌种分别为纤维素降解菌(Clostridium thermocellum)DSM7072和糖发酵菌(Thermoanaerobacterium thermosaccharolyticum)DSM869。
(2)制备微晶纤维素培养基,其中微晶纤维素的使用量为0.25g,然后向培养基中加入250μmol粒径为30nm的磁性Fe3O4纳米颗粒,灭菌,随后将经过预培养的DSM7072和DSM869的菌液接种到发酵培养基中,其中接种比例为DSM7072:DSM869为1:0.5,接种时先接入DSM7072,立即接入DSM869(即间隔时间0h),得到50ml发酵体系,在55℃、pH 7.0条件下培养,进行双菌培养发酵纤维素产氢。简单计算可知磁性Fe3O4纳米颗粒的终浓度为5mM。
(3)发酵过程中实时监测,每天采集厌氧瓶上空气体,检测氢气含量,选取产氢量的最大值。培养5天后,达到最大氢气积累量,首批次发酵结束。
(4)采用强磁铁收集磁性颗粒,倒掉培养基,重新加入微晶纤维素培养基培养基,其中微晶纤维素的使用量为0.25g,随后将经过预培养的DSM7072和DSM869的菌液接种到发酵培养基中,其中接种比例为DSM7072:DSM869为1:0.5,接种时先接入DSM7072,立即接入DSM869(即间隔时间0h),进行第二批次发酵,采集厌氧瓶上空气体,检测氢气含量,到氢气积累量最大值时记录数值。
培养效果测试:
本实施例中首批次发酵产氢量为1.356mmol,第二批次发酵产氢量为1.416mmol。
通过与对比例1对比可知,首批次发酵氢率提高了13%,第二批次发酵产氢率提高了18%;
实施例3
(1)在厌氧瓶中分别进行两菌种的预培养,丁基胶塞密封后进行3次“抽真空-冲氮气”,高压灭菌后接种细菌在55℃、pH 7.0条件下,进行两株细菌种子液的培养,其中两菌种分别为纤维素降解菌DSM7072和糖发酵菌DSM869。
(2)制备微晶纤维素培养基,其中微晶纤维素的使用量为0.25g,然后向培养基中加入500μmol粒径为50nm的磁性Fe3O4纳米颗粒,灭菌,随后将经过预培养的DSM7072和DSM869的菌液接种到发酵培养基中,其中接种比例为DSM7072:DSM869为1:0.5,接种时先接入DSM7072,立即接入DSM869(即间隔时间0h),得到50ml发酵体系,在55℃、pH 7.0条件下培养,进行双菌培养发酵纤维素产氢。简单计算可知磁性Fe3O4纳米颗粒的终浓度为10mM。
(3)发酵过程中实时监测,每天采集厌氧瓶上空气体,检测氢气含量,选取产氢量的最大值。培养5天后,达到最大氢气积累量,首批次发酵结束。
(4)采用强磁铁收集磁性颗粒,倒掉培养基,重新加入微晶纤维素培养基培养基,其中微晶纤维素的使用量为0.25g,随后将经过预培养的DSM7072和DSM869的菌液接种到发酵培养基中,其中接种比例为DSM7072:DSM869为1:0.5,接种时先接入DSM7072,立即接入DSM869(即间隔时间0h),进行第二批次发酵,采集厌氧瓶上空气体,检测氢气含量,到氢气积累量最大值时记录数值。
培养效果测试:
本实施例中首批次发酵产氢量为1.572mmol,第二批次发酵产氢量为1.579。
通过与对比例1对比可知,首批次发酵产氢率提高了31%,第二批次发酵产氢率提高了31.6%;
实施例4
(1)在厌氧瓶中分别进行两菌种的预培养,丁基胶塞密封后进行3次“抽真空-冲氮气”,高压灭菌后接种细菌在55℃、pH 7.0条件下,进行两株细菌种子液的培养,其中两菌种分别为纤维素降解菌DSM7072和糖发酵菌DSM869。
(2)制备微晶纤维素培养基,其中微晶纤维素的使用量为0.25g,然后向培养基中加入450μmol粒径为40nm的磁性Fe3O4纳米颗粒,灭菌,随后将经过预培养的DSM7072和DSM869的菌液接种到发酵培养基中,其中DSM7072:DSM869为1:0.85,接种时先接入DSM7072,间隔8h,然后接入DSM869,得到50ml的发酵体系,在55℃、pH 7.0条件下培养,进行双菌培养发酵纤维素产氢。简单计算可知磁性Fe3O4纳米颗粒在发酵体系中的浓度为9mmol/L。
(3)发酵过程中实时监测,每天采集厌氧瓶上空气体,检测氢气含量,选取产氢量的最大值。培养6天后,达到最大氢气积累量,首批次发酵结束。
(4)采用强磁铁收集磁性颗粒,倒掉培养基,重新加入培养基并接种与损失量等量的菌体,进行第二批次发酵,采集厌氧瓶上空气体,检测氢气含量,到氢气积累量最大值时记录数值。
培养效果测试:
本实施例中首批次发酵产氢量为1.596mmol,第二批次发酵产氢量为1.606。
实施例5
(1)在厌氧瓶中分别进行两菌种的预培养,丁基胶塞密封后进行3次“抽真空-冲氮气”,高压灭菌后接种细菌在55℃、pH 7.0条件下,进行两株细菌种子液的培养,其中两菌种分别为纤维素降解菌DSM1237和糖发酵菌DSM572。
(2)制备微晶纤维素培养基,其中微晶纤维素的使用量为0.25g,然后向培养基中加入500μmol粒径为40nm的磁性Fe3O4纳米颗粒,灭菌,随后将经过预培养的DSM1237和DSM572的菌液接种到发酵培养基中,其中DSM1237:DSM572为1:0.8,接种时先接入DSM1237,间隔7h,然后接入DSM572,得到50ml发酵体系,在55℃、pH 7.0条件下培养,进行双菌培养发酵纤维素产氢。简单计算可知磁性Fe3O4纳米颗粒在发酵体系中的浓度为10mmol/L。
(3)发酵过程中实时监测,每天采集厌氧瓶上空气体,检测氢气含量,选取产氢量的最大值。培养7天后,达到最大氢气积累量,首批次发酵结束。
(4)采用强磁铁收集磁性颗粒,倒掉培养基,重新加入培养基并接种与损失量等量的菌体,进行第二批次发酵,采集厌氧瓶上空气体,检测氢气含量,到氢气积累量最大值时记录数值。
培养效果测试:
本实施例中首批次发酵产氢量为1.13mmol,第二批次发酵产氢量为1.21mmol。
实施例6
(1)在厌氧瓶中分别进行两菌种的预培养,丁基胶塞密封后进行3次“抽真空-冲氮气”,高压灭菌后接种细菌在55℃、pH 7.0条件下,进行两株细菌种子液的培养,其中两菌种分别为纤维素降解菌(DSM1237和DSM1313的混合,混合比为1:1)和糖发酵菌DSM869。
(2)制备微晶纤维素培养基,其中微晶纤维素的使用量为0.25g,然后向培养基中加入22.5μmol粒径为70nm的磁性Fe3O4纳米颗粒,灭菌,随后将经过预培养的纤维素降解菌和糖发酵菌的菌液接种到发酵培养基中,其中体积比为DSM869:(DSM1237和DSM1313的混合菌)为1:0.15,接种时先接入纤维素降解菌,间隔30h,然后接入糖发酵菌,得到50ml发酵体系,在55℃、pH 7.0条件下培养,进行发酵纤维素产氢。简单计算可知磁性Fe3O4纳米颗粒在发酵体系中的浓度为0.45mmol/L。
(3)发酵过程中实时监测,每天采集厌氧瓶上空气体,检测氢气含量,选取产氢量的最大值。培养8天后,达到最大氢气积累量,首批次发酵结束。
(4)采用强磁铁收集磁性颗粒,倒掉培养基,重新加入培养基并接种与损失量等量的菌体,进行第二批次发酵,采集厌氧瓶上空气体,检测氢气含量,到氢气积累量最大值时记录数值。
培养效果测试:
本实施例中首批次发酵产氢量为0.93mmol,第二批次发酵产氢量为0.91mmol。
实施例7
除DSM7072:DSM869为1:0.6外,其他内容均与实施例2中相同。
培养效果测试:
本实施例中首批次发酵产氢量为1.407mmol,第二批次发酵产氢量为1.453mmol。
对比例1
(1)在厌氧瓶中分别进行两菌种的预培养,丁基胶塞密封后进行3次“抽真空-冲氮气”,高压灭菌后接种细菌在55℃、pH 7.0条件下,进行两株细菌种子液的培养,其中两菌种分别为纤维素降解菌(Clostridium thermocellum)DSM7072和糖发酵菌(Thermoanaerobacterium thermosaccharolyticum)DSM869。
(2)制备微晶纤维素培养基,其中微晶纤维素的使用量为0.25g,灭菌,随后将经过预培养的DSM7072和DSM869的菌液接种到发酵培养基中,其中接种比例为DSM7072:DSM869为1:0.5,接种时先接入DSM7072,立即接入DSM869(即间隔时间0h),得到50ml发酵体系,在55℃、pH 7.0条件下培养,进行双菌培养发酵纤维素产氢。
(3)发酵过程中实时监测,每天采集厌氧瓶上空气体,检测氢气含量,选取产氢量的最大值。培养5天后,达到最大氢气积累量,首批次发酵结束。
(4)倒掉培养基,重新加入培养基,各实验条件与首批次发酵时的条件相同,进行第二批次发酵,采集厌氧瓶上空气体,检测氢气含量,到氢气积累量最大值时记录数值。
培养效果测试:
本实施例中第一批次发酵后产氢量为1.2mmol,第二批次发酵后产氢量1.2mmol。
对比例2
除DSM7072:DSM869为1:0.003外,其他内容均与实施例2中相同。
培养效果测试:
本实施例中首批次发酵产氢量为0.733mmol,第二批次发酵产氢量为0.759mmol。
对比例3
除DSM7072:DSM869为1:10外,其他内容均与实施例2中相同。
培养效果测试:
本实施例中首批次发酵产氢量为0.672mmol,第二批次发酵产氢量为0.695mmol。
对比例4
除添加磁性Fe3O4纳米颗粒使终浓度为0.01mM外,其他内容均与实施例2中相同。
培养效果测试:
本实施例中首批次发酵产氢量为1.020mmol,第二批次发酵产氢量为1.165mmol。
对比例5
除添加磁性Fe3O4纳米颗粒使终浓度为30mmol/L外,其他内容均与实施例2中相同。
培养效果测试:
本实施例中首批次发酵产氢量为0.877mmol,第二批次发酵产氢量为0.908mmol。
对比例6
除纤维素降解菌DSM7072和糖发酵菌DSM869的接种间隔时间为8h外,其他内容均与实施例2中相同。
培养效果测试:
本实施例中首批次发酵产氢量为1.406mmol,第二批次发酵产氢量为1.43mmol。
通过实施例1-7及对比例1-6可见,添加磁性Fe3O4纳米颗粒的双菌体系比不添加磁性Fe3O4纳米颗粒的双菌体系,首批次发酵氢气产量提高了13-32%;第二批次发酵纤维素氢气产量提高了18-35%,其产氢量可达到1.6mmol/0.25g纤维素。
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
Claims (30)
1.一种强化双菌发酵产氢的方法,其特征在于,所述方法包括:
(1)向纤维素培养基中加入磁性Fe3O4纳米颗粒,灭菌,得双菌发酵培养基;
(2)向步骤(1)的双菌发酵培养基中接种纤维素降解菌和糖发酵菌,进行发酵纤维素产氢;
步骤(1)所述磁性Fe3O4纳米颗粒的终浓度控制在5-10mM,所述纤维素降解菌和糖发酵菌的接种比例为1:1-1:0.1,所述纤维素降解菌为纤维素降解菌DSM7072,所述糖发酵菌为糖发酵菌DSM869。
2.如权利要求1所述的方法,其特征在于,步骤(1)所述纤维素培养基为微晶纤维素培养基。
3.如权利要求1所述的方法,其特征在于,步骤(1)所述磁性Fe3O4纳米颗粒的终浓度控制在8-10mM。
4.如权利要求1所述的方法,其特征在于,所述磁性Fe3O4纳米颗粒的粒径为10-100nm。
5.如权利要求4所述的方法,其特征在于,所述磁性Fe3O4纳米颗粒的粒径为20-50nm。
6.如权利要求1所述的方法,其特征在于,步骤(2)所述纤维素降解菌和糖发酵菌的总接种量控制在5%-15%。
7.如权利要求6所述的方法,其特征在于,步骤(2)所述纤维素降解菌和糖发酵菌的总接种量控制在8%-10%。
8.如权利要求1所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌的接种比例为1:0.9-1:0.6。
9.如权利要求8所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌的接种比例为1:0.9-1:0.8。
10.如权利要求1所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌的接种间隔时间为0h-48h。
11.如权利要求10所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌的接种间隔时间为0h-11h。
12.如权利要求11所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌的接种间隔时间为6h-11h。
13.如权利要求1所述的方法,其特征在于,所述接种时,先接种纤维素降解菌,再接种糖发酵菌。
14.如权利要求1所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌在接种前都经过预培养阶段。
15.如权利要求14所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌的预培养的pH值均独立地为6.1-7.5。
16.如权利要求15所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌的预培养的pH值均独立地为6.5-7.0。
17.如权利要求16所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌的预培养的pH值均为7.0。
18.如权利要求14所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌的预培养的温度均独立地为50-60℃。
19.如权利要求18所述的方法,其特征在于,所述纤维素降解菌和糖发酵菌的预培养的温度均为55℃。
20.如权利要求1所述的方法,其特征在于,步骤(2)中所述发酵纤维素产氢过程的pH值为6.1-7.5。
21.如权利要求20所述的方法,其特征在于,步骤(2)中所述发酵纤维素产氢过程的pH值为6.5-7.0。
22.如权利要求21所述的方法,其特征在于,步骤(2)中所述发酵纤维素产氢过程的pH值均为7.0。
23.如权利要求1所述的方法,其特征在于,步骤(2)中所述发酵纤维素产氢过程的温度为50-60℃。
24.如权利要求23所述的方法,其特征在于,步骤(2)中所述发酵纤维素产氢过程的温度为55℃。
25.如权利要求1所述的方法,其特征在于,所述方法还包括步骤(3):回收所述磁性Fe3O4纳米颗粒和其上所附着的菌体,重新加入新的培养基中再次进行发酵纤维素产氢。
26.如权利要求1-25之一所述的方法,其特征在于,所述方法包括以下步骤:
(1)分别预培养纤维素降解菌和糖发酵菌,预培养的pH值均独立地为6.1-7.5,预培养的温度均独立地为55℃;
(2)在微晶纤维素培养基中,加入粒径为10-100nm的磁性Fe3O4纳米颗粒使Fe3O4纳米颗粒的终浓度为5-10mM,灭菌,得双菌发酵培养基;
(3)将经过预培养的纤维素降解菌和糖发酵菌以1:1-1:0.5的接种比例接种到双菌发酵培养基中,接种时先接入纤维素降解菌,然后间隔0-12h,再接入糖发酵菌,选择pH为6.5-7.0,温度为55℃,进行发酵纤维素产氢。
27.如权利要求1-25之一所述的方法,其特征在于,所述方法包括以下步骤:
(1)分别预培养纤维素降解菌和糖发酵菌,预培养的pH值均为6.1-7.5,预培养的温度均为55℃;
(2)在微晶纤维素培养基中,加入粒径为10-100nm的磁性Fe3O4纳米颗粒使Fe3O4纳米颗粒的终浓度为5-10mmol/L,灭菌,得双菌发酵培养基;
(3)将经过预培养的纤维素降解菌和糖发酵菌以1:1-1:0.5的接种比例接种到双菌发酵培养基中,接种时先接入纤维素降解菌,然后间隔0-12h,再接入糖发酵菌,选择pH为6.5-7.0,温度为55℃,进行发酵纤维素产氢;
(4)回收磁性Fe3O4纳米颗粒和其上所附的菌体,重新加入新的培养基,接种,进行第二批次发酵纤维素产氢;
其中,步骤(3)和(4)发酵的时间独立地为3-9天。
28.如权利要求1-25之一所述的方法,其特征在于,发酵的时间为3-9天。
29.如权利要求28所述的方法,其特征在于,发酵的时间为4-8天。
30.如权利要求29所述的方法,其特征在于,发酵的时间为4-6天。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510695350.9A CN106609294B (zh) | 2015-10-22 | 2015-10-22 | 一种强化双菌发酵纤维素产氢的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510695350.9A CN106609294B (zh) | 2015-10-22 | 2015-10-22 | 一种强化双菌发酵纤维素产氢的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106609294A CN106609294A (zh) | 2017-05-03 |
CN106609294B true CN106609294B (zh) | 2020-08-28 |
Family
ID=58612520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510695350.9A Active CN106609294B (zh) | 2015-10-22 | 2015-10-22 | 一种强化双菌发酵纤维素产氢的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106609294B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111847525B (zh) * | 2020-07-29 | 2023-06-13 | 安徽工程大学 | 一种水葫芦绿色合成磁性纳米Fe3O4颗粒的方法及应用 |
CN116836883B (zh) * | 2023-07-27 | 2023-11-17 | 华南理工大学 | 一株帕姆酒耐热梭菌及其应用 |
CN118716552A (zh) * | 2024-06-25 | 2024-10-01 | 青海光明岩生物科技有限公司 | 一种富氢固体饮料及其制备方法 |
CN118931974B (zh) * | 2024-08-21 | 2025-06-03 | 东莞理工学院 | 一种降解未脱毒生物质制氢的方法及其应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090017512A1 (en) * | 2006-12-06 | 2009-01-15 | May Harold D | Apparatus and methods for the production of ethanol, hydrogen and electricity |
CN101008018A (zh) * | 2007-01-26 | 2007-08-01 | 哈尔滨工业大学 | 一种菌种复配降解纤维素发酵产氢的方法 |
CN101402972A (zh) * | 2008-11-18 | 2009-04-08 | 哈尔滨工业大学 | 一种纤维素梭菌分解纤维素产氢的方法 |
CN102477448B (zh) * | 2010-11-24 | 2013-11-06 | 上海工程技术大学 | 一种生物制氢的方法 |
CN102321671B (zh) * | 2011-09-19 | 2013-03-13 | 哈尔滨工业大学 | 一种生物预处理木质纤维素及同步糖化发酵产氢的方法 |
PL3022308T3 (pl) * | 2013-07-15 | 2022-11-21 | Hangzhou Dehong Technology Co., Ltd. | Sposoby wytwarzania związków chemicznych na bazie węgla poprzez przetwarzanie biomasy algowej |
CN104529116B (zh) * | 2015-01-14 | 2016-06-15 | 哈尔滨工业大学 | 一种利用纳米四氧化三铁提高厌氧消化产甲烷菌活性与产甲烷效率的方法 |
-
2015
- 2015-10-22 CN CN201510695350.9A patent/CN106609294B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN106609294A (zh) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Co-culture of Clostridium thermocellum and Clostridium thermosaccharolyticum for enhancing hydrogen production via thermophilic fermentation of cornstalk waste | |
Cheng et al. | Comparison between heterofermentation and autofermentation in hydrogen production from Arthrospira (Spirulina) platensis wet biomass | |
Singhvi et al. | Nanoparticle-associated single step hydrogen fermentation for the conversion of starch potato waste biomass by thermophilic Parageobacillus thermoglucosidasius | |
Lin et al. | Evaluation of spent mushroom compost as a lignocellulosic substrate for hydrogen production by Clostridium thermocellum | |
CN106609294B (zh) | 一种强化双菌发酵纤维素产氢的方法 | |
CN110106223B (zh) | 一种促进玉米秸秆光合产氢的方法 | |
WO2019174194A1 (zh) | 一种利用微生物还原co2同时产甲烷和乙酸的方法 | |
CN103395775B (zh) | 微生物燃料电池阳极菌生物还原氧化石墨烯及其制备 | |
CN102031276B (zh) | 一种生物、碱复合预处理秸秆纤维原料两步发酵产氢的方法 | |
Tang et al. | Evaluation of hydrogen production from corn cob with the mesophilic bacterium Clostridium hydrogeniproducens HR-1 | |
CN103555620B (zh) | 一种碱性过氧化氢酶高产菌及该菌株发酵法生产工艺 | |
CN103525877B (zh) | 一种微生物发酵选择性生产3-羟基-2-丁酮和2,3-丁二醇的方法 | |
CN112358986B (zh) | 一种丁酸梭菌及其在固定化发酵生产1,3-丙二醇的应用 | |
CN103789365A (zh) | 回收轻油生产微生物油脂的方法 | |
CN101988075A (zh) | 一种利用专性厌氧巴氏梭菌发酵制氢的方法 | |
CN102041274A (zh) | 一种利用专性厌氧丁酸梭菌发酵制氢的方法 | |
CN106350568A (zh) | 一种复合菌群同步降解纤维素和厌氧发酵生物产氢的方法 | |
CN107502627A (zh) | 一种基于羧酸平台的水稻秸秆分相生物转化丁醇的方法 | |
CN102732576A (zh) | 以木质纤维素原料联产生物柴油与生物丁醇的方法 | |
CN102876723A (zh) | 一种强化厌氧发酵制氢的方法 | |
CN103305433B (zh) | 一株类芽孢杆菌及其在生产碱性果胶酶中的应用 | |
CN102660571A (zh) | 一种安全、高效生产1,3丙二醇的方法 | |
CN102433321B (zh) | 可利用木糖发酵乳酸且耐高温的融合乳酸菌的育种方法 | |
CN105177034A (zh) | 一种基因工程菌及其在利用甘油生产2,3-丁二醇中的应用 | |
CN104818297A (zh) | 一种利用菇渣发酵产氢的方法及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |