CN111813139A - 一种持续载荷模拟器多轴耦合运动奇异性控制方法 - Google Patents

一种持续载荷模拟器多轴耦合运动奇异性控制方法 Download PDF

Info

Publication number
CN111813139A
CN111813139A CN202010734747.5A CN202010734747A CN111813139A CN 111813139 A CN111813139 A CN 111813139A CN 202010734747 A CN202010734747 A CN 202010734747A CN 111813139 A CN111813139 A CN 111813139A
Authority
CN
China
Prior art keywords
singularity
motion
control
module
condition number
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010734747.5A
Other languages
English (en)
Other versions
CN111813139B (zh
Inventor
罗鹏
胡荣华
舒杨
白俊林
刘婷婷
宋琼
陈文颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Engineering Research Institute China Academy of Engineering Physics
Original Assignee
General Engineering Research Institute China Academy of Engineering Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Engineering Research Institute China Academy of Engineering Physics filed Critical General Engineering Research Institute China Academy of Engineering Physics
Priority to CN202010734747.5A priority Critical patent/CN111813139B/zh
Publication of CN111813139A publication Critical patent/CN111813139A/zh
Application granted granted Critical
Publication of CN111813139B publication Critical patent/CN111813139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Feedback Control In General (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种持续载荷模拟器多轴耦合运动奇异性控制方法,包括以下步骤:S1:建立模拟器的轴运动数学关系;S2:在姿态控制的雅克比中将主臂与其他转轴进行解耦合;S3:对当前结果进行奇异程度的量化;S4:对奇异程度量化进行快速求解;S5:解算出奇异程度量化结果后,设计奇异控制模块。本发明在充分利用轴运动行程的情况下,进行了奇异点的过渡。通过控制指令比例缩小的方式来避免奇异点的附近因为轴机械范围限制而出现突变的情况,从而提高飞行模拟的平稳性和逼真度。

Description

一种持续载荷模拟器多轴耦合运动奇异性控制方法
技术领域
本发明属于载荷模拟器技术领域,具体涉及一种持续载荷模拟器多轴耦合运动奇异性控制方法。
背景技术
随着航空技术的发展和战机机动性能的提升,加速度意识丧失(G-Loc)和空间定向障碍(SD)问题日益突出,已成为危害世界各国飞行安全的主要因素。针对此类问题,目前世界各主要航空大国都采用载人离心机进行训练。随着载人离心机的快速发展以及飞行训练科目对装备的需求,现在的载人离心机不仅仅是提供持续过载的模拟,还在向着全姿态模拟的方向快速发展,是一种能够提供持续载荷的飞行模拟器。三轴载人离心机控制姿态只有两个轴,不能实现全姿态的飞行模拟,更多轴的持续载荷模拟器应运而生,在四、五、六轴持续载荷模拟器上,可以通过俯仰、滚转和偏航三个转动框来实现对座舱姿态的控制。
当姿态控制的转轴增加到三个时,增加了很多控制计算上的问题,万向锁的问题就是其中一个,万向锁在更广泛的数学意义上属于奇异性概念。万向锁和奇异性的关系是在万向锁是针对多框嵌套这种万向架的结构下的奇异问题。
万向锁的数学直观解释是控制矩阵不满秩,呈现奇异性,在求逆运动的时候出现无解的情况。例如在外框为偏航,中框为滚转,内框为俯仰的结构下,如果中框转到90°时,外框和内框都将只改变座舱的俯仰状态,无法通过轴运动改变座舱的偏航姿态,这时,关于座舱的姿态控制就丢失了一个自由度。现有的持续载荷模拟器研究也没有关于多轴耦合的奇异性问题研究。
发明内容
本发明目的在于提供一种持续载荷模拟器多轴耦合运动奇异性控制方法,用于解决上述现有技术中存在的技术问题之一,如:现有技术中,现有的持续载荷模拟器研究也没有关于多轴耦合的奇异性问题研究。
为实现上述目的,本发明的技术方案是:
一种持续载荷模拟器多轴耦合运动奇异性控制方法,包括以下步骤:
S1:建立模拟器的轴运动数学关系;
S2:在姿态控制的雅克比中将主臂与其他转轴进行解耦合;
S3:对当前结果进行奇异程度的量化;
S4:对奇异程度量化进行快速求解;
S5:解算出奇异程度量化结果后,设计奇异控制模块。
进一步的,步骤S1具体如下:
依据持续载荷模拟器的运动轴连接情况,构建运动学雅克比矩阵,用数学的方法直观表示轴转速和座舱转速之间的运动学关系。
进一步的,步骤S2具体如下:
在姿态控制的雅克比中需要将主臂与其他转轴进行解耦合,处理方法为如下:
Figure BDA0002604440110000021
其中v是末端的速度,ω是末端的角速度,Jli第i个关节与平移相关的雅克比转换矩阵,Jai第i个关节与角运动相关的雅克比转换矩阵,
Figure BDA0002604440110000023
是第i个运动关节的速度;
所以与主轴解耦之后的其他轴运动控制的雅克比矩阵可以表示为:
Figure BDA0002604440110000022
其中Jli第i个关节与平移相关的雅克比转换矩阵,Jai第i个关节与角运动相关的雅克比转换矩阵。
进一步的,步骤S3具体如下:
对当前结果进行奇异程度的量化,选用矩阵的条件数作为奇异程度量化标准;条件数的定义:
cond(A)v=||A-1||v||A||v,其中(v=1,2或∞);
其中谱条件数为:
Figure BDA0002604440110000031
条件数越大,代表当前各个轴的转动位置越接近奇异点。
进一步的,步骤S4具体如下:
奇异控制采用近似的求解方法,采用条件数的倒数和中间框的角度的齐次关系拟合来快速求解条件数;
Figure BDA0002604440110000032
其中ki表示对应阶次的系数,β为将当前中框转角θ映射到
Figure BDA0002604440110000033
范围内的坐标值;选择一次拟合关系:
Figure BDA0002604440110000034
其中
Figure BDA0002604440110000035
进一步的,步骤S5具体如下:
快速估算出当前位置的奇异程度量化结果后,就需要对当前解算的速度输出进行奇异控制;
其中,奇异控制模块在整个运动控制结构中的位置为:
首先角速度输入至逆运动解算模块进行逆运动解算,然后输入至奇异性控制模块进行奇异性控制;然后奇异性控制信号一方面输入至正运动解算模块进行正运动解算,然后输入至输出比较模块;奇异性控制信号另一方面输入至速度积分器模块解算角位置,然后将角位置一方面输入至逆运动计算模块进行逆运动解算,将角位置另一方面输入至奇异量化模块进行奇异量化,然后在输入至奇异性控制模块;
奇异性控制模块的主要功能是以奇异量化结果为依据对逆运动解算结果进行比例限幅输出;建立比例系数和条件数的关系如下:
Figure BDA0002604440110000036
其中K为限幅比例系数,nc为条件数,a、b为参数;
以轴运动的限速和限幅作为更高一层的安全限制,奇异控制模块的结构为:
转动位置经过条件数计算模块的计算后得出实时条件数,并将实时条件数输入至奇异性控制模块;逆运动解算模块的逆运动解算结果也输入至奇异性控制模块;周运动限速和限幅也输入至奇异性控制模块;最后奇异性控制模块输出控制输出信号;
轴运动的控制指令有Lm和Ls两个限制条件;
Lm是轴运动的机械特性限制,各个轴的设计运动参数;Ls为基于条件数的奇异性解算限制;
轴运动输出控制指令可以表示为:
c内外=min{Lm,Ls·ci};
中框可根据需要进行设定;
c=min{Lm,c}。
与现有技术相比,本发明所具有的有益效果为:
本方案的一个创新点在于,在充分利用轴运动行程的情况下,进行了奇异点的过渡。通过控制指令比例缩小的方式来避免奇异点的附近因为轴机械范围限制而出现突变的情况,从而提高飞行模拟的平稳性和逼真度。
本方案的一个创新点在于,利用当前结构下的条件数拟合的方式实现在实时解算的场景下对结构奇异程度的快速估计,提升控制算法对奇异问题的处理速度,提高模拟效果。
本方案的一个创新点在于,在保证逼真度的同时实现控制系统的奇异区域过渡,最大限度地利用轴运动行程。
本方案的一个创新点在于,通过雅克比矩阵右乘向量的拆分,实现主臂与姿态框的解耦。该方案可以应用于其他机器人中部分关节因他用或故障等原因出现无法控制情况下的处理方法;通过雅克比矩阵条件数实现对持续载荷模拟器结构下运动奇异位形的衡量,使得持续载荷模拟器结构在不同位置的奇异性能够被量化处理;条件数能够量化机械结构的奇异性,但是实时运算量比较大,通过条件数倒数的齐次拟合实现对条件数的近似估计,从而降低奇异控制模块的运算量;更大范围地,对于任意的串联或者并联机械结构,一旦结构确定,也就是各个轴之间的运动关系确定,那么描述这个结构的雅克比矩阵就确定了,可以通过对该雅克比矩阵进行条件数分析建立条件数与轴位置之间的关系,从而提高条件数的实时计算效率,降低系统的运算量;奇异过渡模型的基本结构,利用轴的固有机械特性和当前轴位置对持续载荷模拟器奇异进行过渡控制,在奇异性逐渐增加或减小的情况下,避免了大部分指令输出的突然限幅,充分利用了轴运动范围。
附图说明
图1是本发明具体实施方式的奇异控制模块在整个运动控制结构中的位置示意图。
图2是本发明具体实施方式的奇异性控制模块结构示意图。
图3是本发明具体实施方式的步骤流程示意图。
具体实施方式
下面结合本发明的附图1-3,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:
本发明主要解决四、五、六轴持续载荷模拟器的奇异性问题,奇异问题的最直接表现是欧拉角的万向锁问题。万向锁问题在欧拉角上可以通过四元数、双欧法等数学变换来解决奇异问题,但是在具体的机械结构下,很难实现结构变换来回避奇异,所以需要通过控制算法来进行奇异点的回避。
奇异性问题在持续载荷模拟器多轴耦合控制中主要表现在:
1、当结构处于奇异点时,座舱可控的实际操作自由度减少,无法通过控制逆解算来实现某些需要模拟的姿态;
2、接近奇异点状态时,为了模拟某方向上一个小的转动,需要部分关节角速度变的很大,容易引起控制失控,超出轴运动的转速限制。
针对奇异问题的处理,在机器人领域大多采用规避的方法,但是在目前的持续载荷模拟器结构中,如果中框达到90°时,将出现自由度丢失的问题。而为了提高感知模拟的逼真度,转轴的运动范围设计一般是大于90°的,很多时候甚至能达到360°的运动范围,所以回避奇异点并不是最好的解决思路,为了能更有效的利用行程,本专利采用奇异过渡的解决办法。
持续载荷模拟器各框轴的运动学关系可以用雅克比矩阵来表示,但是雅克比矩阵在持续载荷模拟器上的应用和一般的机器人的场景的不同之处体现在几个方面:
1、结构上,持续载荷模拟器的转动框是内外嵌套的结构,不同于机械手的直连结构,所以持续载荷模拟器需要重点研究座舱的角运动关系;
2、控制目的不同,机器人是控制到具体的空间点实现某个任务,持续载荷模拟器是通过控制转动实现感知的近似;
3、持续载荷模拟器主臂位置不确定性。持续载荷模拟器主臂是产生过载量的,在姿态控制中,主臂转速不能作为被控制量,可以作为一个变化的扰动。即在持续载荷模拟器运动正解算的时候,主臂转动参数是作为系统输入,在逆解算的时候,主臂转动参数仍然是作为系统的输入参与运算。这个问题也不能通过将基坐标换在主臂末端来解决,因为主臂的转动也会不停的对座舱姿态产生影响。
因此,提出一种持续载荷模拟器多轴耦合运动奇异性控制方法;
具体步骤为:
1、建立模拟器的轴运动数学关系。
依据持续载荷模拟器的运动轴连接情况,构建运动学雅克比矩阵,用数学的方法直观表示轴转速和座舱转速之间的运动学关系。如:
Figure BDA0002604440110000061
其中v是末端的速度,ω是末端的角速度,Jli第i个关节与平移相关的雅克比转换矩阵,Jai第i个关节与角运动相关的雅克比转换矩阵,
Figure BDA0002604440110000062
是第i个运动关节的速度。
2、主臂与其他运动轴解耦
因为主臂是用来产生过载的,所以在姿态解算中,是不可控制的量,但是又会对姿态控制造成影响。即在正解和逆解的过程中,主臂始终充当输入量。在姿态控制的雅克比中需要将主臂与其他转轴进行解耦合,处理方法为如下::
Figure BDA0002604440110000071
其中v是末端的速度,ω是末端的角速度,Jl1主臂与平移相关的雅克比转换矩阵,Ja1主臂与角运动相关的雅克比转换矩阵,Jli第i个关节与平移相关的雅克比转换矩阵,Jai第i个关节与角运动相关的雅克比转换矩阵,
Figure BDA0002604440110000074
是各个运动关节的速度;
所以与主轴解耦之后的其他轴运动控制的雅克比矩阵可以表示为:
Figure BDA0002604440110000072
其中Jli第i个关节与平移相关的雅克比转换矩阵,Jai第i个关节与角运动相关的雅克比转换矩阵;
在姿态感知模拟中,我们关注的就是角运动关系,所以重点选取雅克比矩阵的后三行进行分析和研究。例如,在滚转-偏航-俯仰结构下的角速度雅克比矩阵为(第一列为雅克比矩阵解耦后的结果,可以忽略):
Figure BDA0002604440110000073
其中s表示sin,c表示cos,q1、q2、q3、q4分别表示主臂、外框、中框和内框的转角。当前结构的很多运动学问题都可以通过对雅克比矩阵的分析来实现。
3、量化奇异程度
在奇异控制处理上,如果仅仅采用当求解的转速超过轴运动能力就限幅控制,那么会使得模拟运动出现突变,极大影响运动模拟效果,所以需要对当前结果进行奇异程度的量化,这里选用矩阵的条件数作为奇异程度量化标准。条件数的定义:
cond(A)v=||A-1||v||A||v,其中(v=1,2或∞)
其中常用的谱条件数为:
Figure BDA0002604440110000081
其中σmax是矩阵A的极大奇异值,σmin是矩阵A的极小奇异值;
条件数越大,代表当前各个轴的转动位置越接近奇异点。也就需要对运动解算格外注意。
4、奇异程度量化的快速求解
求矩阵条件数需要对矩阵进行奇异值分解,有着较大的运算量,在飞行模拟器中,需要尽可能实时模拟运动感知,所以奇异控制采用近似的求解方法,通过对条件数的分析可以发现,当前结构下,条件数只与中框的转角有关,在转角为±90°时,条件数趋于无穷大。所以,可以采用条件数的倒数和中间框的角度的齐次关系拟合来快速求解条件数。
Figure BDA0002604440110000082
其中ki表示对应阶次的系数,β为将当前中框转角θ映射到
Figure BDA0002604440110000083
范围内的坐标值。在条件数解算实时性和条件数精度中综合考虑,可以选择一次拟合关系:
Figure BDA0002604440110000084
其中
Figure BDA0002604440110000085
此方法可以快速求解出当前轴运动位置的近似条件数,也可以认为是持续载荷模拟器姿态控制的奇异程度量化参数,在要求高实时性的持续载荷模拟器轴运动解算的环境下,保证基本奇异量化需求的前提下降低运算量和运算时间。
5、奇异控制模块设计
快速估算出当前位置的奇异程度量化结果后,就需要对当前解算的速度输出进行奇异控制。奇异控制模块在整个运动控制结构中的位置如图1所示,
其中逆运动解算模块主要完成模拟器的逆运动学解算;
奇异性控制模块主要完成对解算后的控制进行奇异性控制;
奇异量化模块主要完成对当前结构状态的奇异性进行量化;
速度积分器模块主要通过对框的转速进行积分得到框的角位移;
正运动解算模块主要通过对当前框的状态进行解算,对末端运动进行验证;
输出比较模块主要是对预期运动参数和模拟器输出运动参数进行比较。
可以看出奇异控制模块的主要功能是以奇异量化结果为依据对逆运动解算结果进行比例限幅输出。建立比例系数和条件数的关系如下:
Figure BDA0002604440110000091
其中K为限幅比例系数,nc为条件数,a、b为参数。
为了进一步提高系统的安全性,还需要以轴运动的限速和限幅作为更高一层的安全限制,奇异控制模块的结构如图2所示,
条件数计算模块是依据角运动参数实时对结构的奇异性进行量化;
奇异控制模块只要是依据条件数、逆解算输出以及机械限制等输入进行奇异解算输出。
轴运动的控制指令主要有Lm和Ls两个限制条件。
Lm是轴运动的机械特性限制,各个轴的设计运动参数;Ls为基于条件数的奇异性解算限制。
轴运动输出控制指令可以表示为:
c内外=min{Lm,Ls·ci};
c内外是内外框的奇异限制系数,ci是第i个关节的奇异解算限制系数;
中框因不会出现突变的解,所以不需要进行奇异限制,只需要进行机械特性限制。如果需要快速过渡奇异点,也可以适当扩大中框的运动特性,帮助系统快速脱离奇异位形。该方法能达到缩短系统在奇异区域的时间,但是会降低感知模拟的逼真度,可以根据需要进行设定。
c=min{Lm,c};
经过基于条件数的比例控制方法对运动解算指令进行比例缩放,能在实现奇异点的平稳过渡,也在奇异性逐渐增加的情况下,避免了大部分指令输出的突然限幅,充分利用了轴运动范围。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (6)

1.一种持续载荷模拟器多轴耦合运动奇异性控制方法,其特征在于,包括以下步骤:
S1:建立模拟器的轴运动数学关系;
S2:在姿态控制的雅克比中将主臂与其他转轴进行解耦合;
S3:对当前结果进行奇异程度的量化;
S4:对奇异程度量化进行快速求解;
S5:解算出奇异程度量化结果后,设计奇异控制模块。
2.如权利要求1所述的一种持续载荷模拟器多轴耦合运动奇异性控制方法,其特征在于,步骤S1具体如下:
依据持续载荷模拟器的运动轴连接情况,构建运动学雅克比矩阵,用数学的方法直观表示轴转速和座舱转速之间的运动学关系。
3.如权利要求2所述的一种持续载荷模拟器多轴耦合运动奇异性控制方法,其特征在于,步骤S2具体如下:
在姿态控制的雅克比中需要将主臂与其他转轴进行解耦合,处理方法为如下:
Figure FDA0002604440100000011
其中v是末端的速度,ω是末端的角速度,Jli第i个关节与平移相关的雅克比转换矩阵,Jai第i个关节与角运动相关的雅克比转换矩阵,
Figure FDA0002604440100000012
是第i个运动关节的速度;
所以与主轴解耦之后的其他轴运动控制的雅克比矩阵可以表示为:
Figure FDA0002604440100000013
其中Jli第i个关节与平移相关的雅克比转换矩阵,Jai第i个关节与角运动相关的雅克比转换矩阵。
4.如权利要求3所述的一种持续载荷模拟器多轴耦合运动奇异性控制方法,其特征在于,步骤S3具体如下:
对当前结果进行奇异程度的量化,选用矩阵的条件数作为奇异程度量化标准;条件数的定义:
cond(A)v=||A-1||v||A||v,其中(v=1,2或∞);
其中谱条件数为:
Figure FDA0002604440100000021
条件数越大,代表当前各个轴的转动位置越接近奇异点。
5.如权利要求4所述的一种持续载荷模拟器多轴耦合运动奇异性控制方法,其特征在于,步骤S4具体如下:
奇异控制采用近似的求解方法,采用条件数的倒数和中间框的角度的齐次关系拟合来快速求解条件数;
Figure FDA0002604440100000022
其中ki表示对应阶次的系数,β为将当前中框转角θ映射到
Figure FDA0002604440100000023
范围内的坐标值;选择一次拟合关系:
Figure FDA0002604440100000024
其中
Figure FDA0002604440100000025
6.如权利要求5所述的一种持续载荷模拟器多轴耦合运动奇异性控制方法,其特征在于,步骤S5具体如下:
快速估算出当前位置的奇异程度量化结果后,就需要对当前解算的速度输出进行奇异控制;
其中,奇异控制模块在整个运动控制结构中的位置为:
首先角速度输入至逆运动解算模块进行逆运动解算,然后输入至奇异性控制模块进行奇异性控制;然后奇异性控制信号一方面输入至正运动解算模块进行正运动解算,然后输入至输出比较模块;奇异性控制信号另一方面输入至速度积分器模块解算角位置,然后将角位置一方面输入至逆运动计算模块进行逆运动解算,将角位置另一方面输入至奇异量化模块进行奇异量化,然后在输入至奇异性控制模块;
奇异性控制模块的主要功能是以奇异量化结果为依据对逆运动解算结果进行比例限幅输出;建立比例系数和条件数的关系如下:
Figure FDA0002604440100000031
其中K为限幅比例系数,nc为条件数,a、b为参数;
以轴运动的限速和限幅作为更高一层的安全限制,奇异控制模块的结构为:
转动位置经过条件数计算模块的计算后得出实时条件数,并将实时条件数输入至奇异性控制模块;逆运动解算模块的逆运动解算结果也输入至奇异性控制模块;周运动限速和限幅也输入至奇异性控制模块;最后奇异性控制模块输出控制输出信号;
轴运动的控制指令有Lm和Ls两个限制条件;
Lm是轴运动的机械特性限制,各个轴的设计运动参数;Ls为基于条件数的奇异性解算限制;
轴运动输出控制指令可以表示为:
c内外=min{Lm,Ls·ci};
中框可根据需要进行设定;
c=min{Lm,c}。
CN202010734747.5A 2020-07-27 2020-07-27 一种持续载荷模拟器多轴耦合运动奇异性控制方法 Active CN111813139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010734747.5A CN111813139B (zh) 2020-07-27 2020-07-27 一种持续载荷模拟器多轴耦合运动奇异性控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010734747.5A CN111813139B (zh) 2020-07-27 2020-07-27 一种持续载荷模拟器多轴耦合运动奇异性控制方法

Publications (2)

Publication Number Publication Date
CN111813139A true CN111813139A (zh) 2020-10-23
CN111813139B CN111813139B (zh) 2022-08-16

Family

ID=72862749

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010734747.5A Active CN111813139B (zh) 2020-07-27 2020-07-27 一种持续载荷模拟器多轴耦合运动奇异性控制方法

Country Status (1)

Country Link
CN (1) CN111813139B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022110034A1 (zh) * 2020-11-27 2022-06-02 深圳市大疆创新科技有限公司 云台控制方法、装置、云台及可移动平台

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050080542A1 (en) * 2003-02-26 2005-04-14 Jianbo Lu Reference signal generator for an integrated sensing system
CN101254826A (zh) * 2008-03-17 2008-09-03 上海龙东光电子有限公司 直升机光电吊舱俯仰角免疫90°奇异点的方法
US20100063653A1 (en) * 2007-04-13 2010-03-11 The Boeing Company Singularity escape and avoidance using a virtual array rotation
CN103968207A (zh) * 2014-04-30 2014-08-06 福州大学 一种无奇异完全各向同性空间三维转动并联机构
CN105223809A (zh) * 2015-07-10 2016-01-06 沈阳工业大学 H型平台的模糊神经网络补偿器的同步控制系统及方法
CN106126823A (zh) * 2016-06-23 2016-11-16 广州中国科学院工业技术研究院 一种基于提高迭代法稳定性和收敛性的位移求解方法
CN106272443A (zh) * 2016-11-01 2017-01-04 上海航天控制技术研究所 多自由度空间机械臂非完整路径规划方法
US9567112B1 (en) * 2013-06-27 2017-02-14 The United States Of America, As Represented By The Secretary Of The Navy Method and apparatus for singularity avoidance for control moment gyroscope (CMG) systems without using null motion
CN106844965A (zh) * 2017-01-19 2017-06-13 山西省交通科学研究院 一种基于静载试验识别连续梁桥实际刚度的方法
CN106933241A (zh) * 2017-03-30 2017-07-07 北京航空航天大学 基于故障解耦的单框架控制力矩陀螺航天器容错控制方法
US20170232615A1 (en) * 2016-02-11 2017-08-17 Darryl Hammock Teleoperated robot for flood-welding operations
CN108489719A (zh) * 2018-04-09 2018-09-04 常州湖南大学机械装备研究院 一种基于g-p奇异谱分解的旋转机械复合故障诊断方法
CN108803649A (zh) * 2018-08-22 2018-11-13 哈尔滨工业大学 一种垂直起降重复使用运载器自抗扰滑模控制方法
CN109571481A (zh) * 2018-12-30 2019-04-05 深圳市越疆科技有限公司 一种关节奇异点处理方法、装置、设备和存储介质
CN109871025A (zh) * 2019-02-28 2019-06-11 北京控制工程研究所 一种变速控制力矩陀螺操纵律设计方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050080542A1 (en) * 2003-02-26 2005-04-14 Jianbo Lu Reference signal generator for an integrated sensing system
US20100063653A1 (en) * 2007-04-13 2010-03-11 The Boeing Company Singularity escape and avoidance using a virtual array rotation
CN101254826A (zh) * 2008-03-17 2008-09-03 上海龙东光电子有限公司 直升机光电吊舱俯仰角免疫90°奇异点的方法
US9567112B1 (en) * 2013-06-27 2017-02-14 The United States Of America, As Represented By The Secretary Of The Navy Method and apparatus for singularity avoidance for control moment gyroscope (CMG) systems without using null motion
CN103968207A (zh) * 2014-04-30 2014-08-06 福州大学 一种无奇异完全各向同性空间三维转动并联机构
CN105223809A (zh) * 2015-07-10 2016-01-06 沈阳工业大学 H型平台的模糊神经网络补偿器的同步控制系统及方法
US20170232615A1 (en) * 2016-02-11 2017-08-17 Darryl Hammock Teleoperated robot for flood-welding operations
CN106126823A (zh) * 2016-06-23 2016-11-16 广州中国科学院工业技术研究院 一种基于提高迭代法稳定性和收敛性的位移求解方法
CN106272443A (zh) * 2016-11-01 2017-01-04 上海航天控制技术研究所 多自由度空间机械臂非完整路径规划方法
CN106844965A (zh) * 2017-01-19 2017-06-13 山西省交通科学研究院 一种基于静载试验识别连续梁桥实际刚度的方法
CN106933241A (zh) * 2017-03-30 2017-07-07 北京航空航天大学 基于故障解耦的单框架控制力矩陀螺航天器容错控制方法
CN108489719A (zh) * 2018-04-09 2018-09-04 常州湖南大学机械装备研究院 一种基于g-p奇异谱分解的旋转机械复合故障诊断方法
CN108803649A (zh) * 2018-08-22 2018-11-13 哈尔滨工业大学 一种垂直起降重复使用运载器自抗扰滑模控制方法
CN109571481A (zh) * 2018-12-30 2019-04-05 深圳市越疆科技有限公司 一种关节奇异点处理方法、装置、设备和存储介质
CN109871025A (zh) * 2019-02-28 2019-06-11 北京控制工程研究所 一种变速控制力矩陀螺操纵律设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CAIXIA FAN,等: "Kinematics and singularity analysis of a novel 1T2R fully-decoupled parallel mechanism", 《2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS》 *
张伟中,等: "四自由度部分解耦并联机构运动学和性能分析", 《机床与液压》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022110034A1 (zh) * 2020-11-27 2022-06-02 深圳市大疆创新科技有限公司 云台控制方法、装置、云台及可移动平台

Also Published As

Publication number Publication date
CN111813139B (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
Xu et al. Kinematics, dynamics, and control of a cable-driven hyper-redundant manipulator
CN108015763B (zh) 一种抗噪声干扰的冗余度机械臂路径规划方法
Raffo et al. Backstepping/nonlinear H∞ control for path tracking of a quadrotor unmanned aerial vehicle
Kim et al. Cooperative aerial manipulation using multirotors with multi-dof robotic arms
CN108638068B (zh) 一种携带冗余度机械臂的飞行机器人控制系统设计方法
CN111610721B (zh) 模型参数完全未知的带负载四旋翼无人机速度控制方法
CN111722645B (zh) 模型参数已知的带负载四旋翼无人机速度控制方法
Jithu et al. Quadrotor modelling and control
CN107169196B (zh) 空间机器人由末端执行器向基座的动力学建模方法
CN114102600B (zh) 一种多空间融合的人机技能迁移与参数补偿方法及系统
CN111781833B (zh) 基于状态依赖分解的航天器在线最优姿态规避控制方法
Samadikhoshkho et al. Nonlinear control of aerial manipulation systems
CN111443721A (zh) 一种四旋翼无人机姿态动态面控制方法及存储介质
CN111813139B (zh) 一种持续载荷模拟器多轴耦合运动奇异性控制方法
Lee et al. Leader–follower decentralized optimal control for large population hexarotors with tilted propellers: A Stackelberg game approach
Liu et al. Non‐linear adaptive tracking control for quadrotor aerial robots under uncertain dynamics
Han et al. Visual servoing control of robotics with a neural network estimator based on spectral adaptive law
Kumar et al. An optimization approach to solve the inverse kinematics of redundant manipulator
CN112748741A (zh) 一种不同姿态四足爬壁机器人的关节扭矩确定方法
CN116627156A (zh) 一种四旋翼无人机姿态抗扰控制方法
Gao et al. Satellite attitude control with deep reinforcement learning
Hu et al. Vision-based hierarchical impedance control of an aerial manipulator
CN115047900A (zh) 一种四旋翼无人机的鲁棒自适应姿态轨迹跟踪控制方法
CN110597088B (zh) 一种极坐标系下的车辆动力学仿真方法
Morales et al. Hexacopter maneuverability capability: An optimal control approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant