WO2022110034A1 - 云台控制方法、装置、云台及可移动平台 - Google Patents

云台控制方法、装置、云台及可移动平台 Download PDF

Info

Publication number
WO2022110034A1
WO2022110034A1 PCT/CN2020/132311 CN2020132311W WO2022110034A1 WO 2022110034 A1 WO2022110034 A1 WO 2022110034A1 CN 2020132311 W CN2020132311 W CN 2020132311W WO 2022110034 A1 WO2022110034 A1 WO 2022110034A1
Authority
WO
WIPO (PCT)
Prior art keywords
gimbal
axis
pan
target
tilt
Prior art date
Application number
PCT/CN2020/132311
Other languages
English (en)
French (fr)
Inventor
王文杰
谢文麟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080075521.7A priority Critical patent/CN114730191A/zh
Priority to PCT/CN2020/132311 priority patent/WO2022110034A1/zh
Publication of WO2022110034A1 publication Critical patent/WO2022110034A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/04Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or holding steady relative to, a person, e.g. by chains, e.g. rifle butt or pistol grip supports, supports attached to the chest or head
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present application relates to the field of PTZ technology, and in particular, to a PTZ control method, device, PTZ, movable platform and computer-readable storage medium.
  • the gimbal can support the load and control the attitude of the load.
  • the attitude control process of the gimbal if the gimbal moves to the kinematic singular point or near the singular point, the gimbal deadlock will occur. At this time, the gimbal will lose the degree of freedom, and the gimbal will If the attitude controller diverges, the gimbal control will be abnormal, and the gimbal may even turn madly.
  • the embodiments of the present application provide a pan-tilt control method, device, pan-tilt, removable platform and computer-readable storage medium, one of the purposes is to solve the technology of abnormal control due to gimbal deadlock occurring in the pan-tilt question.
  • a first aspect of the embodiments of the present application provides a pan-tilt control method, including:
  • the motors of each axis of the gimbal are controlled to rotate to their corresponding target joint angles, so as to move the load to the target posture.
  • a second aspect of an embodiment of the present application provides a pan-tilt control device, comprising: a processor and a memory storing a computer program, where the processor implements the following steps when executing the computer program:
  • the motors of each axis of the gimbal are controlled to rotate to their corresponding target joint angles, so as to move the load to the target posture.
  • a third aspect of the embodiments of the present application provides a pan/tilt, including:
  • pan-tilt mechanism connected to the base, the pan-tilt mechanism comprising at least two-axis motors and shaft arms, and the end of the pan-tilt mechanism is used for a fixed or detachable connection load;
  • a processor and a memory in which a computer program is stored the processor implementing the following steps when executing the computer program:
  • the motors of each axis of the gimbal are controlled to rotate to their corresponding target joint angles, so as to move the load to the target posture.
  • a fourth aspect of the embodiments of the present application provides a movable platform, including:
  • a driving device connected with the body for powering the movable platform
  • pan-tilt mechanism connected to the body, the pan-tilt mechanism includes at least two-axis motors and shaft arms, and the end of the pan-tilt mechanism is used for a fixed or detachable connection load;
  • a processor and a memory in which a computer program is stored the processor implementing the following steps when executing the computer program:
  • the motors of each axis of the gimbal mechanism are controlled to rotate to their corresponding target joint angles, so as to move the load to the target posture.
  • a fifth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the pan-tilt control method provided by the embodiments of the present application.
  • the motors of each axis can be controlled to rotate to their respective target joint angles, and the motors can be decoupled and controlled mutually. Independent, the whole process does not involve the conversion between the operation space and the joint space, and there is no problem of deadlock of the gimbal, so the load can smoothly move to the target posture.
  • the control of the motors of each axis is independent of each other, so the motor can directly rotate to its corresponding target joint angle, no need to cooperate with other motors, there is no rotation, etc., the load can be in the shortest The path moves to the target pose.
  • FIG. 1 is a schematic structural diagram of a pan/tilt provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of a pan-tilt control method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a gimbal attitude control provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a pan-tilt control apparatus provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • the gimbal can be used to support the load, and it can also be used to control the position and attitude of the load.
  • the gimbal can include two-axis gimbal, three-axis gimbal, four-axis gimbal, etc.; it can be divided according to whether the load of the gimbal is variable, including fixed load.
  • PTZ and variable load PTZ divided from the carrier carrying the PTZ, it can include handheld PTZ, vehicle PTZ, UAV PTZ, etc.
  • loads of the gimbal such as a mechanical gripper, a fixed clip, etc., or a shooting device, such as a camera, mobile phone, tablet, etc.
  • FIG. 1 is a schematic structural diagram of a pan/tilt according to an embodiment of the present application.
  • FIG. 1 shows a mobile phone pan/tilt, which is a three-axis pan/tilt, which includes a base (handle) 110 and a pan/tilt mechanism 120 connected to the base 110 .
  • the pan-tilt mechanism includes three shaft arms 121a, 121b, 121c, and motors 122a, 122b, and 122c corresponding to the three axes.
  • the end of the pan-tilt mechanism is a mobile phone holder 123, which can be used to fix the mobile phone.
  • the gimbal can drive the shaft arm to move through the motor, thereby driving the load movement at the end of the shaft arm to realize the control of the load attitude.
  • the gimbal may move to or near the singular point, causing the gimbal deadlock.
  • the gimbal deadlock occurs, the gimbal will lose its degrees of freedom, the attitude controller of the gimbal will diverge, the control of the gimbal will be abnormal, and the gimbal may even rotate madly.
  • FIG. 2 is a flowchart of a pan-tilt control method provided by an embodiment of the present application.
  • the method can be executed by the processor of the PTZ, for example, the steps of the method can be written into a corresponding computer program, and the computer program can be configured in the memory of the PTZ, so that the processor of the PTZ can call and execute the computer
  • the program implements the execution of this PTZ control method.
  • the method may include the following steps:
  • the load of the gimbal can be detachable or fixed.
  • the current attitude of the gimbal payload can be obtained in several ways.
  • an attitude sensor may be provided at the end of the gimbal, and the current attitude of the load located at the end may be collected by the attitude sensor.
  • the attitude sensor can be installed on the load; if the load is connected to the gimbal through a fixer at the end of the gimbal, the attitude sensor can be installed on the fixer at the end of the gimbal.
  • the attitude sensor may be an inertial measurement unit IMU.
  • the attitude may be attitude information, for example, it may be represented by pitch angle pitch, yaw angle yaw, and roll angle roll.
  • Gimbal deadlock refers to the phenomenon that the gimbal control is abnormal when the gimbal moves to or near the kinematic singularity point.
  • the gimbal control abnormality may be, for example, the loss of one or more control degrees of freedom in dimensions. For example, for a three-axis gimbal, when the gimbal deadlock occurs, it will lose one degree of freedom, and the gimbal will only have two dimensions of freedom.
  • the deadlock of the gimbal there are many reasons for the deadlock of the gimbal.
  • the photographing device needs to be turned to a specific angle when shooting, and the photographing device may be in a position after turning to the specific angle.
  • the posture corresponding to the singular point thus causing the gimbal deadlock.
  • the gimbal moves to the posture corresponding to the singular point when it intelligently follows the shooting target.
  • a three-axis gimbal is used to track a child running from a distance. If the child runs to the bottom of the gimbal, If the lens of the camera is vertically downward, the gimbal may be deadlocked.
  • the user may randomly break the gimbal before turning on the gimbal, and change the gimbal's posture to the posture corresponding to the singular point, so that the gimbal deadlock occurs after the gimbal is turned on.
  • gimbal deadlock For gimbal with different number of axes, it has different status when gimbal deadlock occurs. For example, for a two-axis gimbal, when the gimbal deadlock occurs, the two rotating joints are coaxial; for a three-axis gimbal, when the gimbal deadlock occurs, the three rotating joints are coplanar and the axes of the three rotating joints are the same.
  • the axes of the four rotating joints meet at one point when the gimbal deadlock occurs; for the five-axis gimbal, the four rotating joints are coplanar when the gimbal deadlock occurs; for the six-axis gimbal Axle head, when the universal joint deadlock occurs, the axes of the six rotating joints all intersect with a common straight line. Therefore, in one embodiment, whether the gimbal deadlock is currently occurring in the gimbal may be determined according to the current positional relationship of the rotating joints and/or the positional relationship of the axes of the rotating joints.
  • whether the gimbal deadlock is currently occurring in the gimbal can also be determined from the algorithm level, but before describing this, the working principle of the gimbal can be explained first.
  • the gimbal can control the attitude of the payload, and the goal of the attitude control of the payload is to make the current attitude of the payload as close to the target attitude as possible, even if the difference between the current attitude and the target attitude is within a preset threshold.
  • the target pose can be different poses in different scenarios.
  • the target posture may be the return posture of the gimbal after returning to the center, and the return posture may be various postures.
  • the roll angle of the back-to-center attitude can correspond to 0° and 90° respectively, and the yaw angle yaw can be any specified. angle.
  • the target pose may be a specified pose set by the user and desired to be maintained.
  • the payload may be a photographing device, and the target posture may be the posture determined by the gimbal according to the set trajectory when performing applications such as intelligent following and trajectory time-lapse photography through the photographing device.
  • the shooting target can be tracked according to the image captured by the shooting device, and the target posture of the shooting device can be determined according to the tracking result, so as to realize the following shooting of the shooting target.
  • FIG. 3 is a schematic diagram of the gimbal attitude control provided by the embodiment of the present application.
  • the current attitude of the load can be measured by the inertial measurement unit, and the measured current attitude can be compared with the target attitude to obtain the attitude deviation between the current attitude and the target attitude (in one example, the attitude deviation can be determined by Quaternion representation).
  • the first target rotation angular velocity of the load in each direction in the operation space can be determined according to the attitude deviation, where the first target rotation angular velocity is required for changing the current attitude of the load to the target attitude Rotational angular velocity.
  • the first target rotational angular velocity of the load in each direction is based on the rotational angular velocity of the operation space, and the actual controllable angular velocity of the gimbal is based on the rotational angular velocity of the motors of each axis based on the joint space, therefore, in one embodiment, all The first target rotational angular velocity is mapped from the operation space to the joint space, so that the second target rotational angular velocity corresponding to each axis motor can be obtained. After the second target rotation angular velocity corresponding to each axis motor is determined, each axis motor may be controlled according to the second target rotation angular velocity, so that the current attitude of the load moves toward the target attitude.
  • the inverse of the Jacobian matrix can be used.
  • the Jacobian matrix can be used to map rotational angular velocities from joint space to operation space, so if you need to map rotational angular velocities from operation space to joint space, you can use the inverse of the Jacobian matrix.
  • the Jacobian matrix can be determined according to the axial direction of each axis of the gimbal and the current joint angle of each axis motor.
  • the Jacobian matrix is reversible, but when the gimbal deadlock occurs, the Jacobian matrix will change. It is irreversible, so that the rotation angular velocity of at least one dimension becomes infinite after being mapped from the operation space to the joint space, the attitude controller diverges, and the gimbal control is abnormal.
  • the Jacobian matrix can be determined according to the axial direction of each axis of the gimbal and the current joint angle of the motor of each axis, and whether the Jacobian matrix is invertible, If the Jacobian matrix is irreversible, it can be determined that the gimbal deadlock occurs in the gimbal.
  • the occurrence of gimbal deadlock can also be estimated in advance, so that a response can be made in advance according to the estimated result to avoid the occurrence of gimbal deadlock.
  • the motion trajectory of each axis of the gimbal can be determined according to the posture deviation between the current posture of the load and the target posture, and then it can be determined whether a gimbal deadlock will occur in the future according to the motion trajectory of each axis.
  • the motion trajectory may also be a motion trajectory generated in applications such as intelligent following and trajectory time-lapse photography, or may be a motion trajectory set by a user.
  • the load can be moved to the target posture by controlling the motor of each axis of the gimbal to rotate to the corresponding target joint angle.
  • the motors of each axis can be controlled to rotate to their respective target joint angles, and the motors can be decoupled and controlled independently of each other.
  • the whole process does not involve the conversion between the operation space and the joint space, and there is no problem of deadlock of the gimbal, so the load can smoothly move to the target posture.
  • the control of the motors of each axis is independent of each other, so the motor can directly rotate to its corresponding target joint angle, no need to cooperate with other motors, there is no rotation, etc., the load can be in the shortest The path moves to the target pose.
  • the target joint angle can be determined according to the current posture of the base (the posture of the base), the target posture, and the axial direction of each axis of the gimbal.
  • the gimbal may include a base.
  • the attitude of the base is different from that of the load.
  • the base ie, the handle
  • the posture of the payload refers to the posture of the mobile phone.
  • the posture of the payload can be maintained at the desired target posture and will not be affected by the posture of the base.
  • a posture sensor such as an inertial measurement unit IMU
  • IMU inertial measurement unit
  • the working principle of the gimbal mentioned above is to control the attitude of the load by controlling the rotational angular velocity of the motor.
  • This working mode of the gimbal can be called the first working mode.
  • the gimbal deadlock is predicted or determined to occur, the gimbal can control the load attitude by controlling the motor to rotate to the target joint angle.
  • This working mode of the gimbal can be called the second working mode. In the second working mode, when each axis motor rotates to its corresponding target joint angle, that is, when the current joint angle of each axis motor matches its corresponding target joint angle (for example, the matching here can be the current joint angle and the target joint angle).
  • the difference between the joint angles is within the preset threshold), since the deadlock of the universal joint has been escaped at this time, it can be switched back to the original first working mode, that is, the attitude of the load can continue to be controlled by controlling the rotational angular speed of each axis motor. control to improve the accuracy of load attitude control.
  • pan-tilt control method provided by the embodiments of the present application.
  • the motors of each axis can be controlled to rotate to their respective target joint angles, and the motors can be decoupled and controlled independently of each other.
  • the process does not involve the conversion between the operation space and the joint space, and there is no problem of the deadlock of the gimbal, so the load can smoothly move to the target posture.
  • the control of the motors of each axis is independent of each other, so the motor can directly rotate to its corresponding target joint angle, no need to cooperate with other motors, there is no rotation, etc., the load can be in the shortest The path moves to the target pose.
  • FIG. 4 is a schematic structural diagram of a pan-tilt control apparatus provided by an embodiment of the present application.
  • the apparatus may include: a processor 410 and a memory 420 storing a computer program, the processor implements the following steps when executing the computer program:
  • the motors of each axis of the gimbal are controlled to rotate to their corresponding target joint angles, so as to move the load to the target posture.
  • the pan/tilt head includes a base, and the load is connected to the base through a shaft arm.
  • the target joint angle is determined according to the base posture of the base, the target posture, and the axial direction of each axis of the pan/tilt head.
  • the posture of the base is determined according to the current posture of the load and the current joint angles of the motors of each axis.
  • the posture of the base is measured according to a posture sensor provided on the base.
  • the processor when estimating whether a gimbal deadlock will occur, the processor is used to, according to the attitude deviation between the current attitude and the target attitude, determine the motion trajectory of each axis of the gimbal; The motion trajectory of the above-mentioned axes predicts whether the gimbal deadlock will occur.
  • the processor when determining whether a gimbal deadlock has occurred, is configured to determine whether a gimbal deadlock has occurred according to the current positional relationship of the rotary joint and/or the axis of the pan/tilt head.
  • the pan/tilt when the gimbal deadlock occurs, includes at least two rotating joints that are coplanar.
  • the gimbal includes a two-axis gimbal.
  • the two rotating joints are coaxial.
  • the pan/tilt includes a three-axis pan/tilt.
  • the three rotating joints are coplanar and the axes of the three rotating joints are parallel.
  • the gimbal includes a four-axis gimbal.
  • the axes of the four rotating joints meet at one point.
  • the processor is further configured to control the attitude of the load by controlling the rotational angular velocity of the motor of each axis when the current joint angle of the motor of each axis matches the corresponding target joint angle. .
  • the processor controls the attitude of the load by controlling the rotational angular velocity of the motors of each axis, it is used to determine, according to the attitude deviation between the current attitude of the load and the target attitude, that the load is at the position of the load.
  • operating the first target rotational angular velocity in each direction in the space mapping the first target rotational angular velocity in each direction to the joint space to obtain the second target rotational angular velocity corresponding to each axis motor;
  • the second target rotational angular velocity controls the motors of each axis.
  • the target posture includes a centering posture of the gimbal.
  • the return-to-center attitude at least includes a pitch angle of 0.
  • the target posture includes a specified posture set by a user.
  • the payload includes a photographing device.
  • the target posture is determined by performing target following on the image captured by the photographing device.
  • the device provided by the embodiment of the present application can control the motors of each axis to rotate to their respective target joint angles when it is estimated that a deadlock of the universal joint will occur or that a deadlock of the universal joint has occurred.
  • the process does not involve the conversion between the operation space and the joint space, and there is no problem of the deadlock of the gimbal, so the load can smoothly move to the target posture.
  • the control of the motors of each axis is independent of each other, so the motor can directly rotate to its corresponding target joint angle, no need to cooperate with other motors, there is no rotation, etc., the load can be in the shortest The path moves to the target pose.
  • the embodiment of the present application also provides a pan/tilt, the structure of which may refer to the handheld pan/tilt in FIG. 1 .
  • the pan/tilt provided by the embodiment of the present application includes:
  • pan-tilt mechanism connected to the base, the pan-tilt mechanism comprising at least two-axis motors and shaft arms, and the end of the pan-tilt mechanism is used for a fixed or detachable connection load;
  • a processor and a memory in which a computer program is stored the processor implementing the following steps when executing the computer program:
  • the motors of each axis of the gimbal are controlled to rotate to their corresponding target joint angles, so as to move the load to the target posture.
  • the target joint angle is determined according to the base posture of the base, the target posture, and the axial direction of each axis of the pan/tilt head.
  • the posture of the base is determined according to the current posture of the load and the current joint angles of the motors of each axis.
  • the posture of the base is measured according to a posture sensor provided on the base.
  • the processor when estimating whether a gimbal deadlock will occur, the processor is used to, according to the attitude deviation between the current attitude and the target attitude, determine the motion trajectory of each axis of the gimbal; The motion trajectory of the above-mentioned axes predicts whether the gimbal deadlock will occur.
  • the processor when determining whether a gimbal deadlock has occurred, is configured to determine whether a gimbal deadlock has occurred according to the current positional relationship of the rotary joint and/or the axis of the pan/tilt head.
  • the pan/tilt when the gimbal deadlock occurs, includes at least two rotating joints that are coplanar.
  • the gimbal includes a two-axis gimbal.
  • the two rotating joints are coaxial.
  • the pan/tilt includes a three-axis pan/tilt.
  • the three rotating joints are coplanar and the axes of the three rotating joints are parallel.
  • the gimbal includes a four-axis gimbal.
  • the axes of the four rotating joints meet at one point.
  • the processor is further configured to control the attitude of the load by controlling the rotational angular velocity of the motor of each axis when the current joint angle of the motor of each axis matches the corresponding target joint angle. .
  • the processor controls the attitude of the load by controlling the rotational angular velocity of the motors of each axis, it is used to determine, according to the attitude deviation between the current attitude of the load and the target attitude, that the load is at the position of the load.
  • operating the first target rotational angular velocity in each direction in the space mapping the first target rotational angular velocity in each direction to the joint space to obtain the second target rotational angular velocity corresponding to each axis motor;
  • the second target rotational angular velocity controls the motors of each axis.
  • the target posture includes a centering posture of the gimbal.
  • the return-to-center attitude at least includes a pitch angle of 0.
  • the target posture includes a specified posture set by a user.
  • the payload includes a photographing device.
  • the target posture is determined by performing target following on the image captured by the photographing device.
  • the motors of each axis can be controlled to rotate to their respective target joint angles, and the motors can be decoupled and controlled independently of each other.
  • the whole process does not involve the conversion between the operation space and the joint space, and there is no problem of deadlock of the gimbal, so the load can smoothly move to the target posture.
  • the control of the motors of each axis is independent of each other, so the motor can directly rotate to its corresponding target joint angle, no need to cooperate with other motors, there is no rotation, etc., the load can be in the shortest The path moves to the target pose.
  • FIG. 5 is a schematic structural diagram of a movable platform provided by an embodiment of the present application.
  • the movable platform can be any device with mobile capability, such as a drone, an unmanned vehicle, an unmanned ship, a robot, etc.
  • the drone shown in FIG. 5 is only an example.
  • Removable platforms can include:
  • a driving device 520 connected with the body, for providing power for the movable platform
  • pan-tilt mechanism 530 connected to the body, the pan-tilt mechanism includes at least two axes of motors and shaft arms, and the end of the pan-tilt mechanism is used for a fixed or detachable connection load 540;
  • the motors of each axis of the gimbal mechanism are controlled to rotate to their corresponding target joint angles, so as to move the load to the target posture.
  • the target joint angle is determined according to the base posture of the base, the target posture, and the axial direction of each axis of the pan-tilt mechanism.
  • the posture of the base is determined according to the current posture of the load and the current joint angles of the motors of each axis.
  • the posture of the base is measured according to a posture sensor provided on the base.
  • the processor is used to determine the motion trajectory of each axis of the pan-tilt mechanism according to the attitude deviation between the current attitude and the target attitude when estimating whether a gimbal deadlock will occur; It is estimated whether the gimbal deadlock will occur in the motion trajectory of each axis.
  • the processor when determining whether the gimbal deadlock has occurred, is configured to determine whether the gimbal deadlock has occurred according to the current positional relationship of the rotary joint and/or the axis of the pan-tilt mechanism.
  • the pan-tilt mechanism when the gimbal deadlock occurs, includes at least two rotating joints that are coplanar.
  • the pan-tilt mechanism includes a two-axis pan-tilt.
  • the two rotating joints are coaxial.
  • the pan-tilt mechanism includes a three-axis pan-tilt.
  • the three rotating joints are coplanar and the axes of the three rotating joints are parallel.
  • the pan-tilt mechanism includes a four-axis pan-tilt.
  • the axes of the four rotating joints meet at one point.
  • the processor is further configured to control the attitude of the load by controlling the rotational angular velocity of the motor of each axis when the current joint angle of the motor of each axis matches the corresponding target joint angle. .
  • the processor controls the attitude of the load by controlling the rotational angular velocity of the motors of each axis, it is used to determine, according to the attitude deviation between the current attitude of the load and the target attitude, that the load is at the position of the load.
  • operating the first target rotational angular velocity in each direction in the space mapping the first target rotational angular velocity in each direction to the joint space to obtain the second target rotational angular velocity corresponding to each axis motor;
  • the second target rotational angular velocity controls the motors of each axis.
  • the target posture includes a centering posture of the gimbal mechanism.
  • the return-to-center attitude at least includes a pitch angle of 0.
  • the target posture includes a specified posture set by a user.
  • the payload includes a photographing device.
  • the target posture is determined by performing target following on the image captured by the photographing device.
  • the movable platform provided by the embodiment of the present application can control the motors of each axis to rotate to their respective target joint angles respectively when it is estimated that the gimbal deadlock will occur or that the gimbal deadlock has occurred, and the motors can be decoupled and controlled independently of each other. , the whole process does not involve the conversion between the operation space and the joint space, and there is no problem of the deadlock of the gimbal, so the load can smoothly move to the target posture.
  • the control of the motors of each axis is independent of each other, so the motor can directly rotate to its corresponding target joint angle, no need to cooperate with other motors, there is no rotation, etc., the load can be in the shortest The path moves to the target pose.
  • Embodiments of the present application further provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the pan-tilt control method provided by the embodiments of the present application.
  • Embodiments of the present application may take the form of a computer program product implemented on one or more storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having program code embodied therein.
  • Computer-usable storage media includes permanent and non-permanent, removable and non-removable media, and storage of information can be accomplished by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • PRAM phase-change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read only memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • Flash Memory or other memory technology
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • Magnetic tape cassettes magnetic tape magnetic disk storage or other magnetic storage devices or any other non-

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种云台控制方法,包括:获取云台载荷的当前姿态;预估将发生或确定已发生万向节死锁;控制所述云台的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。通过上述方法,可以解决云台发生万向节死锁而控制异常的技术问题,还可以解决载荷在运动至目标姿态时的运动路径不是最短路径的技术问题。

Description

云台控制方法、装置、云台及可移动平台 技术领域
本申请涉及云台技术领域,尤其涉及一种云台控制方法、装置、云台、可移动平台及计算机可读存储介质。
背景技术
云台可以对载荷进行支撑,并可以对载荷的姿态进行控制。云台在对载荷进行姿态控制的过程中,若云台运动至运动学上的奇异点或奇异点附近,则会发生万向节死锁,此时,云台会丢失自由度,云台的姿态控制器发散,云台控制将出现异常,甚至可能出现云台疯转的情况。
发明内容
有鉴于此,本申请实施例提供了一种云台控制方法、装置、云台、可移动平台及计算机可读存储介质,目的之一是解决云台发生万向节死锁而控制异常的技术问题。
本申请实施例第一方面提供一种云台控制方法,包括:
获取云台载荷的当前姿态;
预估将发生或确定已发生万向节死锁;
控制所述云台的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
本申请实施例第二方面提供一种云台控制装置,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
获取云台载荷的当前姿态;
预估将发生或确定已发生万向节死锁;
控制所述云台的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
本申请实施例第三方面提供一种云台,包括:
基座;
与所述基座连接的云台机构,所述云台机构包括至少两个轴的电机与轴臂,所述云台机构的末端用于固定或可拆卸的连接载荷;
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
获取所述载荷的当前姿态;
预估将发生或确定已发生万向节死锁;
控制所述云台的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
本申请实施例第四方面提供一种可移动平台,包括:
机体;
与所述机体连接的驱动装置,用于为所述可移动平台提供动力;
与所述机体连接的云台机构,所述云台机构包括至少两个轴的电机与轴臂,所述云台机构的末端用于固定或可拆卸的连接载荷;
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
获取所述载荷的当前姿态;
预估将发生或确定已发生万向节死锁;
控制所述云台机构的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
本申请实施例第五方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的云台控制方法。
本申请实施例提供的云台控制方法,在预估将发生或确定已发生万向节死锁时,可以分别控制各轴电机转动至各自的目标关节角,电机之间实现解耦、控制相互独立,整个过程不涉及操作空间与关节空间之间的转换,不存在万向节死锁的问题,因此载荷可以顺利的运动至目标姿态。同时,由于各轴电机之间解耦,各轴电机的控制相互独立,因此电机可以直接转动至其所对应的目标关节角,无需与其他电机配合,不存在回转等的情况,载荷可以以最短的路径运动至目标姿态。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种云台的结构示意图。
图2是本申请实施例提供的云台控制方法的流程图。
图3是本申请实施例提供的云台姿态控制的原理图。
图4是本申请实施例提供的云台控制装置的结构示意图。
图5是本申请实施例提供的可移动平台的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
云台可以用于支撑载荷,也可以用于对载荷的位置和姿态进行控制。云台的种类有多种,从云台轴数上划分,云台可以包括二轴云台、三轴云台、四轴云台等;从云台的载荷是否可变划分,可以包括固定载荷云台和可变载荷云台;从搭载云台的载体上划分,可以包括手持云台、车载云台、无人机云台等。云台的载荷也有多种,比如可以是机械抓手、固定夹等,也可以是拍摄装置,如相机、手机、平板等。
可以参考图1,图1是本申请实施例提供的一种云台的结构示意图。图1所示的是一种手机云台,该手机云台为三轴云台,其包括基座(手柄)110以及与基座110连接的云台机构120。其中,云台机构包括三个轴臂121a、121b、121c,以及包括三轴对应的电机122a、122b、122c,云台机构的末端为手机固定器123,可以用于固定手机。
云台可以通过电机带动轴臂运动,从而带动轴臂末端的载荷运动,实现对载荷姿态的控制。但在载荷姿态的控制过程中,云台可能会运动到奇异点或奇异点附近,引发万向节死锁。在发生万向节死锁时,云台会丢失自由度,云台的姿态控制器将发散, 云台的控制将出现异常,甚至可能发生云台疯转。
为解决上述问题,本申请实施例提供了一种云台控制方法。可以参考图2,图2是本申请实施例提供的云台控制方法的流程图。该方法可以由云台的处理器执行,例如可以将该方法的步骤编写成对应的计算机程序,该计算机程序可以配置在云台的存储器中,从而,云台的处理器可以调用并执行该计算机程序,实现对本云台控制方法的执行。该方法可以包括以下步骤:
S202、获取云台载荷的当前姿态。
S204、预估将发生或确定已发生万向节死锁。
S206、控制所述云台的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
如前文所述,云台的载荷可以是可拆卸的,也可以是固定的。云台载荷的当前姿态有多种方式可以获取。在一种实施方式中,可以在云台末端设置姿态传感器,通过姿态传感器可以采集位于末端的载荷的当前姿态。这里,若载荷与云台是固定连接关系,则姿态传感器可以设置在载荷上;若载荷通过云台末端的固定器与云台连接,则姿态传感器可以设置在云台末端的固定器上。在一个例子中,姿态传感器可以是惯性测量单元IMU。在一个例子中,姿态可以是姿态信息,例如可以通过俯仰角pitch、偏航角yaw、横滚角roll表示。
万向节死锁是指云台运动到运动学奇异点或奇异点附近时云台控制发生异常的现象,这里,云台控制发生异常例如可以是丧失了一个或多个维度的控制自由度。比如对于三轴云台,当其发生万向节死锁时,将会失去一个维度的自由度,则云台只剩下两个维度的自由度。
万向节死锁的发生原因有多种,以载荷为拍摄装置为例,在一个例子中,可以是拍摄时需要拍摄装置转至特定的角度,而转至该特定的角度后拍摄装置可能处于奇异点对应的姿态,从而引发万向节死锁。在一个例子中,可能是云台在对拍摄目标进行智能跟随时运动至奇异点对应的姿态,比如使用三轴云台对由远处跑来的小孩进行跟踪,若小孩跑至云台底部使拍摄装置的镜头垂直朝下,则云台可能发生万向节死锁。在一个例子中,用户可能在云台开机之前乱掰云台,将云台的姿态掰至奇异点对应的姿态,从而在云台开机后云台发生万向节死锁。
对于不同轴数的云台,其发生万向节死锁时有不同的状态。例如对于二轴云台,其发生万向节死锁时两个转动关节共轴线;对于三轴云台,其发生万向节死锁时三个转动关节共面且三个转动关节的轴线之间平行;对于四轴云台,其发生万向节死锁时 四个转动关节的轴线交汇于一点;对于五轴云台,其发生万向节死锁时四个转动关节共面;对于六轴云台,其发生万向节死锁时六个转动关节轴线与一条公共直线均相交。因此,在一种实施方式中,可以根据云台当前的转动关节的位置关系和/或转动关节的轴线的位置关系,确定云台当前是否发生万向节死锁。
在一种实施方式中,也可以从算法层面确定云台当前是否发生万向节死锁,但在对此进行说明之前,可以先对云台的工作原理进行说明。
如前文所述,云台可以对载荷的姿态进行控制,而载荷姿态控制的目标是使载荷的当前姿态尽可能的接近目标姿态,即使当前姿态与目标姿态的差距在预设的阈值内。这里,目标姿态在不同场景可以是不同的姿态。在一个场景中,目标姿态可以是云台回中后的回中姿态,回中姿态可以是各种姿态,在一个例子中,回中姿态可以至少包括俯仰角pitch=0,而横滚角roll可以根据需求的不同而不同,比如手机云台在横拍和竖排两种模式下,其回中姿态的横滚角roll可以分别对应0°与90°,偏航角yaw可以是指定的任意角度。在一个场景中,目标姿态可以是用户设定的想要维持的指定姿态。在一个场景中,载荷可以是拍摄装置,目标姿态可以是云台在通过拍摄装置进行智能跟随、轨迹延时摄影等应用时按照设定的轨迹确定的姿态。例如在智能跟随时,可以根据拍摄装置拍摄的图像对拍摄目标进行跟踪,并可以根据跟踪结果确定拍摄装置的目标姿态,以实现对拍摄目标的跟随拍摄。
云台在对载荷的当前姿态进行控制时,是通过控制各轴电机的旋转角速度间接控制载荷在各方向进行旋转的。可以参考图3,图3是本申请实施例提供的云台姿态控制的原理图。如图3所示,载荷的当前姿态可以通过惯性测量单元测量得到,测量得到的当前姿态可以与目标姿态进行比较,得到当前姿态与目标姿态的姿态偏差(在一个例子中,该姿态偏差可以用四元数表示)。在确定所述姿态偏差后,可以根据所述姿态偏差确定载荷在操作空间中各方向的第一目标旋转角速度,该第一目标旋转角速度是用于使载荷的当前姿态变化至目标姿态所需的旋转角速度。
由于载荷在各方向的第一目标旋转角速度是基于操作空间的旋转角速度,而云台实际可控的是基于关节空间的各轴电机的旋转角速度,因此,在一种实施方式中,可以将所述第一目标旋转角速度从操作空间映射到关节空间,从而可以得到各轴电机对应的第二目标旋转角速度。在确定各轴电机对应的第二目标旋转角速度之后,可以根据所述第二目标旋转角速度分别对各轴电机进行控制,使载荷的当前姿态向目标姿态运动。
以上是云台对载荷姿态进行控制的工作原理。其中,在对所述第一目标旋转角速 度进行操作空间到关节空间的映射时,在一种实施方式中,可以通过雅可比矩阵的逆实现。雅可比矩阵可以用于将旋转角速度从关节空间映射至操作空间,因此,若需要将旋转角速度从操作空间映射到关节空间,则可以利用雅可比矩阵的逆。雅可比矩阵可以根据云台的各轴轴向以及各轴电机的当前关节角确定,通常情况下,雅可比矩阵是可逆的,但在云台发生万向节死锁时,雅可比矩阵将变得不可逆,从而使得至少一个维度的旋转角速度从操作空间映射到关节空间后变得无穷大,姿态控制器发散,出现云台控制异常。
因此,在确定是否发生万向节死锁时,在一种实施方式中,可以根据云台的各轴轴向以及各轴电机的当前关节角确定雅可比矩阵,并确定雅可比矩阵是否可逆,若雅可比矩阵不可逆,则可以确定云台出现了万向节死锁。
在一种实施方式中,也可以提前对万向节死锁的发生进行预估,从而可以根据预估结果提前反应,避免万向节死锁的发生。具体的,在一个例子中,可以根据载荷的当前姿态与目标姿态的姿态偏差,确定云台各轴的运动轨迹,进而可以根据该各轴的运动轨迹,确定未来是否将发生万向节死锁。这里,运动轨迹也可以是在智能跟随、轨迹延时摄影等应用中生成的运动轨迹,也可以是用户设定的运动轨迹。
在预估将发生或确定已发生万向节死锁后,可以通过控制云台的各轴电机转动至各自对应的目标关节角,从而使载荷运动至目标姿态。
由前文对云台工作原理的说明可知,云台在对载荷姿态进行控制时需要进行操作空间上载荷的旋转角速度到关节空间上电机的旋转角速度的转换,而在发生万向节死锁时,由于雅可比矩阵不可逆,因此操作空间到关节空间的转换将导致至少一个方向的旋转角速度在转换后趋于无穷大,姿态控制器发散,云台控制异常。并且,基于云台的这种工作原理,其各轴电机之间具有一定的耦合关系,电机在转动时需要配合或迁就其他轴的电机,从而在一些情况中,电机可能进行回转或进行其他多余的转动,导致载荷无法以最短的运动路径运动至目标姿态。
而本申请实施例提供的方法,在预估将发生或确定已发生万向节死锁时,可以分别控制各轴电机转动至各自的目标关节角,电机之间实现解耦、控制相互独立,整个过程不涉及操作空间与关节空间之间的转换,不存在万向节死锁的问题,因此载荷可以顺利的运动至目标姿态。同时,由于各轴电机之间解耦,各轴电机的控制相互独立,因此电机可以直接转动至其所对应的目标关节角,无需与其他电机配合,不存在回转等的情况,载荷可以以最短的路径运动至目标姿态。
在一种实施方式中,目标关节角可以根据基座当前的姿态(基座姿态)、目标姿态 以及云台各轴的轴向确定。如前文所述,云台可以包括基座,这里,基座的姿态是区别于载荷的姿态的,如图1的手机云台,基座(即手柄)由用户握持,其姿态随用户的握持姿势实时变化,而载荷的姿态是指手机的姿态,在云台机构的控制下,载荷的姿态可以维持在所需的目标姿态,并不会被基座姿态所影响。
对于基座姿态,在一种实施方式中,可以根据载荷的当前姿态以及各轴电机的当前关节角确定;在一种实施方式中,可以在基座上设置姿态传感器(例如惯性测量单元IMU),从而可以通过姿态传感器测量得到基座姿态。
前文所述的云台的工作原理是通过控制电机的旋转角速度实现对载荷姿态的控制的,可以将云台的这种工作模式称为第一工作模式。而在预估将发生或确定发生万向节死锁时,云台可以通过控制电机转动至目标关节角实现对载荷姿态的控制,可以将云台的这种工作模式称为第二工作模式。在第二工作模式下,当各轴电机转动至各自对应的目标关节角后,即各轴电机的当前关节角与各自对应的目标关节角匹配时(这里的匹配例如可以是当前关节角与目标关节角的差值在预设阈值内),由于此时已经脱离了万向节死锁,因此可以切换回原来的第一工作模式,即继续通过控制各轴电机的旋转角速度对载荷的姿态进行控制,以提高载荷姿态控制的精度。
以上为对本申请实施例提供的云台控制方法的详细说明。
本申请实施例提供的方法,在预估将发生或确定已发生万向节死锁时,可以分别控制各轴电机转动至各自的目标关节角,电机之间实现解耦、控制相互独立,整个过程不涉及操作空间与关节空间之间的转换,不存在万向节死锁的问题,因此载荷可以顺利的运动至目标姿态。同时,由于各轴电机之间解耦,各轴电机的控制相互独立,因此电机可以直接转动至其所对应的目标关节角,无需与其他电机配合,不存在回转等的情况,载荷可以以最短的路径运动至目标姿态。
下面可以参考图4,图4是本申请实施例提供的云台控制装置的结构示意图。该装置可以包括:处理器410和存储有计算机程序的存储器420,所述处理器在执行所述计算机程序时实现以下步骤:
获取云台载荷的当前姿态;
预估将发生或确定已发生万向节死锁;
控制所述云台的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
可选的,所述云台包括基座,所述载荷通过轴臂与所述基座连接。
可选的,所述目标关节角是根据所述基座的基座姿态、所述目标姿态以及所述云 台的各轴轴向确定的。
可选的,所述基座姿态是根据所述载荷的当前姿态与所述各轴电机的当前关节角确定的。
可选的,所述基座姿态是根据所述基座上设置的姿态传感器测量得到的。
可选的,所述处理器在预估是否将发生万向节死锁时用于,根据所述当前姿态与所述目标姿态的姿态偏差,确定所述云台各轴的运动轨迹;根据所述各轴的运动轨迹预估是否将发生万向节死锁。
可选的,所述处理器在确定是否已发生万向节死锁时用于,根据所述云台当前的转动关节和/或轴线的位置关系,确定是否已发生万向节死锁。
可选的,所述云台在发生万向节死锁时至少包括两个转动关节共面。
可选的,所述云台包括二轴云台。
可选的,所述云台在发生万向节死锁时,两个转动关节共轴线。
可选的,所述云台包括三轴云台。
可选的,所述云台在发生万向节死锁时,三个转动关节共面且三个转动关节的轴线之间平行。
可选的,所述云台包括四轴云台。
可选的,所述云台在发生万向节死锁时,四个转动关节的轴线交汇于一点。
可选的,所述处理器还用于,当所述各轴电机的当前关节角与各自对应的目标关节角匹配时,通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制。
可选的,所述处理器在通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制时用于,根据所述载荷的当前姿态与目标姿态的姿态偏差,确定所述载荷在操作空间中各方向的第一目标旋转角速度;将所述各方向的第一目标旋转角速度映射到关节空间,得到所述各轴电机对应的第二目标旋转角速度;根据所述各轴电机对应的第二目标旋转角速度对所述各轴电机进行控制。
可选的,所述目标姿态包括所述云台的回中姿态。
可选的,所述回中姿态至少包括俯仰角为0。
可选的,所述目标姿态包括用户设定的指定姿态。
可选的,所述载荷包括拍摄装置。
可选的,所述目标姿态是对所述拍摄装置拍摄的图像进行目标跟随确定的。
以上所提供的云台控制装置的各种实施方式,其具体实现可以参考前文中的相应说明,在此不再赘述。
本申请实施例提供的装置,在预估将发生或确定已发生万向节死锁时,可以分别控制各轴电机转动至各自的目标关节角,电机之间实现解耦、控制相互独立,整个过程不涉及操作空间与关节空间之间的转换,不存在万向节死锁的问题,因此载荷可以顺利的运动至目标姿态。同时,由于各轴电机之间解耦,各轴电机的控制相互独立,因此电机可以直接转动至其所对应的目标关节角,无需与其他电机配合,不存在回转等的情况,载荷可以以最短的路径运动至目标姿态。
本申请实施例还提供了一种云台,其结构可以参考图1的手持云台。本申请实施例提供的云台包括:
基座;
与所述基座连接的云台机构,所述云台机构包括至少两个轴的电机与轴臂,所述云台机构的末端用于固定或可拆卸的连接载荷;
处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
获取所述载荷的当前姿态;
预估将发生或确定已发生万向节死锁;
控制所述云台的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
可选的,所述目标关节角是根据所述基座的基座姿态、所述目标姿态以及所述云台的各轴轴向确定的。
可选的,所述基座姿态是根据所述载荷的当前姿态与所述各轴电机的当前关节角确定的。
可选的,所述基座姿态是根据所述基座上设置的姿态传感器测量得到的。
可选的,所述处理器在预估是否将发生万向节死锁时用于,根据所述当前姿态与所述目标姿态的姿态偏差,确定所述云台各轴的运动轨迹;根据所述各轴的运动轨迹预估是否将发生万向节死锁。
可选的,所述处理器在确定是否已发生万向节死锁时用于,根据所述云台当前的转动关节和/或轴线的位置关系,确定是否已发生万向节死锁。
可选的,所述云台在发生万向节死锁时至少包括两个转动关节共面。
可选的,所述云台包括二轴云台。
可选的,所述云台在发生万向节死锁时,两个转动关节共轴线。
可选的,所述云台包括三轴云台。
可选的,所述云台在发生万向节死锁时,三个转动关节共面且三个转动关节的轴线之间平行。
可选的,所述云台包括四轴云台。
可选的,所述云台在发生万向节死锁时,四个转动关节的轴线交汇于一点。
可选的,所述处理器还用于,当所述各轴电机的当前关节角与各自对应的目标关节角匹配时,通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制。
可选的,所述处理器在通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制时用于,根据所述载荷的当前姿态与目标姿态的姿态偏差,确定所述载荷在操作空间中各方向的第一目标旋转角速度;将所述各方向的第一目标旋转角速度映射到关节空间,得到所述各轴电机对应的第二目标旋转角速度;根据所述各轴电机对应的第二目标旋转角速度对所述各轴电机进行控制。
可选的,所述目标姿态包括所述云台的回中姿态。
可选的,所述回中姿态至少包括俯仰角为0。
可选的,所述目标姿态包括用户设定的指定姿态。
可选的,所述载荷包括拍摄装置。
可选的,所述目标姿态是对所述拍摄装置拍摄的图像进行目标跟随确定的。
以上所提供的云台控制装置的各种实施方式,其具体实现可以参考前文中的相应说明,在此不再赘述。
本申请实施例提供的云台,在预估将发生或确定已发生万向节死锁时,可以分别控制各轴电机转动至各自的目标关节角,电机之间实现解耦、控制相互独立,整个过程不涉及操作空间与关节空间之间的转换,不存在万向节死锁的问题,因此载荷可以顺利的运动至目标姿态。同时,由于各轴电机之间解耦,各轴电机的控制相互独立,因此电机可以直接转动至其所对应的目标关节角,无需与其他电机配合,不存在回转等的情况,载荷可以以最短的路径运动至目标姿态。
下面可以参考图5,图5是本申请实施例提供的可移动平台的结构示意图。可移动平台可以是具有移动能力的任何设备,比如可以是无人机、无人车、无人船、机器人等,图5所示的无人机仅是作为一种示例。可移动平台可以包括:
机体510;
与所述机体连接的驱动装置520,用于为所述可移动平台提供动力;
与所述机体连接的云台机构530,所述云台机构包括至少两个轴的电机与轴臂,所述云台机构的末端用于固定或可拆卸的连接载荷540;
处理器550和存储有计算机程序的存储器560,所述处理器在执行所述计算机程序时实现以下步骤:
获取所述载荷的当前姿态;
预估将发生或确定已发生万向节死锁;
控制所述云台机构的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
可选的,所述目标关节角是根据所述基座的基座姿态、所述目标姿态以及所述云台机构的各轴轴向确定的。
可选的,所述基座姿态是根据所述载荷的当前姿态与所述各轴电机的当前关节角确定的。
可选的,所述基座姿态是根据所述基座上设置的姿态传感器测量得到的。
可选的,所述处理器在预估是否将发生万向节死锁时用于,根据所述当前姿态与所述目标姿态的姿态偏差,确定所述云台机构各轴的运动轨迹;根据所述各轴的运动轨迹预估是否将发生万向节死锁。
可选的,所述处理器在确定是否已发生万向节死锁时用于,根据所述云台机构当前的转动关节和/或轴线的位置关系,确定是否已发生万向节死锁。
可选的,所述云台机构在发生万向节死锁时至少包括两个转动关节共面。
可选的,所述云台机构包括二轴云台。
可选的,所述云台机构在发生万向节死锁时,两个转动关节共轴线。
可选的,所述云台机构包括三轴云台。
可选的,所述云台机构在发生万向节死锁时,三个转动关节共面且三个转动关节的轴线之间平行。
可选的,所述云台机构包括四轴云台。
可选的,所述云台机构在发生万向节死锁时,四个转动关节的轴线交汇于一点。
可选的,所述处理器还用于,当所述各轴电机的当前关节角与各自对应的目标关节角匹配时,通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制。
可选的,所述处理器在通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制时用于,根据所述载荷的当前姿态与目标姿态的姿态偏差,确定所述载荷在操作空间中各方向的第一目标旋转角速度;将所述各方向的第一目标旋转角速度映射到关节空间,得到所述各轴电机对应的第二目标旋转角速度;根据所述各轴电机对应的第二目标旋转角速度对所述各轴电机进行控制。
可选的,所述目标姿态包括所述云台机构的回中姿态。
可选的,所述回中姿态至少包括俯仰角为0。
可选的,所述目标姿态包括用户设定的指定姿态。
可选的,所述载荷包括拍摄装置。
可选的,所述目标姿态是对所述拍摄装置拍摄的图像进行目标跟随确定的。
以上所提供的可移动平台的各种实施方式,其具体实现可以参考前文中的相应说明,在此不再赘述。
本申请实施例提供的可移动平台,在预估将发生或确定已发生万向节死锁时,可以分别控制各轴电机转动至各自的目标关节角,电机之间实现解耦、控制相互独立,整个过程不涉及操作空间与关节空间之间的转换,不存在万向节死锁的问题,因此载荷可以顺利的运动至目标姿态。同时,由于各轴电机之间解耦,各轴电机的控制相互独立,因此电机可以直接转动至其所对应的目标关节角,无需与其他电机配合,不存在回转等的情况,载荷可以以最短的路径运动至目标姿态。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例提供的云台控制方法。
以上针对每个保护主题均提供了多种实施方式,在不存在冲突或矛盾的基础上,本领域技术人员可以根据实际情况自由对各种实施方式进行组合,由此构成各种不同的技术方案。而本申请文件限于篇幅,未能对所有组合而得的技术方案展开说明,但可以理解的是,这些未能展开的技术方案也属于本申请实施例公开的范围。
本申请实施例可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可用存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实 体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (83)

  1. 一种云台控制方法,其特征在于,包括:
    获取云台载荷的当前姿态;
    预估将发生或确定已发生万向节死锁;
    控制所述云台的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
  2. 根据权利要求1所述的方法,其特征在于,所述云台包括基座,所述载荷通过轴臂与所述基座连接。
  3. 根据权利要求2所述的方法,其特征在于,所述目标关节角是根据所述基座的基座姿态、所述目标姿态以及所述云台的各轴轴向确定的。
  4. 根据权利要求3所述的方法,其特征在于,所述基座姿态是根据所述载荷的当前姿态与所述各轴电机的当前关节角确定的。
  5. 根据权利要求3所述的方法,其特征在于,所述基座姿态是根据所述基座上设置的姿态传感器测量得到的。
  6. 根据权利要求1所述的方法,其特征在于,预估是否将发生万向节死锁,包括:
    根据所述当前姿态与所述目标姿态的姿态偏差,确定所述云台各轴的运动轨迹;
    根据所述各轴的运动轨迹预估是否将发生万向节死锁。
  7. 根据权利要求1所述的方法,其特征在于,确定是否已发生万向节死锁,包括:
    根据所述云台当前的转动关节和/或轴线的位置关系,确定是否已发生万向节死锁。
  8. 根据权利要求1所述的方法,其特征在于,所述云台在发生万向节死锁时至少包括两个转动关节共面。
  9. 根据权利要求1所述的方法,其特征在于,所述云台包括二轴云台。
  10. 根据权利要求9所述的方法,其特征在于,所述云台在发生万向节死锁时,两个转动关节共轴线。
  11. 根据权利要求1所述的方法,其特征在于,所述云台包括三轴云台。
  12. 根据权利要求11所述的方法,其特征在于,所述云台在发生万向节死锁时,三个转动关节共面且三个转动关节的轴线之间平行。
  13. 根据权利要求1所述的方法,其特征在于,所述云台包括四轴云台。
  14. 根据权利要求12所述的方法,其特征在于,所述云台在发生万向节死锁时,四个转动关节的轴线交汇于一点。
  15. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述各轴电机的当前关节角与各自对应的目标关节角匹配时,通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制。
  16. 根据权利要求15所述的方法,其特征在于,所述通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制,包括:
    根据所述载荷的当前姿态与目标姿态的姿态偏差,确定所述载荷在操作空间中各方向的第一目标旋转角速度;
    将所述各方向的第一目标旋转角速度映射到关节空间,得到所述各轴电机对应的第二目标旋转角速度;
    根据所述各轴电机对应的第二目标旋转角速度对所述各轴电机进行控制。
  17. 根据权利要求1所述的方法,其特征在于,所述目标姿态包括所述云台的回中姿态。
  18. 根据权利要求17所述的方法,其特征在于,所述回中姿态至少包括俯仰角为0。
  19. 根据权利要求1所述的方法,其特征在于,所述目标姿态包括用户设定的指定姿态。
  20. 根据权利要求1所述的方法,其特征在于,所述载荷包括拍摄装置。
  21. 根据权利要求20所述的方法,其特征在于,所述目标姿态是对所述拍摄装置拍摄的图像进行目标跟随确定的。
  22. 一种云台控制装置,其特征在于,包括:处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
    获取云台载荷的当前姿态;
    预估将发生或确定已发生万向节死锁;
    控制所述云台的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
  23. 根据权利要求22所述的装置,其特征在于,所述云台包括基座,所述载荷通过轴臂与所述基座连接。
  24. 根据权利要求23所述的装置,其特征在于,所述目标关节角是根据所述基座的基座姿态、所述目标姿态以及所述云台的各轴轴向确定的。
  25. 根据权利要求24所述的装置,其特征在于,所述基座姿态是根据所述载荷的 当前姿态与所述各轴电机的当前关节角确定的。
  26. 根据权利要求24所述的装置,其特征在于,所述基座姿态是根据所述基座上设置的姿态传感器测量得到的。
  27. 根据权利要求22所述的装置,其特征在于,所述处理器在预估是否将发生万向节死锁时用于,根据所述当前姿态与所述目标姿态的姿态偏差,确定所述云台各轴的运动轨迹;根据所述各轴的运动轨迹预估是否将发生万向节死锁。
  28. 根据权利要求22所述的装置,其特征在于,所述处理器在确定是否已发生万向节死锁时用于,根据所述云台当前的转动关节和/或轴线的位置关系,确定是否已发生万向节死锁。
  29. 根据权利要求22所述的装置,其特征在于,所述云台在发生万向节死锁时至少包括两个转动关节共面。
  30. 根据权利要求22所述的装置,其特征在于,所述云台包括二轴云台。
  31. 根据权利要求30所述的装置,其特征在于,所述云台在发生万向节死锁时,两个转动关节共轴线。
  32. 根据权利要求22所述的装置,其特征在于,所述云台包括三轴云台。
  33. 根据权利要求32所述的装置,其特征在于,所述云台在发生万向节死锁时,三个转动关节共面且三个转动关节的轴线之间平行。
  34. 根据权利要求22所述的装置,其特征在于,所述云台包括四轴云台。
  35. 根据权利要求34所述的装置,其特征在于,所述云台在发生万向节死锁时,四个转动关节的轴线交汇于一点。
  36. 根据权利要求22所述的装置,其特征在于,所述处理器还用于,当所述各轴电机的当前关节角与各自对应的目标关节角匹配时,通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制。
  37. 根据权利要求36所述的装置,其特征在于,所述处理器在通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制时用于,根据所述载荷的当前姿态与目标姿态的姿态偏差,确定所述载荷在操作空间中各方向的第一目标旋转角速度;将所述各方向的第一目标旋转角速度映射到关节空间,得到所述各轴电机对应的第二目标旋转角速度;根据所述各轴电机对应的第二目标旋转角速度对所述各轴电机进行控制。
  38. 根据权利要求22所述的装置,其特征在于,所述目标姿态包括所述云台的回中姿态。
  39. 根据权利要求38所述的装置,其特征在于,所述回中姿态至少包括俯仰角为 0。
  40. 根据权利要求22所述的装置,其特征在于,所述目标姿态包括用户设定的指定姿态。
  41. 根据权利要求22所述的装置,其特征在于,所述载荷包括拍摄装置。
  42. 根据权利要求41所述的装置,其特征在于,所述目标姿态是对所述拍摄装置拍摄的图像进行目标跟随确定的。
  43. 一种云台,其特征在于,包括:
    基座;
    与所述基座连接的云台机构,所述云台机构包括至少两个轴的电机与轴臂,所述云台机构的末端用于固定或可拆卸的连接载荷;
    处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
    获取所述载荷的当前姿态;
    预估将发生或确定已发生万向节死锁;
    控制所述云台的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
  44. 根据权利要求43所述的云台,其特征在于,所述目标关节角是根据所述基座的基座姿态、所述目标姿态以及所述云台的各轴轴向确定的。
  45. 根据权利要求44所述的云台,其特征在于,所述基座姿态是根据所述载荷的当前姿态与所述各轴电机的当前关节角确定的。
  46. 根据权利要求44所述的云台,其特征在于,所述基座姿态是根据所述基座上设置的姿态传感器测量得到的。
  47. 根据权利要求43所述的云台,其特征在于,所述处理器在预估是否将发生万向节死锁时用于,根据所述当前姿态与所述目标姿态的姿态偏差,确定所述云台各轴的运动轨迹;根据所述各轴的运动轨迹预估是否将发生万向节死锁。
  48. 根据权利要求43所述的云台,其特征在于,所述处理器在确定是否已发生万向节死锁时用于,根据所述云台当前的转动关节和/或轴线的位置关系,确定是否已发生万向节死锁。
  49. 根据权利要求43所述的云台,其特征在于,所述云台在发生万向节死锁时至少包括两个转动关节共面。
  50. 根据权利要求43所述的云台,其特征在于,所述云台包括二轴云台。
  51. 根据权利要求50所述的云台,其特征在于,所述云台在发生万向节死锁时,两个转动关节共轴线。
  52. 根据权利要求43所述的云台,其特征在于,所述云台包括三轴云台。
  53. 根据权利要求52所述的云台,其特征在于,所述云台在发生万向节死锁时,三个转动关节共面且三个转动关节的轴线之间平行。
  54. 根据权利要求43所述的云台,其特征在于,所述云台包括四轴云台。
  55. 根据权利要求54所述的云台,其特征在于,所述云台在发生万向节死锁时,四个转动关节的轴线交汇于一点。
  56. 根据权利要求43所述的云台,其特征在于,所述处理器还用于,当所述各轴电机的当前关节角与各自对应的目标关节角匹配时,通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制。
  57. 根据权利要求56所述的云台,其特征在于,所述处理器在通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制时用于,根据所述载荷的当前姿态与目标姿态的姿态偏差,确定所述载荷在操作空间中各方向的第一目标旋转角速度;将所述各方向的第一目标旋转角速度映射到关节空间,得到所述各轴电机对应的第二目标旋转角速度;根据所述各轴电机对应的第二目标旋转角速度对所述各轴电机进行控制。
  58. 根据权利要求43所述的云台,其特征在于,所述目标姿态包括所述云台的回中姿态。
  59. 根据权利要求58所述的云台,其特征在于,所述回中姿态至少包括俯仰角为0。
  60. 根据权利要求43所述的云台,其特征在于,所述目标姿态包括用户设定的指定姿态。
  61. 根据权利要求43所述的云台,其特征在于,所述载荷包括拍摄装置。
  62. 根据权利要求61所述的云台,其特征在于,所述目标姿态是对所述拍摄装置拍摄的图像进行目标跟随确定的。
  63. 一种可移动平台,其特征在于,包括:
    机体;
    与所述机体连接的驱动装置,用于为所述可移动平台提供动力;
    与所述机体连接的云台机构,所述云台机构包括至少两个轴的电机与轴臂,所述云台机构的末端用于固定或可拆卸的连接载荷;
    处理器和存储有计算机程序的存储器,所述处理器在执行所述计算机程序时实现以下步骤:
    获取所述载荷的当前姿态;
    预估将发生或确定已发生万向节死锁;
    控制所述云台机构的各轴电机转动至各自对应的目标关节角,以使所述载荷运动至目标姿态。
  64. 根据权利要求63所述的可移动平台,其特征在于,所述目标关节角是根据所述基座的基座姿态、所述目标姿态以及所述云台机构的各轴轴向确定的。
  65. 根据权利要求64所述的可移动平台,其特征在于,所述基座姿态是根据所述载荷的当前姿态与所述各轴电机的当前关节角确定的。
  66. 根据权利要求64所述的可移动平台,其特征在于,所述基座姿态是根据所述基座上设置的姿态传感器测量得到的。
  67. 根据权利要求63所述的可移动平台,其特征在于,所述处理器在预估是否将发生万向节死锁时用于,根据所述当前姿态与所述目标姿态的姿态偏差,确定所述云台机构各轴的运动轨迹;根据所述各轴的运动轨迹预估是否将发生万向节死锁。
  68. 根据权利要求63所述的可移动平台,其特征在于,所述处理器在确定是否已发生万向节死锁时用于,根据所述云台机构当前的转动关节和/或轴线的位置关系,确定是否已发生万向节死锁。
  69. 根据权利要求63所述的可移动平台,其特征在于,所述云台机构在发生万向节死锁时至少包括两个转动关节共面。
  70. 根据权利要求63所述的可移动平台,其特征在于,所述云台机构包括二轴云台。
  71. 根据权利要求70所述的可移动平台,其特征在于,所述云台机构在发生万向节死锁时,两个转动关节共轴线。
  72. 根据权利要求63所述的可移动平台,其特征在于,所述云台机构包括三轴云台。
  73. 根据权利要求72所述的可移动平台,其特征在于,所述云台机构在发生万向节死锁时,三个转动关节共面且三个转动关节的轴线之间平行。
  74. 根据权利要求63所述的可移动平台,其特征在于,所述云台机构包括四轴云 台。
  75. 根据权利要求74所述的可移动平台,其特征在于,所述云台机构在发生万向节死锁时,四个转动关节的轴线交汇于一点。
  76. 根据权利要求63所述的可移动平台,其特征在于,所述处理器还用于,当所述各轴电机的当前关节角与各自对应的目标关节角匹配时,通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制。
  77. 根据权利要求76所述的可移动平台,其特征在于,所述处理器在通过控制所述各轴电机的旋转角速度对所述载荷的姿态进行控制时用于,根据所述载荷的当前姿态与目标姿态的姿态偏差,确定所述载荷在操作空间中各方向的第一目标旋转角速度;将所述各方向的第一目标旋转角速度映射到关节空间,得到所述各轴电机对应的第二目标旋转角速度;根据所述各轴电机对应的第二目标旋转角速度对所述各轴电机进行控制。
  78. 根据权利要求63所述的可移动平台,其特征在于,所述目标姿态包括所述云台机构的回中姿态。
  79. 根据权利要求78所述的可移动平台,其特征在于,所述回中姿态至少包括俯仰角为0。
  80. 根据权利要求63所述的可移动平台,其特征在于,所述目标姿态包括用户设定的指定姿态。
  81. 根据权利要求63所述的可移动平台,其特征在于,所述载荷包括拍摄装置。
  82. 根据权利要求81所述的可移动平台,其特征在于,所述目标姿态是对所述拍摄装置拍摄的图像进行目标跟随确定的。
  83. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-21任一项所述的云台控制方法。
PCT/CN2020/132311 2020-11-27 2020-11-27 云台控制方法、装置、云台及可移动平台 WO2022110034A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080075521.7A CN114730191A (zh) 2020-11-27 2020-11-27 云台控制方法、装置、云台及可移动平台
PCT/CN2020/132311 WO2022110034A1 (zh) 2020-11-27 2020-11-27 云台控制方法、装置、云台及可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/132311 WO2022110034A1 (zh) 2020-11-27 2020-11-27 云台控制方法、装置、云台及可移动平台

Publications (1)

Publication Number Publication Date
WO2022110034A1 true WO2022110034A1 (zh) 2022-06-02

Family

ID=81753813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132311 WO2022110034A1 (zh) 2020-11-27 2020-11-27 云台控制方法、装置、云台及可移动平台

Country Status (2)

Country Link
CN (1) CN114730191A (zh)
WO (1) WO2022110034A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106681369A (zh) * 2016-12-01 2017-05-17 广州亿航智能技术有限公司 一种云台姿态控制方法及系统
US20180194009A1 (en) * 2017-01-11 2018-07-12 Seiko Epson Corporation Robot control device and robotic system
CN108318035A (zh) * 2018-01-08 2018-07-24 山东大学 一种基于欧拉角的姿态测量算法中避免万向节死锁的方法
US20180348794A1 (en) * 2017-05-30 2018-12-06 Bell Helicopter Textron Inc. System and Method for Controlling Rotorcraft Load Priority
CN110431507A (zh) * 2018-05-31 2019-11-08 深圳市大疆创新科技有限公司 一种云台控制方法及云台
CN110494816A (zh) * 2018-06-01 2019-11-22 深圳市大疆创新科技有限公司 旋转角度控制方法、云台以及计算机可读的记录介质
CN110825124A (zh) * 2019-11-15 2020-02-21 杭州电子科技大学 云台控制方法及系统
CN111712688A (zh) * 2019-06-28 2020-09-25 深圳市大疆创新科技有限公司 标定方法、标定设备、稳定器及计算机可读存储介质
CN111813139A (zh) * 2020-07-27 2020-10-23 中国工程物理研究院总体工程研究所 一种持续载荷模拟器多轴耦合运动奇异性控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243931B2 (en) * 2012-11-28 2016-01-26 Drs Sustainment Systems, Inc. AZ/EL gimbal housing characterization
CN110337560B (zh) * 2018-05-30 2021-06-25 深圳市大疆创新科技有限公司 云台的控制方法、云台、拍摄设备及可读存储介质
CN108725817A (zh) * 2018-06-05 2018-11-02 广东工业大学 一种具有防抖功能的四轴无人机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106681369A (zh) * 2016-12-01 2017-05-17 广州亿航智能技术有限公司 一种云台姿态控制方法及系统
US20180194009A1 (en) * 2017-01-11 2018-07-12 Seiko Epson Corporation Robot control device and robotic system
US20180348794A1 (en) * 2017-05-30 2018-12-06 Bell Helicopter Textron Inc. System and Method for Controlling Rotorcraft Load Priority
CN108318035A (zh) * 2018-01-08 2018-07-24 山东大学 一种基于欧拉角的姿态测量算法中避免万向节死锁的方法
CN110431507A (zh) * 2018-05-31 2019-11-08 深圳市大疆创新科技有限公司 一种云台控制方法及云台
CN110494816A (zh) * 2018-06-01 2019-11-22 深圳市大疆创新科技有限公司 旋转角度控制方法、云台以及计算机可读的记录介质
CN111712688A (zh) * 2019-06-28 2020-09-25 深圳市大疆创新科技有限公司 标定方法、标定设备、稳定器及计算机可读存储介质
CN110825124A (zh) * 2019-11-15 2020-02-21 杭州电子科技大学 云台控制方法及系统
CN111813139A (zh) * 2020-07-27 2020-10-23 中国工程物理研究院总体工程研究所 一种持续载荷模拟器多轴耦合运动奇异性控制方法

Also Published As

Publication number Publication date
CN114730191A (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
WO2019127137A1 (zh) 切换云台工作模式的方法、控制器和图像增稳设备
US11265471B2 (en) Gimbal control method, device, gimbal, system, and storage medium
US8509951B2 (en) Controlling the trajectory of an effector
CN109196266B (zh) 云台的控制方法、云台控制器及云台
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
US20190118375A1 (en) Related to generating a robot control policy from demonstrations collected via kinesthetic teaching of a robot
US11346495B2 (en) Control method for non-orthogonal gimbal, gimbal thereof, and storage device
WO2019100249A1 (zh) 云台的控制方法、云台以及无人飞行器
Corke Spherical image-based visual servo and structure estimation
Carius et al. Deployment of an autonomous mobile manipulator at MBZIRC
WO2020097890A1 (zh) 手持云台的控制方法和手持云台
US20200338731A1 (en) Mobile robotic camera platform
US20220390950A1 (en) Directed exploration for navigation in dynamic environments
EP3840358A1 (en) Mode switching method and device for tripod head, movable platform, and storage medium
CN115480583A (zh) 飞行作业机器人的视觉伺服跟踪与阻抗控制方法
WO2022110034A1 (zh) 云台控制方法、装置、云台及可移动平台
Kelly et al. Fixed-camera visual servo control for planar robots
Jain et al. Docking two multirotors in midair using relative vision measurements
Corsini et al. A general control architecture for visual servoing and physical interaction tasks for fully-actuated aerial vehicles
JP2018065232A (ja) ロボット制御装置、ロボット、及びロボットシステム
WO2022082442A1 (zh) 云台的控制方法及云台
WO2020024150A1 (zh) 地图处理方法、设备、计算机可读存储介质
Coelho et al. Hierarchical control of redundant aerial manipulators with enhanced field of view
Chan et al. Collision-free visual servoing of an eye-in-hand manipulator via constraint-aware planning and control
JP2018065233A (ja) ロボット制御装置、ロボット、及びロボットシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20962924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20962924

Country of ref document: EP

Kind code of ref document: A1