CN111804309A - 一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法 - Google Patents

一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法 Download PDF

Info

Publication number
CN111804309A
CN111804309A CN202010604585.3A CN202010604585A CN111804309A CN 111804309 A CN111804309 A CN 111804309A CN 202010604585 A CN202010604585 A CN 202010604585A CN 111804309 A CN111804309 A CN 111804309A
Authority
CN
China
Prior art keywords
atom
particles
alloy film
vermicular
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010604585.3A
Other languages
English (en)
Other versions
CN111804309B (zh
Inventor
孙浩亮
史鹏
吕源江
王广欣
魏明
张灏戈
刘元昊
孙纪航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN202010604585.3A priority Critical patent/CN111804309B/zh
Publication of CN111804309A publication Critical patent/CN111804309A/zh
Application granted granted Critical
Publication of CN111804309B publication Critical patent/CN111804309B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Catalysts (AREA)

Abstract

一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法,在Mo‑Ag合金膜的一个表面分布有蠕虫状Ag颗粒和至少一个的Co原子或原子团簇,在制备时,通过在聚酰亚胺基体上溅射沉积Mo‑Ag合金膜时形成蠕虫状Ag颗粒,之后在形成蠕虫状Ag颗粒的表面溅射沉积Co原子即可得到,在溅射沉积Mo‑Ag合金膜时,使聚酰亚胺基体保持与基片台呈5‑10°夹角的悬垂状态进行溅射,且保证所溅射形成的Mo‑Ag合金膜的厚度为100‑200nm,Ag的含量为22‑29at%。本发明的催化剂通过在Mo‑Ag合金膜的表面制备出蠕虫状Ag颗粒后再溅射沉积上Co原子,从而形成了原子、颗粒和薄膜的协同催化效果,大大提升了催化性能。

Description

一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法
技术领域
本发明涉及到负载型金属纳米催化剂领域,具体的说是一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法。
背景技术
近年来,负载型金属纳米催化剂具有良好的活性,稳定性等催化性能,在催化研究及应用领域中受到了广泛关注和研究。在影响负载型金属纳米催化剂催化效果的因素中颗粒尺寸和形态是最终的因素,金属颗粒的尺寸成为决定负载型金属催化剂催化性能及选择性的关键因素。为提升催化剂的性能,2011年,张涛课题组首次报道单原子催化剂的合成与表征,研究发现其中Pt原子在催化剂表面呈原子级分散,导致该催化剂表现出优异的一氧化碳氧化及选择性氧化的反应活性。同时,单原子催化剂还表现出许多新颖的特性,例如,具有更高不饱和的配位环境,量子尺寸效应,与衬底相互作用,已成为连接多相催化与均相催化的桥梁。当然,单原子催化剂同样也存在不足,尺寸的减小导致表面自由能急剧增加,使得单原子催化剂在制备和反应过程中易于团聚生长,为了避免颗粒的形成,单原子催化剂的负载量均较低。
发明内容
为了提升负载型金属纳米催化剂的催化性能,本发明提供了一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法,该催化剂通过在Mo-Ag合金膜的表面制备出蠕虫状Ag颗粒后再溅射沉积上Co原子,从而形成了原子、颗粒和薄膜的协同催化效果,大大提升了催化性能。
本发明为实现上述技术目的所采用的技术方案为:一种Co原子复合纳米颗粒/薄膜催化剂,其主体为Mo-Ag合金膜,在所述Mo-Ag合金膜的一个表面分布有蠕虫状Ag颗粒和至少一个的Co原子或原子团簇。所述的原子团簇为若干原子集聚形成。
作为上述Co原子复合纳米颗粒/薄膜催化剂的一种优化方案,所述蠕虫状Ag颗粒的尺寸为50-180nm。
作为上述Co原子复合纳米颗粒/薄膜催化剂的另一种优化方案,所述Mo-Ag合金膜的厚度为100-200nm,其中Ag的含量为22-29at%。
作为上述Co原子复合纳米颗粒/薄膜催化剂的另一种优化方案,所述Mo-Ag合金膜是以聚酰亚胺为基体,并使其保持与基片台呈5-10°夹角的悬垂状态后,溅射沉积获得。
作为上述Co原子复合纳米颗粒/薄膜催化剂的另一种优化方案,所述Co原子或原子团簇的分布密度为50-300个原子/μm2
上述Co原子复合纳米颗粒/薄膜催化剂的制备方法,通过在聚酰亚胺基体上溅射沉积Mo-Ag合金膜时形成蠕虫状Ag颗粒,之后在形成蠕虫状Ag颗粒的表面溅射沉积Co原子即可得到,在溅射沉积Mo-Ag合金膜时,使聚酰亚胺基体保持与基片台呈5-10°夹角的悬垂状态进行溅射,且保证所溅射形成的Mo-Ag合金膜的厚度为100-200nm,Ag的含量为22-29at%。
上述Co原子复合纳米颗粒/薄膜催化剂的制备方法,所述溅射沉积Co原子时,采用Co靶射频溅射,功率为100w,时间为3-5s。
本发明的具体制备工艺为:首先,将清洗好的聚酰亚胺(PI)基体倾斜固定到磁控溅射镀膜机基片台上,并且使PI基体保持与基片台之间呈5-10°夹角的悬垂状态。然后在PI基体上溅射沉积Mo-Ag合金膜,即可室温制备出蠕虫状Ag颗粒/Mo-Ag合金膜/PI基体的膜基体系;
其次,在已经制备的蠕虫状Ag颗粒/Mo-Ag合金膜/PI基体表面再次用磁控溅射沉积Co原子。沉积工艺为采用射频溅射,功率100W,沉积时间3-5秒钟,即可制备出Co原子/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂,即为本发明的产品。
为了获得蠕虫状纳米Ag颗粒,本发明的核心是采用倾斜溅射,并且严格控制Mo-Ag合金膜Ag含量(22-29at%)、薄膜厚度(100-200nm),最终在室温下获得蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂。如果Ag含量和膜厚超出本发明设计范围,则不会获得蠕虫状Ag颗粒,可能获得球状多面体结构或者薄膜表面没有Ag颗粒形成。
本发明中的镀膜设备为JCP-350高真空磁控溅射镀膜机,制备Mo-Ag合金膜/聚酰亚胺基体的参数为:首先将聚酰亚胺基体倾斜固定到磁控溅射镀膜机基片台上,然后对真空室抽真空,使真空度达到6×10-4 Pa,然后,通入高纯氩气使真空室的气压达到0.5Pa。接下来采用射频磁控溅射法制备Mo-Ag合金膜,溅射靶材是由99.95at%Mo靶和覆盖在Mo靶上的99.99at%的Ag片组成的复合靶材,基片为375μm厚的聚酰亚胺薄膜,溅射过程中基片不加热。溅射功率100W,溅射时间5-12分钟;
本发明制备的纯银颗粒形态均为蠕虫状,颗粒平均尺寸在50-180nm之间。可通过改变Mo-Ag合金膜中的Ag含量或薄膜厚度的工艺参数调控Ag颗粒的尺寸。
与现有技术相比,本发明具有如下有益效果:
1)本发明首次在薄膜表面制备出了蠕虫状纳米尺度Ag颗粒,所获得的蠕虫状纳米尺度Ag颗粒与以往用化学、物理方法制备的多面体或者球形Ag纳米颗粒形态完全不同,为蠕虫状,蠕虫状Ag纳米颗粒具有独特的物理化学性能,以往文献中未见报道;而基于此制备出的Co原子/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂,以往文献中未见报道,更重要的是,形成了原子、颗粒和薄膜的协同催化效果,大大提升了催化性能;
2)本发明方法简单,环境友好,成本低,易于室温制备尺寸均匀的具有大比表面积的Co原子/蠕虫状纳米Ag颗粒/合金薄膜复合催化剂,可用于催化、柔性电子器件及光电显示器件等领域。
附图说明
图1为实施例1所制备的产品表面形貌图;
图2为实施例2所制备的产品表面形貌图;
图3为实施例3所制备的产品表面形貌图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
制备Co原子复合纳米颗粒/薄膜催化剂的方法,包括以下步骤:
1)将清洗好的聚酰亚胺(PI)基体倾斜固定到磁控溅射镀膜机基片台上,并且使PI基体保持与基片台之间呈5°夹角的悬垂状态。然后对真空室抽真空,使真空度达到6×10-4 Pa,通入高纯氩气使真空室的气压达到0.5Pa。接下来对复合靶材进行10min预溅射,预溅结束后,采用射频磁控溅射法制备Mo-Ag合金膜,溅射过程中基片不加热,溅射功率100W,溅射时间5分钟,即可制备出蠕虫状Ag颗粒/Mo-Ag合金膜复合结构;
2)在已经制备的蠕虫状Ag颗粒/Mo-Ag合金膜复合结构表面再次用磁控溅射沉积Co原子。沉积工艺为采用射频溅射,功率100W,溅射沉积3秒钟,即可制备出Co原子/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂。
最终在室温下获得Co原子/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂,其中Mo-Ag膜中Ag含量22%,膜厚100nm,薄膜表面形貌如图1所示,蠕虫状Ag颗粒的平均尺寸约为50nm。Co原子的分布密度为50个原子/μm2。由于尺寸极小的Co以单原子或者原子团簇分布在蠕虫状Ag颗粒表面和薄膜表面,无法在扫描电镜下观察到。
实施例2
制备Co原子复合纳米颗粒/薄膜催化剂的方法,包括以下步骤:
1)将清洗好的聚酰亚胺(PI)基体倾斜固定到磁控溅射镀膜机基片台上,并且使PI基体保持与基片台之间呈7°夹角的悬垂状态。然后对真空室抽真空,使真空度达到6×10-4 Pa,通入高纯氩气使真空室的气压达到0.5Pa。接下来对复合靶材进行10min预溅射,预溅结束后,采用射频磁控溅射法制备Mo-Ag合金膜,溅射过程中基片不加热,溅射功率100W,溅射时间9分钟,即可制备出蠕虫状Ag颗粒/Mo-Ag合金膜复合结构;
2)在已经制备的蠕虫状Ag颗粒/Mo-Ag合金膜复合结构表面再次用磁控溅射沉积Co原子。沉积工艺为采用射频溅射,功率100W,溅射沉积4秒钟,即可制备出Co原子/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂。
最终在室温下获得Co原子/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构,其中Mo-Ag合金膜中Ag含量26%,膜厚150nm,薄膜表面形貌如图2所示,蠕虫状Ag颗粒的平均尺寸约为100nm。所述Co原子或原子团簇的分布密度为210个原子/μm2。由于尺寸极小的Co以单原子或者原子团簇分布在蠕虫状Ag颗粒表面和薄膜表面,无法在扫描电镜下观察到。
实施例3
制备Co原子复合纳米颗粒/薄膜催化剂的方法,包括以下步骤:
1)将清洗好的聚酰亚胺(PI)基体倾斜固定到磁控溅射镀膜机基片台上,并且使PI基体保持与基片台之间呈10°夹角的悬垂状态。然后对真空室抽真空,使真空度达到6×10-4 Pa,通入高纯氩气使真空室的气压达到0.5Pa。接下来对复合靶材进行10min预溅射,预溅结束后,采用射频磁控溅射法制备Mo-Ag合金膜,溅射过程中基片不加热,溅射功率100W,溅射时间12分钟,即可制备出蠕虫状Ag颗粒/Mo-Ag合金膜复合结构;
2)在已经制备的蠕虫状Ag颗粒/Mo-Ag合金膜复合结构表面再次用磁控溅射沉积Co原子。沉积工艺为采用射频溅射,功率100W,溅射沉积5秒钟,即可制备出Co原子/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂。
最终在室温下获得Co原子/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构,其中Ag含量29%,膜厚200nm,薄膜表面形貌如图3所示,蠕虫状Ag颗粒的平均尺寸约为180nm。所述Co原子或原子团簇的分布密度为300个原子/μm2。由于尺寸极小的Co以单原子或者原子团簇分布在蠕虫状Ag颗粒表面和薄膜表面,无法在扫描电镜下观察到。

Claims (7)

1.一种Co原子复合纳米颗粒/薄膜催化剂,其主体为Mo-Ag合金膜,其特征在于:在所述Mo-Ag合金膜的一个表面分布有蠕虫状Ag颗粒和至少一个的Co原子或原子团簇。
2.根据权利要求1所述的一种Co原子复合纳米颗粒/薄膜催化剂,其特征在于:所述蠕虫状Ag颗粒的尺寸为50-180nm。
3.根据权利要求1所述的一种Co原子复合纳米颗粒/薄膜催化剂,其特征在于:所述Mo-Ag合金膜的厚度为100-200nm,其中Ag的含量为22-29at%。
4.根据权利要求1所述的一种Co原子复合纳米颗粒/薄膜催化剂,其特征在于:所述Mo-Ag合金膜是以聚酰亚胺为基体,并使其保持与基片台呈5-10°夹角的悬垂状态后,溅射沉积获得。
5.根据权利要求1所述的一种Co原子复合纳米颗粒/薄膜催化剂,其特征在于:所述Co原子或原子团簇的分布密度为50-300个/μm2
6.根据权利要求1所述的Co原子复合纳米颗粒/薄膜催化剂的制备方法,通过在聚酰亚胺基体上溅射沉积Mo-Ag合金膜时形成蠕虫状Ag颗粒,之后在形成蠕虫状Ag颗粒的表面溅射沉积Co原子即可得到,其特征在于:在溅射沉积Mo-Ag合金膜时,使聚酰亚胺基体保持与基片台呈5-10°夹角的悬垂状态进行溅射,且保证所溅射形成的Mo-Ag合金膜的厚度为100-200nm,Ag的含量为22-29at%。
7.根据权利要求6所述的Co原子复合纳米颗粒/薄膜催化剂的制备方法,其特征在于:所述溅射沉积Co原子时,采用Co靶射频溅射,功率为100w,时间为3-5s。
CN202010604585.3A 2020-06-29 2020-06-29 一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法 Active CN111804309B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010604585.3A CN111804309B (zh) 2020-06-29 2020-06-29 一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010604585.3A CN111804309B (zh) 2020-06-29 2020-06-29 一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN111804309A true CN111804309A (zh) 2020-10-23
CN111804309B CN111804309B (zh) 2023-01-03

Family

ID=72855501

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010604585.3A Active CN111804309B (zh) 2020-06-29 2020-06-29 一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111804309B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080182112A1 (en) * 2005-08-04 2008-07-31 Hisayasu Kaneshiro Metal-coated polyimide film
CN102041476A (zh) * 2010-12-30 2011-05-04 陕西科技大学 双靶磁控溅射法制备钛酸钴薄膜的方法
CN102528050A (zh) * 2012-01-19 2012-07-04 东南大学 一种超薄金属纳米片的制备方法
CN104818463A (zh) * 2015-04-09 2015-08-05 河南科技大学 一种纳米铂包覆金颗粒膜复合材料的制备方法
CN104986965A (zh) * 2015-06-23 2015-10-21 西南交通大学 一种蠕虫状纳米硫化银薄膜的制备方法
CN108411267A (zh) * 2018-04-25 2018-08-17 河南科技大学 一种制备自由态多面体纳米Ag颗粒的方法
US20190267638A1 (en) * 2016-10-26 2019-08-29 3M Innovative Properties Company Catalyst
CN110318027A (zh) * 2019-08-15 2019-10-11 河南科技大学 一种在银片表面制备低反射银-钼合金膜的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080182112A1 (en) * 2005-08-04 2008-07-31 Hisayasu Kaneshiro Metal-coated polyimide film
CN102041476A (zh) * 2010-12-30 2011-05-04 陕西科技大学 双靶磁控溅射法制备钛酸钴薄膜的方法
CN102528050A (zh) * 2012-01-19 2012-07-04 东南大学 一种超薄金属纳米片的制备方法
CN104818463A (zh) * 2015-04-09 2015-08-05 河南科技大学 一种纳米铂包覆金颗粒膜复合材料的制备方法
CN104986965A (zh) * 2015-06-23 2015-10-21 西南交通大学 一种蠕虫状纳米硫化银薄膜的制备方法
US20190267638A1 (en) * 2016-10-26 2019-08-29 3M Innovative Properties Company Catalyst
CN108411267A (zh) * 2018-04-25 2018-08-17 河南科技大学 一种制备自由态多面体纳米Ag颗粒的方法
CN110318027A (zh) * 2019-08-15 2019-10-11 河南科技大学 一种在银片表面制备低反射银-钼合金膜的方法

Also Published As

Publication number Publication date
CN111804309B (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
Alexeeva et al. Application of the magnetron sputtering for nanostructured electrocatalysts synthesis
KR102188585B1 (ko) 금속 단일 원자 촉매 및 이의 제조방법
Wang et al. Core–shell-structured low-platinum electrocatalysts for fuel cell applications
US20180123137A1 (en) A composite material of metal foam-carbon nanotube, the preparation method thereof and the use thereof
Pradhan et al. Growth of TiO2 nanorods by metalorganic chemical vapor deposition
US6720240B2 (en) Silicon based nanospheres and nanowires
KR102022047B1 (ko) 다양한 지지체 표면에 나노 구조 촉매 입자의 직접 합성 방법, 이에 의해 제조된 촉매 구조체
US20090098402A1 (en) Nanocrater catalyst in metal nanoparticles and method for preparing the same
CN111515385B (zh) 一种铜-镍核壳型纳米粉体和导电薄膜及其制备方法和应用
US20170232431A1 (en) Direct synthesis method of nanostructured catalyst particles on various supports and catalyst structure produced by the same
Lee et al. Atomic layer deposition enabled PtNi alloy catalysts for accelerated fuel-cell oxygen reduction activity and stability
CN112938936B (zh) 一种金属原子负载的纳米复合材料及其制备方法
CN109894610B (zh) 一种金属包覆球形铸造碳化钨粉末及其制备方法
CN111804309B (zh) 一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法
CN111804308B (zh) Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法
CN111812076B (zh) 一种柔性表面增强拉曼效应基底材料及其制备方法
TW200800387A (en) Catalyst for catalyzing carbon nanotubes growth
CN110449163B (zh) 一种制备双金属合金二维纳米材料结构的方法
CN1159217C (zh) 可控生长具有一定直径和分布密度的碳纳米管的方法
CN110102773B (zh) 一种粒径可控的有序介孔Ni纳米颗粒的制备方法
JP2002105765A (ja) カーボンナノファイバー複合体およびカーボンナノファイバーの製造方法
CN114082972A (zh) 一种绿色制备Rh超薄纳米片及低结晶度纳米粒子的方法
CN110787794B (zh) 一种碳负载贵金属纳米颗粒复合材料及其制备方法和应用
CN115138854B (zh) 一种金属纳米颗粒的制备及硼墨烯上负载的金属纳米颗粒
Xie et al. Synthesis of Ru nanoparticles with hydroxyethyl cellulose as stabilizer for high-efficiency reduction of α-pinene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant