CN111804308B - Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法 - Google Patents

Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法 Download PDF

Info

Publication number
CN111804308B
CN111804308B CN202010603616.3A CN202010603616A CN111804308B CN 111804308 B CN111804308 B CN 111804308B CN 202010603616 A CN202010603616 A CN 202010603616A CN 111804308 B CN111804308 B CN 111804308B
Authority
CN
China
Prior art keywords
film
alloy film
particles
catalyst
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010603616.3A
Other languages
English (en)
Other versions
CN111804308A (zh
Inventor
孙浩亮
吕源江
张灏戈
史鹏
王广欣
刘元昊
孙纪航
魏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN202010603616.3A priority Critical patent/CN111804308B/zh
Publication of CN111804308A publication Critical patent/CN111804308A/zh
Application granted granted Critical
Publication of CN111804308B publication Critical patent/CN111804308B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8993Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Ag‑Co薄膜/纳米颗粒/薄膜催化剂及其制备方法,在Mo‑Ag合金膜的一个表面制备出蠕虫状Ag颗粒,之后在蠕虫状Ag颗粒表面溅射沉积一层Ag‑Co合金膜,在制备时,通过在聚酰亚胺基体上溅射沉积Mo‑Ag合金膜时形成蠕虫状Ag颗粒,之后在形成蠕虫状Ag颗粒的表面溅射沉积Ag‑Co合金膜,使聚酰亚胺基体保持与基片台呈5‑10°夹角的悬垂状态进行溅射,且保证所溅射形成的Mo‑Ag合金膜的厚度为100‑200nm,Ag的含量为22‑29at%。本发明的催化剂通过在Mo‑Ag合金膜的表面制备出蠕虫状Ag颗粒后再溅射沉积Ag‑Co合金膜,从而形成了薄膜、颗粒和薄膜的协同催化效果,大大提升了催化性能。

Description

Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法
技术领域
本发明涉及到负载型金属纳米催化剂领域,具体的说是一种Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法。
背景技术
近年来,负载型金属纳米催化剂具有良好的活性,稳定性等催化性能,在催化研究及应用领域中受到了广泛关注和研究。在影响负载型金属纳米催化剂催化效果的因素中颗粒尺寸和形态是最终的因素,金属颗粒的尺寸成为决定负载型金属催化剂催化性能及选择性的关键因素。为提升催化剂的性能,2011年,张涛课题组首次报道单原子催化剂的合成与表征,研究发现其中Pt原子在催化剂表面呈原子级分散,导致该催化剂表现出优异的一氧化碳氧化及选择性氧化的反应活性。同时,单原子催化剂还表现出许多新颖的特性,例如,具有更高不饱和的配位环境,量子尺寸效应,与衬底相互作用,已成为连接多相催化与均相催化的桥梁。当然,单原子催化剂同样也存在不足,尺寸的减小导致表面自由能急剧增加,使得单原子催化剂在制备和反应过程中易于团聚生长,为了避免颗粒的形成,单原子催化剂的负载量均较低。
发明内容
为了提升负载型金属纳米催化剂的催化性能,本发明提供了一种Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法,该催化剂通过在Mo-Ag合金膜的表面制备出蠕虫状Ag颗粒后再溅射沉积上Ag-Co合金膜,从而形成了薄膜、颗粒和薄膜的协同催化效果,明显提升了催化性能。
本发明为实现上述技术目的所采用的技术方案为: Ag-Co薄膜/纳米颗粒/薄膜催化剂,其主体为Mo-Ag合金膜,在所述Mo-Ag合金膜的一个表面制备出蠕虫状Ag颗粒,之后在蠕虫状Ag颗粒表面溅射沉积一层Ag-Co合金膜。
作为上述Ag-Co薄膜/纳米颗粒/薄膜催化剂的一种优化方案,所述蠕虫状Ag颗粒的尺寸为50-180nm。
作为上述Ag-Co薄膜/纳米颗粒/薄膜催化剂的另一种优化方案,所述Mo-Ag合金膜的厚度为80-200nm,其中Ag的含量为22-29at%。
作为上述Ag-Co薄膜/纳米颗粒/薄膜催化剂的另一种优化方案,所述Mo-Ag合金膜是以聚酰亚胺为基体,并使其保持与基片台呈5-10°夹角的悬垂状态后,溅射沉积获得。
作为上述Ag-Co薄膜/纳米颗粒/薄膜催化剂的另一种优化方案,所述Ag-Co合金膜的厚度为15-26nm。
上述Ag-Co薄膜/纳米颗粒/薄膜催化剂的制备方法,通过在聚酰亚胺基体上溅射沉积Mo-Ag合金膜时形成蠕虫状Ag颗粒,之后在形成蠕虫状Ag颗粒的表面溅射沉积Ag-Co合金膜即可得到,在溅射沉积Mo-Ag合金膜时,使聚酰亚胺基体保持与基片台呈5-10°夹角的悬垂状态进行溅射,且保证所溅射形成的Mo-Ag合金膜的厚度为80-200nm,Ag的含量为22-29at%。
上述Ag-Co薄膜/纳米颗粒/薄膜催化剂的制备方法,所述Ag-Co合金膜溅射沉积时,采用由Ag靶与其表面覆盖的Co片构成复合靶材,施以射频溅射工艺,功率为100w,沉积时间为1-2min。
本发明的具体制备工艺为:首先,将清洗好的聚酰亚胺(PI)基体倾斜固定到磁控溅射镀膜机基片台上,并且使PI基体保持与基片台之间呈5-10°夹角的悬垂状态。然后在PI基体上溅射沉积Mo-Ag合金膜,即可室温制备出蠕虫状Ag颗粒/Mo-Ag合金膜/PI基体的膜基体系;
其次,在已经制备的蠕虫状Ag颗粒/Mo-Ag合金膜/PI基体表面再次用磁控溅射沉积Ag-Co合金膜。沉积工艺为采用射频溅射,功率100W,沉积时间1-2min,即可制备出Ag-Co合金膜/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂,即为本发明的产品。
为了获得蠕虫状纳米Ag颗粒,本发明的核心是采用倾斜溅射,并且严格控制Mo-Ag合金膜Ag含量(22-29at%)、薄膜厚度(80-200nm),最终在室温下获得蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂。如果Ag含量和膜厚超出本发明设计范围,则不会获得蠕虫状Ag颗粒,可能获得球状多面体结构或者薄膜表面没有Ag颗粒形成。
本发明中的镀膜设备为JCP-350高真空磁控溅射镀膜机,制备Mo-Ag合金膜/聚酰亚胺基体的参数为:首先将聚酰亚胺基体倾斜固定到磁控溅射镀膜机基片台上,然后对真空室抽真空,使真空度达到6×10-4 Pa,然后,通入高纯氩气使真空室的气压达到0.5Pa。接下来采用射频磁控溅射法制备Mo-Ag合金膜,溅射靶材是由99.95at%Mo靶和覆盖在Mo靶上的99.99at%的Ag片组成的复合靶材,基片为375μm厚的聚酰亚胺薄膜,溅射过程中基片不加热。溅射功率100W,溅射时间5-12分钟;
本发明制备的纯银颗粒形态均为蠕虫状,颗粒平均尺寸在50-180nm之间。可通过改变Mo-Ag合金膜中的Ag含量或薄膜厚度的工艺参数调控Ag颗粒的尺寸。
与现有技术相比,本发明具有如下有益效果:
1)本发明首次在薄膜表面制备出了蠕虫状纳米尺度Ag颗粒,所获得的蠕虫状纳米尺度Ag颗粒与以往用化学、物理方法制备的多面体或者球形Ag纳米颗粒形态完全不同,为蠕虫状,蠕虫状Ag纳米颗粒具有独特的物理化学性能,以往文献中未见报道;而基于此制备出的Ag-Co合金膜/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂,以往文献中未见报道,更重要的是,形成了薄膜、颗粒和薄膜的协同催化效果,大大提升了催化性能;
2)本发明方法简单,环境友好,成本低,易于室温制备尺寸均匀的具有大比表面积的Ag-Co合金膜/蠕虫状纳米Ag颗粒/合金薄膜复合催化剂,可用于催化、柔性电子器件及光电显示器件等领域。
附图说明
图1为实施例1所制备的产品表面形貌图;
图2为实施例3所制备的产品表面形貌图。
具体实施方式
下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
制备Ag-Co薄膜/纳米颗粒/薄膜催化剂的方法,包括以下步骤:
1)将清洗好的聚酰亚胺(PI)基体倾斜固定到磁控溅射镀膜机基片台上,并且使PI基体保持与基片台之间呈5°夹角的悬垂状态。然后对真空室抽真空,使真空度达到6×10-4 Pa,通入高纯氩气使真空室的气压达到0.5Pa。接下来对复合靶材进行10min预溅射,预溅结束后,采用射频磁控溅射法制备Mo-Ag合金膜,溅射过程中基片不加热,溅射功率100W,溅射时间5分钟,即可制备出蠕虫状Ag颗粒/Mo-Ag合金膜复合结构;
2)在已经制备的蠕虫状Ag颗粒/Mo-Ag合金膜复合结构表面再次用磁控溅射沉积Ag-Co合金膜。沉积工艺为采用射频溅射,功率100W,溅射沉积1min,即可制备出Ag-Co合金膜/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂。
最终在室温下获得Ag-Co合金膜/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂,其中Mo-Ag膜中Ag含量22%,膜厚80nm,薄膜表面形貌如图1所示,蠕虫状Ag颗粒的平均尺寸约为50nm,Ag-Co薄膜厚度约为15nm。从图1中可以看出,覆盖Ag-Co薄膜后,蠕虫状Ag颗粒的尺寸变大,颗粒之间的间距变小,薄膜表面没有颗粒的区域面积减小了,有助于提升颗粒膜的催化性能。
实施例2
制备Ag-Co薄膜/纳米颗粒/薄膜催化剂的方法,包括以下步骤:
1)将清洗好的聚酰亚胺(PI)基体倾斜固定到磁控溅射镀膜机基片台上,并且使PI基体保持与基片台之间呈7°夹角的悬垂状态。然后对真空室抽真空,使真空度达到6×10-4 Pa,通入高纯氩气使真空室的气压达到0.5Pa。接下来对复合靶材进行10min预溅射,预溅结束后,采用射频磁控溅射法制备Mo-Ag合金膜,溅射过程中基片不加热,溅射功率100W,溅射时间9分钟,即可制备出蠕虫状Ag颗粒/Mo-Ag合金膜复合结构;
2)在已经制备的蠕虫状Ag颗粒/Mo-Ag合金膜复合结构表面再次用磁控溅射沉积Ag-Co合金膜。沉积工艺为采用射频溅射,功率100W,溅射沉积1.5min,即可制备出Ag-Co合金膜/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂。
最终在室温下获得Ag-Co合金膜/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构,其中Mo-Ag合金膜中Ag含量26%,膜厚150nm,薄膜表面形貌如图2所示,蠕虫状Ag颗粒的平均尺寸约为100nm,蠕虫状Ag颗粒的平均尺寸约为50nm,Ag-Co薄膜厚度约为21 nm。
实施例3
制备Ag-Co薄膜/纳米颗粒/薄膜催化剂的方法,包括以下步骤:
1)将清洗好的聚酰亚胺(PI)基体倾斜固定到磁控溅射镀膜机基片台上,并且使PI基体保持与基片台之间呈10°夹角的悬垂状态。然后对真空室抽真空,使真空度达到6×10-4 Pa,通入高纯氩气使真空室的气压达到0.5Pa。接下来对复合靶材进行10min预溅射,预溅结束后,采用射频磁控溅射法制备Mo-Ag合金膜,溅射过程中基片不加热,溅射功率100W,溅射时间12分钟,即可制备出蠕虫状Ag颗粒/Mo-Ag合金膜复合结构;
2)在已经制备的蠕虫状Ag颗粒/Mo-Ag合金膜复合结构表面再次用磁控溅射沉积Ag-Co合金膜。沉积工艺为采用射频溅射,功率100W,溅射沉积2min,即可制备出Ag-Co合金膜/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构催化剂。
最终在室温下获得Ag-Co合金膜/蠕虫状Ag颗粒/Mo-Ag合金膜复合结构,其中Ag含量29%,膜厚200nm,薄膜表面形貌如图2所示。其中,蠕虫状Ag颗粒的平均尺寸约为180nm,Ag-Co薄膜厚度26nm。从图2中可以看出,覆盖Ag-Co薄膜后,蠕虫状Ag颗粒的尺寸变大,颗粒之间的间距变小,有助于提升颗粒膜的催化性能。

Claims (5)

1.Ag-Co薄膜/纳米颗粒/薄膜催化剂,其主体为Mo-Ag合金膜,其特征在于:通过在聚酰亚胺基体上溅射沉积Mo-Ag合金膜时形成蠕虫状Ag颗粒,之后在蠕虫状Ag颗粒表面溅射沉积一层Ag-Co合金膜;所述Mo-Ag合金膜的厚度为80-200nm,其中Ag的含量为22-29at%;所述Mo-Ag合金膜是以聚酰亚胺为基体,并使其保持与基片台呈5-10°夹角的悬垂状态后,溅射沉积获得。
2.根据权利要求1所述的Ag-Co薄膜/纳米颗粒/薄膜催化剂,其特征在于:所述蠕虫状Ag 颗粒的尺寸为 50-180nm。
3.根据权利要求1所述的Ag-Co薄膜/纳米颗粒/薄膜催化剂,其特征在于:所述Ag-Co合金膜的厚度为15-26nm。
4.根据权利要求1所述的Ag-Co薄膜/纳米颗粒/薄膜催化剂的制备方法,通过在聚酰亚胺基体上溅射沉积Mo-Ag合金膜时形成蠕虫状Ag颗粒,之后在形成蠕虫状Ag颗粒的表面溅射沉积Ag-Co合金膜即可得到,其特征在于:在溅射沉积Mo-Ag合金膜时,使聚酰亚胺基体保持与基片台呈5-10°夹角的悬垂状态进行溅射,且保证所溅射形成的Mo-Ag合金膜的厚度为80-200nm,Ag的含量为22-29at%。
5.根据权利要求4所述的Ag-Co薄膜/纳米颗粒/薄膜催化剂的制备方法,其特征在于:所述溅射沉积Ag-Co合金膜时,采用由Ag靶与其表面覆盖的Co片构成复合靶材,施以射频溅射工艺,功率为100w,沉积时间为1-2min。
CN202010603616.3A 2020-06-29 2020-06-29 Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法 Active CN111804308B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010603616.3A CN111804308B (zh) 2020-06-29 2020-06-29 Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010603616.3A CN111804308B (zh) 2020-06-29 2020-06-29 Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN111804308A CN111804308A (zh) 2020-10-23
CN111804308B true CN111804308B (zh) 2023-01-31

Family

ID=72855340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010603616.3A Active CN111804308B (zh) 2020-06-29 2020-06-29 Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111804308B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263620A (zh) * 2005-09-13 2008-09-10 3M创新有限公司 多层纳米结构化薄膜
WO2008127396A2 (en) * 2006-11-02 2008-10-23 Ohio University A solution synthesis of carbon nanotube/metal-containing nanoparticle conjugated assemblies
CN105088157A (zh) * 2015-07-27 2015-11-25 河南科技大学 一种制备纳米钴薄膜包覆铜颗粒复合颗粒膜的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096231A (ja) * 1998-09-18 2000-04-04 Minolta Co Ltd 成膜装置および成膜方法
JP3620842B2 (ja) * 2002-12-25 2005-02-16 孝之 阿部 多角バレルスパッタ装置、多角バレルスパッタ方法及びそれにより形成された被覆微粒子、被覆微粒子の製造方法
CN101421878B (zh) * 2006-02-15 2011-06-15 3M创新有限公司 使用催化活性金时相对于氢气而言对一氧化碳的选择性氧化
CN100443626C (zh) * 2006-02-23 2008-12-17 上海交通大学 单靶磁控溅射Cu1-xCrx合金薄膜的方法
KR100965834B1 (ko) * 2009-08-05 2010-06-25 한국과학기술원 이중금속―탄소나노튜브 혼성촉매 및 이의 제조방법
CN102712045A (zh) * 2009-11-16 2012-10-03 巴斯夫欧洲公司 金属岛涂层及合成方法
CN103695984B (zh) * 2013-11-28 2016-05-11 中国科学院合肥物质科学研究院 一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101263620A (zh) * 2005-09-13 2008-09-10 3M创新有限公司 多层纳米结构化薄膜
WO2008127396A2 (en) * 2006-11-02 2008-10-23 Ohio University A solution synthesis of carbon nanotube/metal-containing nanoparticle conjugated assemblies
CN105088157A (zh) * 2015-07-27 2015-11-25 河南科技大学 一种制备纳米钴薄膜包覆铜颗粒复合颗粒膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Room temperature self-assembled Ag nanoparticles/Mo-37.5% Ag film as efficient flexible SERS substrate";Xinxin lian等;《Materials Letters》;20200617;第1-4页 *

Also Published As

Publication number Publication date
CN111804308A (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
Nguyen et al. Sputtering onto a liquid: interesting physical preparation method for multi-metallic nanoparticles
US6720240B2 (en) Silicon based nanospheres and nanowires
US7834349B2 (en) Silicon based nanospheres and nanowires
KR102022047B1 (ko) 다양한 지지체 표면에 나노 구조 촉매 입자의 직접 합성 방법, 이에 의해 제조된 촉매 구조체
CN111515385B (zh) 一种铜-镍核壳型纳米粉体和导电薄膜及其制备方法和应用
US20050274225A1 (en) Methods for the preparation of metallic alloy nanoparticles and compositions thereof
Lee et al. Atomic layer deposition enabled PtNi alloy catalysts for accelerated fuel-cell oxygen reduction activity and stability
CN109894610B (zh) 一种金属包覆球形铸造碳化钨粉末及其制备方法
Wang et al. Biomimetic synthesis of gold nanoparticles and their aggregates using a polypeptide sequence
CN111411335B (zh) 一种大面积分布的Ag@SiO2纳米粒子的制备方法及应用
CN111804308B (zh) Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法
CN111804309B (zh) 一种Co原子复合纳米颗粒/薄膜催化剂及其制备方法
CN111812076B (zh) 一种柔性表面增强拉曼效应基底材料及其制备方法
Taguchi et al. Surface coating with various metals on spherical polymer particles by using barrel sputtering technique
Nguyen et al. Functional palladium tetrapod core of heterogeneous palladium–platinum nanodendrites for enhanced oxygen reduction reaction
Wang et al. Zirconia supported gold–palladium nanocatalyst for NAD (P) H regeneration via two-step mechanism
Bouchat et al. On some applications of nanoparticles synthesized in the gas phase by magnetron discharges
CN110449163B (zh) 一种制备双金属合金二维纳米材料结构的方法
JP5142258B2 (ja) 炭素担持貴金属ナノ粒子触媒の製造方法
CN108193178B (zh) 一种晶态wc硬质合金薄膜及其缓冲层技术室温生长方法
CN107010677B (zh) 一种担载型氧化镍纳米粒子的制备方法
Nefedkin et al. Fabrication of Catalytic Compositions for Electrodes of Fuel Cells and Water Electrolyzers with Proton-Exchange Membrane by Magnetron Sputtering of Composite Targets
CN111850489A (zh) 靶材中间料及其形成方法和实现该形成方法的装置
Xie et al. Synthesis of Ru nanoparticles with hydroxyethyl cellulose as stabilizer for high-efficiency reduction of α-pinene
CN115138854B (zh) 一种金属纳米颗粒的制备及硼墨烯上负载的金属纳米颗粒

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant