CN111790432A - 碳化镍/氮化碳纳米片光催化材料及制备方法和应用 - Google Patents

碳化镍/氮化碳纳米片光催化材料及制备方法和应用 Download PDF

Info

Publication number
CN111790432A
CN111790432A CN202010797479.1A CN202010797479A CN111790432A CN 111790432 A CN111790432 A CN 111790432A CN 202010797479 A CN202010797479 A CN 202010797479A CN 111790432 A CN111790432 A CN 111790432A
Authority
CN
China
Prior art keywords
carbon nitride
nickel carbide
nitride nanosheet
blocky
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010797479.1A
Other languages
English (en)
Inventor
陈瀚翔
于亚辉
许晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou Haichuang New Energy Research Institute Co ltd
Original Assignee
Taizhou Haichuang New Energy Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou Haichuang New Energy Research Institute Co ltd filed Critical Taizhou Haichuang New Energy Research Institute Co ltd
Priority to CN202010797479.1A priority Critical patent/CN111790432A/zh
Publication of CN111790432A publication Critical patent/CN111790432A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及光催化材料,特指金属性碳化镍/氮化碳纳米片光催化材料及制备方法和应用,属于纳米材料和光解水产氢技术领域。本发明在氮气气氛下,乙酰丙酮镍在烯烃胺中低温热解制备了高质量的Ni3C纳米粒子。在此基础上,采用简单两步法成功合成了新型的Ni3C/2D g‑C3N4纳米异质结。其产氢性能,较单一二维氮化碳的产氢活性得到明显提升。

Description

碳化镍/氮化碳纳米片光催化材料及制备方法和应用
技术领域
本发明涉及光催化材料,具体的为碳化镍/氮化碳纳米片光催化材料及制备方法和应用,属于纳米材料和光解水产氢技术领域。
背景技术
随着科学技术的进步和工业化进程的推进,人们的生活水平质量有了明显提升,但是随之而来的能源危机和环境污染问题成了当今社会发展的所面临的棘手难题。因此,如何合理高效解决上述问题成为了世界各国环境治理和能源开发研究者竞相关注的焦点。氢能被视为21世纪最具发展潜力的清洁能源,人类对氢能应用自200年前就产生了兴趣,到20世纪70年代以来,世界上许多国家和地区就广泛开展了氢能研究。而太阳能产氢是一种绿色且环保的技术,它将取之无限的太阳能源源不断地转换为氢能以供人类使用。到目前为止,太阳能直接转化为能源燃料和化学能源已被视为解决未来能源和环境危机的绿色可持续途径之一。
除了作为驱动力的太阳光之外,光催化需要适当的半导体来进行许多催化反应,目前,在研究对可见光有活性、有响应半导体光催化剂时,聚合物半导体即石墨碳氮化物(g-C3N4) 在新一代光催化剂研究领域中引起了人们的广泛关注,由于其易于合成,作为π-π共轭材料优异半导体特性,对可见光有响应,载流子传输能力强、光生电子-空穴的快速分离和迁移,高物理化学稳定性和“地表含量丰富”性质从而被广泛应用于光催化制氢、降解污染物、有机反应等领域的研究。然而,由于g-C3N4中电荷载流子复合率高、量子效率低、比表面积小、导电性差,而且在460 nm以上的吸收性能不足等缺点,使得g-C3N4在实际应用中仍然存在阻碍。为了提高g-C3N4的光催化效率,往往用诸如铂的金属作为提高光催化效应的助催化剂,然而铂是贵金属,其高昂的成本限制了其应用的范畴,所以开发拥有高效的光催化效果以取代贵金属铂的非贵金属助催化剂是具有前景且有意义的。碳和镍元素是在地球上富含广泛,故通过合成碳化镍,将碳化镍作为一种廉价的助催化剂来显著改善g-C3N4的光催化产氢性能。在氮气气氛下,乙酰丙酮镍在烯烃胺中低温热解制备了高质量的Ni3C纳米粒子。在此基础上,采用简单两步法成功合成了新型的Ni3C/2D g-C3N4纳米异质结。本工作可望为金属碳化物作为非贵金属助催化剂,实现高效、低成本的g-C3N4基光催化产氢提供新思路,并为替代铂的一种助催化剂的研发提供可能。因此,碳化镍材料是有希望替代铂等贵金属的一种助催化剂。
发明内容
本发明的目的是为了提供一种高效、稳定、廉价的碳化镍/二维氮化碳纳米片光催化材料及其制备方法,目的是通过使用碳化镍为替代铂的一种助催化剂的研发提供可能,并作为助催化剂有效促进二维氮化碳半导体在可见光照射下催化水分解制氢的性能。
本发明的目的之一,提供一种碳化镍/氮化碳纳米片材料,简单两步法成功合成了新型的Ni3C/2D g-C3N4纳米异质结,碳化镍/与氮化碳的质量比为5:100~25:100,具体的,15:100为最佳比例,其中碳化镍为纳米颗粒,氮化碳为二维纳米片。
本发明的目的之二,是提供上述金属性碳化镍纳米颗粒/二维氮化碳纳米片光催化材料的制备方法,具体制备步骤如下:
S1、在马弗炉中以三聚氰胺作为前驱体进行煅烧而得到二维氮化碳纳米片:将2 g 的三聚氰胺放进有盖的坩埚里,在马弗炉中以2℃/min 升温速率加热到550℃,在550℃保持250min,这样得块状氮化碳,后将块状氮化碳通过研磨磨成粉末,后称取400 mg 磨好的块状氮化碳粉末,放置在陶瓷方盅里,并平铺均匀,后放置于马弗炉中,以10℃/min 升温速率加热到550℃,保持90min,便可得到超薄二维氮化碳纳米片材料。
S2、Ni3C的制备:取300 mg醋酸镍(Ⅱ)和10 mL油胺放入三颈圆底烧瓶中,然后在连续的氮气流下进行磁性搅拌。将混合物加热并保持在250℃下2 h,随后将样品冷却到室温。最后取50 mL丙酮放入烧瓶中搅拌并超声,离心沉淀并用甲苯和乙醇多次洗涤,得到的黑色样品即为Ni3C。
S3、分别取超薄二维氮化碳纳米片和Ni3C粉体分散到正己烷中,浓度为1 mg/mL,同时超声一段时间。
S4、取Ni3C溶液和超薄二维氮化碳纳米片溶液混合,然后放入研钵中充分研磨,多次加入己烷直至己烷溶剂蒸干,并分别用乙醇和水多次洗涤,冷冻干燥48 h,即是得到的样品。
步骤S2、中,搅拌时间为15-30min,超声时间为15-30min。
步骤S2、中,洗涤是通过去甲苯洗涤2-3次,乙醇洗涤2-3次。
步骤S3、中,量取5、15、25 mL Ni3C溶液分别和95、85、75 mL 2D g-C3N4溶液混合。优选15 mL Ni3C:和85mL 2D g-C3N4
步骤S4、中,洗涤是通过乙醇洗涤2-3次,去离子水洗涤3-4次;干燥指真空冷冻干燥。
步骤S5、中,研磨的时间为20-30min。
上述碳化镍/氮化碳纳米片光催化材料的用途为,在可见光照射下,不添加贵金属铂作为助催化剂,作为催化剂分解水产氢。
本发明与现有材料制备技术相比,其优势在于:通过简单自组装策略将金属相的Ni3C负载在2D g-C3N4上,充分利用二维超薄结构和肖特基结效应的优势。复合光催化剂在产氢过程中显示出了良好的光催化性能,且其制备过程可控、原料廉价易得,具有良好的市场应用前景。
附图说明
图1是所制备碳化镍/氮化碳纳米片光催化材料的X射线衍射图和红外光谱图。
图2是所制备碳化镍/氮化碳纳米片光催化材料的扫描透镜和透射电镜图。(a-c)2D g-C3N4、Ni3C和Ni3C/2D g-C3N4的SEM图,(c-e)2D g-C3N4和Ni3C的TEM图,(f-h)15% Ni3C/2D g-C3N4的TEM图,(i)15% Ni3C/2D g-C3N4的HRTEM图。
图3为所制备碳化镍/氮化碳纳米片光催化材料的X射线光电子能谱分析图。
图4为所制备碳化镍/氮化碳纳米片光催化材料在可见光照射下分解水产氢活性表现。
具体实施方式
下面结合附图对本发明作进一步详细的阐述。
实施例:包括Ni3C/2D g-C3N4纳米异质结,碳化镍/与氮化碳的质量比为5:100~25:100;其中碳化镍为纳米颗粒,氮化碳为二维纳米片。其中,碳化镍/氮化碳的质量比为15:100。
碳化镍/氮化碳纳米片光催化材料的制备包括以下步骤:
S1、将三聚氰胺置于带盖的陶瓷坩埚中,于马弗炉中以2℃/min速率升温至550℃煅烧250min,得到黄色物质,将黄色物质研磨成粉末,并将400mg黄色粉末平铺在无盖的方舟中,放进马弗炉中以10℃/min速率升温至550℃煅烧90min,得到白色粉末状材料即为二维氮化碳纳米片。
S2、取300 mg醋酸镍(Ⅱ)和10 mL油胺放入三颈圆底烧瓶中,然后在连续的氮气流下进行磁性搅拌15-30min。将混合物加热并保持在250℃下2 h,随后将样品冷却到室温。后取50 mL丙酮放入烧瓶中搅拌并超声15-30min,离心沉淀并用甲苯和乙醇多次洗涤,得到的黑色样品即为Ni3C。
S3、在前两步基础上,分别取一定量的超薄二维氮化碳纳米片和Ni3C粉体分散到正己烷中,浓度为1 mg/mL,同时超声15-30min。
S4、取Ni3C溶液和超薄二维氮化碳纳米片溶液混合,然后放入研钵中充分研磨25min,多次加入己烷直至己烷溶剂蒸干,并分别用乙醇和水多次洗涤,冷冻干燥48 h,即是得到的样品。
图1是碳化镍/氮化碳纳米片XRD和FT-IR图谱,得到的样品表现出与单一氮化碳类似的峰谱,这说明氮化碳的化学结构在负载碳化镍后未出现改变,它也能确定Ni3C/2D g-C3N4纳米异质结的成功形成。
图2是所制备碳化镍/氮化碳纳米片光催化材料的扫描透镜和透射电镜图。充分证实了Ni3C与2D g-C3N4之间的紧密界面接触。
图3为所制备的碳化镍/二维氮化碳纳米片X射线光电子能谱,充分证明了Ni3C/2Dg-C3N4复合材料的成功制备。
图4为所制备的碳化镍/二维氮化碳纳米片材料在可见光照射下的分解水产氢性能体现。在可见光条件下,以碳化镍作为助催化剂,体积比1:9的三乙醇胺与水的混合溶液中,催化剂质量10 mg,溶液体积为100 mL (10 mL三乙醇胺和90 mL蒸馏水的混合溶液),即可有效实现的分解水产氢。可以发现通过负载碳化镍合成碳化镍/二维氮化碳纳米片材料,其产氢性能,较单一二维氮化碳的产氢活性得到明显提升,其中15% 负载量的样品活性达到了2.23mmolg-1h-1

Claims (9)

1.碳化镍/氮化碳纳米片材料,其特征在于,包括Ni3C/2D g-C3N4纳米异质结,碳化镍/与氮化碳的质量比为5:100~25:100;其中碳化镍为纳米颗粒,氮化碳为二维纳米片。
2.如权利要求1所述的碳化镍/氮化碳纳米片材料,其特征在于,碳化镍/氮化碳的质量比为15:100。
3.如权利要求1所述的碳化镍/氮化碳纳米片材料的制备方法,其特征在于,步骤如下:
S1、在马弗炉中以三聚氰胺作为前驱体进行煅烧而得到二维氮化碳纳米片:将2 g 的三聚氰胺放进有盖的坩埚里,在马弗炉中以2℃/min速率加热到550℃,在550℃保持250min,这样得块状氮化碳,后将块状氮化碳通过研磨磨成粉末,后称取400 mg 磨好的块状氮化碳粉末,放置在陶瓷方盅里,并平铺均匀,后放置于马弗炉中,以10℃/min 升温速率加热到550℃,保持90 min,便可得到超薄二维氮化碳纳米片材料;
S2、Ni3C的制备:取300 mg醋酸镍(Ⅱ)和10 mL油胺放入三颈圆底烧瓶中,然后在连续的氮气流下进行磁性搅拌,将混合物加热并保持在250℃下2 h,随后将样品冷却到室温,最后取50 mL丙酮放入烧瓶中搅拌并超声,离心沉淀并用甲苯和乙醇多次洗涤,得到的黑色样品即为Ni3C;
S3、分别取超薄二维氮化碳纳米片和Ni3C粉体分散到正己烷中,浓度为1 mg/mL,同时超声一段时间;
S4、取Ni3C溶液和超薄二维氮化碳纳米片溶液混合,然后放入研钵中充分研磨,多次加入己烷直至己烷溶剂蒸干,并分别用乙醇和水多次洗涤,冷冻干燥48 h,即是得到的样品。
4.如权利要求3所述的金属性碳化镍/氮化碳纳米片光催化材料的制备方法,其特征在于,步骤S2中,搅拌时间为15-30min,超声时间为15-30min。
5.如权利要求3所述的金属性碳化镍/氮化碳纳米片光催化材料的制备方法,其特征在于,步骤S2中,洗涤是通过去甲苯洗涤2-3次,乙醇洗涤2-3次。
6.如权利要求3所述的金属性碳化镍/氮化碳纳米片光催化材料的制备方法,其特征在于,步骤S3中,量取5、15、25 mL Ni3C溶液分别和95、85、75 mL 2D g-C3N4溶液混合。
7.如权利要求3所述的金属性碳化镍/氮化碳纳米片光催化材料的制备方法,其特征在于,步骤S4中,洗涤是通过乙醇洗涤2-3次,去离子水洗涤3-4次;干燥指真空冷冻干燥。
8.如权利要求3所述的金属性碳化镍/氮化碳纳米片光催化材料的制备方法,其特征在于,步骤S4中,研磨的时间为20-30min。
9.如权利要求1所述的碳化镍/氮化碳纳米片光催化材料的用途,其特征在于,在可见光照射下,不添加贵金属铂作为助催化剂,作为催化剂分解水产氢。
CN202010797479.1A 2020-08-10 2020-08-10 碳化镍/氮化碳纳米片光催化材料及制备方法和应用 Pending CN111790432A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010797479.1A CN111790432A (zh) 2020-08-10 2020-08-10 碳化镍/氮化碳纳米片光催化材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010797479.1A CN111790432A (zh) 2020-08-10 2020-08-10 碳化镍/氮化碳纳米片光催化材料及制备方法和应用

Publications (1)

Publication Number Publication Date
CN111790432A true CN111790432A (zh) 2020-10-20

Family

ID=72833614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010797479.1A Pending CN111790432A (zh) 2020-08-10 2020-08-10 碳化镍/氮化碳纳米片光催化材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN111790432A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751047A (zh) * 2021-10-12 2021-12-07 盐城工学院 一种共价有机框架-氮化碳纳米片杂化光催化析氢材料及其制备方法和应用
CN114713287A (zh) * 2022-04-21 2022-07-08 河北工程大学 一种Salen金属配合物催化剂及其制备方法
CN115337954A (zh) * 2022-10-17 2022-11-15 山东环投环境工程有限公司 一种基于氮化碳的复合光催化剂及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120065052A1 (en) * 2010-09-14 2012-03-15 Basf Se Process for producing a carbon-comprising support
CN109174144A (zh) * 2018-07-10 2019-01-11 华南农业大学 Ni3C@Ni核壳助催化剂和Ni3C@Ni/光催化剂复合材料及其制备方法与应用
CN109746016A (zh) * 2018-12-19 2019-05-14 江苏大学 金属性氮化镍/氮化碳纳米片光催化材料及制备方法和应用
US20200016585A1 (en) * 2018-07-12 2020-01-16 Soochow University Visible-light response hybrid aerogel and preparation method and application thereof in waste gas processing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120065052A1 (en) * 2010-09-14 2012-03-15 Basf Se Process for producing a carbon-comprising support
CN109174144A (zh) * 2018-07-10 2019-01-11 华南农业大学 Ni3C@Ni核壳助催化剂和Ni3C@Ni/光催化剂复合材料及其制备方法与应用
US20200016585A1 (en) * 2018-07-12 2020-01-16 Soochow University Visible-light response hybrid aerogel and preparation method and application thereof in waste gas processing
CN109746016A (zh) * 2018-12-19 2019-05-14 江苏大学 金属性氮化镍/氮化碳纳米片光催化材料及制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KELIN HE 等: "Multi-functional Ni3C cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light", 《J. MATER. CHEM. A》 *
ZHIGANG CHEN 等: "Constructing Schottky junction between 2D semiconductor and metallic nickel phosphide for highly efficient catalytic hydrogen evolution", 《APPLIED SURFACE SCIENCE》 *
韩莹莹等: "氮化碳的制备及光催化分解水制氢性能研究", 《合成材料老化与应用》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113751047A (zh) * 2021-10-12 2021-12-07 盐城工学院 一种共价有机框架-氮化碳纳米片杂化光催化析氢材料及其制备方法和应用
CN113751047B (zh) * 2021-10-12 2023-11-10 盐城工学院 一种共价有机框架-氮化碳纳米片杂化光催化析氢材料及其制备方法和应用
CN114713287A (zh) * 2022-04-21 2022-07-08 河北工程大学 一种Salen金属配合物催化剂及其制备方法
CN115337954A (zh) * 2022-10-17 2022-11-15 山东环投环境工程有限公司 一种基于氮化碳的复合光催化剂及其制备方法与应用
CN115337954B (zh) * 2022-10-17 2023-01-03 山东环投环境工程有限公司 一种基于氮化碳的复合光催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
Gong et al. Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: molybdenum nitride/ultrathin graphitic carbon nitride
Lei et al. Enhancement of photocatalytic H2-evolution kinetics through the dual cocatalyst activity of Ni2P-NiS-decorated g-C3N4 heterojunctions
CN111790432A (zh) 碳化镍/氮化碳纳米片光催化材料及制备方法和应用
CN112169819A (zh) 一种g-C3N4 (101)-(001)-TiO2复合材料的制备方法和应用
CN110124706B (zh) 碳化钛/硫化铟锌复合可见光催化剂的制备方法
CN111545235A (zh) 一种2D/2Dg-C3N4CoAl-LDH产氢异质结材料及其制备方法与应用
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
CN110624550B (zh) 一种原位碳包覆的铜镍合金纳米颗粒光催化剂及其制备方法和应用
CN107983387B (zh) 一种氮化碳/硒酸铋复合材料的制备方法与应用
CN112844412B (zh) 一种硫铟锌-MXene量子点复合光催化剂及其制备方法和应用
CN111701601A (zh) 一种Bi4O5Br2自组装空心花球的制备方法及在光催化还原CO2方面的应用
CN110064412A (zh) 镍掺杂二硫化钼电催化剂及其制备方法
CN113751047A (zh) 一种共价有机框架-氮化碳纳米片杂化光催化析氢材料及其制备方法和应用
CN108927197B (zh) 一种高催化性能的g-C3N4的制备方法和用途
CN110756199A (zh) 一例基于硫化镍量子点的复合光催化剂的制备方法及应用
CN112495411B (zh) 一种氮化碳纳米片负载钒酸铟量子点光催化剂及其制备和应用
Huang et al. Cooperative enhancement solar hydrogen generation of reformed g-C3N4/TiO2 mesocrystals composites
CN111644185A (zh) 一种利用细胞粉碎机剥离Bi3O4Cl的方法及在光催化还原CO2方面的应用
CN115090318B (zh) 一种高比表面积分子间异质结氮化碳光催化剂的制备方法及其应用
CN116689006A (zh) 一种氮化碳纳米片复合材料及其制备方法和应用
CN113697783B (zh) 一种多孔g-C3N4纳米薄片的制备方法及其应用
CN114870899A (zh) 一种光催化co2分解制合成气的复合光催化剂及其制备方法
CN111807336B (zh) 一种兼具光催化和光热转换性能的非晶氧化钼纳米点/二维氮化碳纳米片及其制备方法
CN107715880A (zh) 非贵金属颗粒锚定在石墨烯片的纳米复合材料的制备方法及其产品和应用
CN111871442B (zh) 硫化铌钽/氮化碳纳米片光催化材料及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201020