CN111763253B - Chromatin remodeling factor ISWI, coding gene and role in diaphorina tabaci MED cryptic temperature tolerance - Google Patents
Chromatin remodeling factor ISWI, coding gene and role in diaphorina tabaci MED cryptic temperature tolerance Download PDFInfo
- Publication number
- CN111763253B CN111763253B CN202010741312.3A CN202010741312A CN111763253B CN 111763253 B CN111763253 B CN 111763253B CN 202010741312 A CN202010741312 A CN 202010741312A CN 111763253 B CN111763253 B CN 111763253B
- Authority
- CN
- China
- Prior art keywords
- glu
- lys
- leu
- gene
- bemisia tabaci
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/43504—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
- C07K14/43563—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from insects
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N57/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
- A01N57/10—Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
- A01N57/16—Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Pest Control & Pesticides (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- Insects & Arthropods (AREA)
- Plant Pathology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Dentistry (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Agronomy & Crop Science (AREA)
- Saccharide Compounds (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The invention relates to the technical field of agricultural biology, in particular to a bemisia tabaci MED recessive chromatin remodeling gene Btiswi and application thereof. The nucleotide sequence of the gene is shown as SEQ ID No. 1. The invention defines the expression mode of the Btiswi gene in the hidden seed of Bemisia tabaci MED under the temperature gradient. The reduction of the expression of the gene directly reduces the tolerance of the MED cryptic species to the adversity temperature. The obtained result lays a foundation for further defining the function of the chromatin remodeling factor in the rapid adaptation of the bemisia tabaci to the adverse environmental conditions, and provides a theoretical basis for further disclosing the rapid expansion of the hidden seeds of MED and the outbreak disaster-forming mechanism. Can be used for destroying the temperature tolerance of the bemisia tabaci, and further preventing and controlling the harm and the diffusion of the bemisia tabaci.
Description
Technical Field
The invention relates to the technical field of agricultural biology, in particular to a chromatin remodeling factor ISWI, an encoding gene and an effect in diaphorina tabaci MED recessive temperature tolerance.
Background
Bemisia tabaci (Gennadius)) belongs to the phylum Arthropoda, Insecta, Hemiptera, Bemisia, and is an important agricultural pest worldwide. The insect host has a wide range, can damage over 600 economic crops such as leguminous crops, solanaceae crops, compositae crops, cucurbitaceae crops, malvaceae crops and cruciferae crops in a mode of taking plant juice, secreting honeydew to induce sooty mould, spreading plant viruses and the like, and is a great pest which is necessary to deal with the crop production in China.
With the change of global temperature, the successful adaptation of the hidden species of bemisia tabaci MED under different geographic environments has widely led people to the theoretical discussion of the invasion mechanism, and the molecular mechanism of the temperature adaptability is one of the research hotspots in recent years. In the experiment of heat shock selection of Bemisia tabaci, the survival rate of the invasive species Bemisia tabaci in the 2 generations is obviously improved, and the rapid improvement of the survival capability is an important strategy for the survival of the Bemisia tabaci in the severe environment. The mechanism of response of organisms to environmental variations within this short period of time is epigenetic related. Epigenetic processes increase the organism's response to the evolutionary potential for non-temperature stress and other environmental challenges, which are highly correlated with the background of global environmental warming.
Chromatin remodelling (chromatin remodelling) is one of the current research hotspots in the field of epigenetics, driving the replacement or rearrangement of nucleosomes, altering the spatial conformation of chromatin. ATP-dependent chromatin remodeling is an important epigenetic regulation mechanism for chromatin remodeling complex to utilize energy released by ATP hydrolysis to change chromatin structure, thereby regulating eukaryotic gene expression. Chromatin remodeling plays a key role in the expression regulation of genes related to biological defense, and the chromatin remodeling factor ISWI can participate in the regulation of environmental stress on the biological adversity and plays an important role in regulating the expression of genes related to abiotic stress. Its role in temperature stress of bemisia tabaci is unknown.
The phenomenon of RNA interference (RNAi) is an evolutionarily conserved defense mechanism against transgene or foreign virus invasion. Double-stranded RNA (dsRNA) having a sequence homologous to and complementary to mRNA, which is a transcription product of a target gene, is introduced into a cell to specifically degrade the mRNA, thereby causing a loss of the corresponding functional phenotype. RNAi is widely existed in biology world, and can silence some genes in insect body by RNAi technology to enhance or lose some abilities of insect, and also can inhibit the expression of functional gene in specific time to make the development of insect stay at a certain stage, so as to achieve the purpose of utilizing or preventing the damage of insect. The dsRNA is fed to the bemisia tabaci, so that the dsRNA has the characteristics of simplicity, convenience, easiness in operation and the like, and can be applied to the research of the bemisia tabaci.
Disclosure of Invention
The invention aims to provide a bemisia tabaci MED cryptic chromatin remodeling factor ISWI.
Still another object of the present invention is to provide a gene encoding the above diaphorina fumonis MED cryptic chromatin remodeling factor.
It is still another object of the present invention to provide a recombinant expression vector containing the above-mentioned coding gene.
It is still another object of the present invention to provide a recombinant strain containing the above-mentioned encoding gene.
The invention further aims to provide application of the bemisia tabaci MED cryptic chromatin remodeling factor ISWI.
According to the specific embodiment of the invention, the bemisia tabaci MED recessive chromatin remodeling gene Btiswi is cloned for the first time, and the cDNA full-length nucleotide sequence is shown as SEQ ID No. 1:
ATGGTTAAAACGGGGTCTGAAAACCGGTCAGACGACGGTTCTGATGGTGAAGAATTGTCGAACGAATCATCCTCTATGGAAGCTCCGCCCGCTCCGAAAAGTCTTAAAGCAGAATTCGATAAACCTGGAGTTGACCAGAGTAAGCGCTTTGAATTCTTACTAAAACAGACCGAAATTTTCTCTCACTTCATGACGAACAGCAATAAGGATAAAACTTCCCCAACAACCACTGGAAAACCAAAAGGTAGGCCTCGGAAAGAACAACCCAAATCCTCGGACTCACCCTCTAAAGATTCTGCTGATCATCGTCACCGGAAAACAGAGCAAGAGGAAGATGAAGAACTACTGGCTGAGAGTAACGCAGCCACAAAGACCATAACCATGTTTGATTCCTCACCATTCTACATTAAAAATGGTGAATTACGAGATTACCAAGTTCGTGGTCTAAACTGGATGATTTCTCTCTTTGAAAACGGCATTAACGGTATTCTTGCCGATGAGATGGGTCTAGGTAAAACCCTTCAAACCATCTCGCTACTTGGTTACATGAAGAACTTCCGTAACATCTCTGGCCCTCATATGGTCATTGTCCCTAAGTCAACCTTGATGAACTGGATGAATGAATTCAAAAAGTGGTGTCCCTCGCTGAAAGCAGTTTGTTTAATTGGAGACCAAGAAGCTCGTAATAATTTCATCAGAGACGTTTTAATGCCTGGAGACTGGGACGTTTGTGTAACTTCTTATGAAATGATCATTCGAGAGAAAAGCACCTTGAAGAAATTTAATTGGCGTTACATGGTCATTGACGAAGCTCACCGTATTAAAAACGAGAAATCCAAGTTATCAGAAATTGTTCGAGAATTCAAGACAACCAACAGATTGCTGCTAACTGGAACTCCATTACAAAACAACCTTCATGAGTTATGGTCTCTGTTGAATTTCTTGCTACCTGATGTCTTTAATTCATCAGATGATTTTGATGCATGGTTCAATACGAATACTTGTCTTGGTGACAATGCACTTGTTGAAAGATTGCATGCAGTTTTAAGACCTTTCTTGTTGCGTCGTCTCAAGTCTGAAGTGGAAAAGCGATTGAAACCCAAAAAAGAATTAAAGGTGTATGTTGGCTTAAGTAAAATGCAAAGAGAGTGGTATACTAAAGTCCTGATGAAAGATATTGACATTGTGAATGGTGCTGGAAAAATTGAGAAAATGCGGCTTCAAAACATCCTGATGCAACTGCGAAAGTGCTGTAACCACCCGTATCTTTTTGATGGCGCTGAACCTGGTCCACCATATACAACAGATGAGCACTTGGTATTTAACTGTGGCAAAATGGTCATTCTTGATAAGCTGCTGCCGAAATTACAAGAACAAGACTCAAGGGTGCTAATTTTTAGTCAAATGACGCGTATGATTGACATCCTTGAAGATTTCTGCCACTGGCGTGGATATAAGTATTGCAGGTTAGATGGTCAAACTCCCCATGAAGATCGACAGCGGCAGATCAATGAATTTAATGCCCCAAACAGCGACAAATTCATTTTCATGTTGTCAACTCGCGCTGGTGGTCTTGGTATCAACTTGGCAACTGCAGATGTAGTTATCATTTATGATTCTGACTGGAATCCTCAAATGGACTTGCAGGCCATGGACCGAGCTCATCGTATAGGTCAGAAAAAACAAGTACGAGTTTTCCGACTAATCACCGAAAATACTGTTGAGGAAAAAATTGTTGAAAGAGCAGAAGTCAAATTACGTTTGGACAAGCTGGTCATTCAACAAGGTCGCTTAGTCGACAACAAGGCTGCTCTCCAAAAAGACGAAATGCTTAACATGATTCGGCATGGTGCCAATCATGTCTTTGCTTCAAAAGACTCAGAAATTACAGATGAAGATATTGATACAATTCTTGAGAAAGGTGAGGCTAAGACTGAAGAGATGAAGCAGAAGCTAGAAACGCTCGGGGAATCCTCTCTTCGAAATTTCACCCTCGATGCTCCCACTGAATCTGTTTATCAGTTTGAAGGGGAAGACTACCGTGAAAAGCAAAAACTCACCGGGATTGGAAATTGGATTGAGCCTCCTAAGAGAGAGAGGAAAGCAAACTATGCTGTCGATGCATATTTCCGTGAAGCGCTCCGAGTTTCAGAACCGAAAGCACCAAAAGCTCCAAGACCTCCAAAACAACCAATTGTCCAAGATTTCCAGTTCTTTCCAATGCGTCTATTTGAGCTGTTAGATCAAGAAATCTACTATTTCCGCAAGTCAGTGGGCTACCGGGTACCCAAGAACCCAGAGTTGGGTGTAGATGCAAACAAAATACAGAAAGAAGAGCAGAAGAAGATCGACGAGGCACAACCACTGACTGAAGAAGAACTGTTGGAAAAAGAAGATCTTCTGACACAAGGATTTACCAACTGGACGAAGCGTGATTTCAACCAATTTATAAAAGCTAATGAAAAATTCGGTAGAGACGATATTCACAACATTTGCAAGGAAGTCGAAGGCAAAACCCCCGAAGAAGTTATAGAGTATAGCAGTGTATTTTGGGAACGCTGTCAGGAATTACAAGATATTGAACGAATAATGGCTCAAATAGAACGTGGTGAAGCAAAAATCCAACGCCGTGCCAGTATAAAGCGAGCCTTAGATGCTAAAATGGAGAGGTATCAAGCGCCATTCCACCAGCTGAGAATATCCTATGGCACAAACAAAGGCAAAAACTACACCGAAGAAGAAGATCGGTTTTTGGTTTGTATGTTGCATCGACTTGGATTCGACAAGGAGAATGTGTATGAGGAACTCCGATCTGCAACAAGATTTGCCCCTCAGTTCCGCTTTGACTGGTTCATCAAGAGCAGAACTGCGATGGAATTGCAGCGACGATGTAACACATTAATCACACTCATTGAGCGAGAAAATCAAGAACTAGAGGAGAAAGAGAAAGCAGCTGACAAAACAAAGAACAAGCGAGGACCTCGTGCTGGCCAAGGCAAACGGAAAAGCGAAGCTAACGCTGTGGCCGATTCGAAACCAACCTCAGCTAAAAAGAAGAAAAAGAACTAA
the amino acid sequence of the gene-encoded bemisia tabaci MED cryptic chromatin remodeling factor is shown in SEQ ID NO:2, as shown in the figure:
MVKTGSENRSDDGSDGEELSNESSSMEAPPAPKSLKAEFDKPGVDQSKRFEFLLKQTEIFSHFMTNSNKDKTSPTTTGKPKGRPRKEQPKSSDSPSKDSADHRHRKTEQEEDEELLAESNAATKTITMFDSSPFYIKNGELRDYQVRGLNWMISLFENGINGILADEMGLGKTLQTISLLGYMKNFRNISGPHMVIVPKSTLMNWMNEFKKWCPSLKAVCLIGDQEARNNFIRDVLMPGDWDVCVTSYEMIIREKSTLKKFNWRYMVIDEAHRIKNEKSKLSEIVREFKTTNRLLLTGTPLQNNLHELWSLLNFLLPDVFNSSDDFDAWFNTNTCLGDNALVERLHAVLRPFLLRRLKSEVEKRLKPKKELKVYVGLSKMQREWYTKVLMKDIDIVNGAGKIEKMRLQNILMQLRKCCNHPYLFDGAEPGPPYTTDEHLVFNCGKMVILDKLLPKLQEQDSRVLIFSQMTRMIDILEDFCHWRGYKYCRLDGQTPHEDRQRQINEFNAPNSDKFIFMLSTRAGGLGINLATADVVIIYDSDWNPQMDLQAMDRAHRIGQKKQVRVFRLITENTVEEKIVERAEVKLRLDKLVIQQGRLVDNKAALQKDEMLNMIRHGANHVFASKDSEITDEDIDTILEKGEAKTEEMKQKLETLGESSLRNFTLDAPTESVYQFEGEDYREKQKLTGIGNWIEPPKRERKANYAVDAYFREALRVSEPKAPKAPRPPKQPIVQDFQFFPMRLFELLDQEIYYFRKSVGYRVPKNPELGVDANKIQKEEQKKIDEAQPLTEEELLEKEDLLTQGFTNWTKRDFNQFIKANEKFGRDDIHNICKEVEGKTPEEVIEYSSVFWERCQELQDIERIMAQIERGEAKIQRRASIKRALDAKMERYQAPFHQLRISYGTNKGKNYTEEEDRFLVCMLHRLGFDKENVYEELRSATRFAPQFRFDWFIKSRTAMELQRRCNTLITLIERENQELEEKEKAADKTKNKRGPRAGQGKRKSEANAVADSKPTSAKKKKKN
the above amino acid sequence has the conserved domain characteristics typical of the ISWI protein: ATPase domains (DEXDc:137-324aa and HELICC:474-558aa), HAND domain (705-804aa), SANT domain (805-855aa), SLIDE domain (890-984aa), and a continuous alpha helix (SP:856-889aa) connecting the SANT and SLIDE domains.
The expression mode of the Btiswi gene under temperature stress is analyzed, and the real-time fluorescent quantitative PCR result shows that the Bemisia tabaci MED cryptomorphic Btiswi gene can be over-expressed under short-time high and low temperature stress.
The invention provides application of the bemisia tabaci MED cryptomorphic chromatin remodeling gene Btiswi. RNAi is carried out on the cryptophyte of the tobacco powder MED, and the result shows that the high-temperature knockdown time of the cryptophyte MED imagoes fed with dsBtsiswi is obviously reduced, and the low-temperature cold-induced stunning recovery time is obviously increased, which indicates that the Btsiswi gene plays a key role in the temperature tolerance of the cryptophyte MED of the tobacco powder lice. The bemisia tabaci MED recessive chromatin remodeling gene Btiswi can be used for destroying the temperature tolerance of bemisia tabaci, and further can be used for preventing and treating the bemisia tabaci.
The invention clones the chromatin remodeling gene Btiswi from the hidden seeds of Bemisia tabaci MED for the first time, and defines the expression condition of the Btiswi gene in the hidden seeds of Bemisia tabaci MED under temperature stress. In addition, the reduction of the expression of the gene directly reduces the tolerance of the MED cryptic species to high and low temperatures. The obtained result lays a foundation for further defining the function of the chromatin remodeling factor in the rapid adaptation of the bemisia tabaci to the adverse environmental conditions, and provides a theoretical basis for further disclosing the rapid expansion of the hidden seeds of MED and the outbreak disaster-forming mechanism. Can be used for destroying the temperature tolerance of the bemisia tabaci, and further preventing and controlling the harm and the diffusion of the bemisia tabaci.
Drawings
FIG. 1 shows a conservative domain pattern diagram (A) of Btiswi gene of Bemisia tabaci MED and a predicted Btiswi-C end three-dimensional structure diagram (B);
FIG. 2 shows the analysis of expression pattern of Btiswi gene at gradient temperature in Bemisia tabaci MED cryptic;
FIG. 3 shows the expression level changes of Btiswi under the conditions of feeding Btiswi gene dsRNA, feeding dsEGFP, feeding 10% sucrose solution and CK;
figure 4 shows the effect of dsRNA treatment of the Btiswi gene on the heat and cold tolerance of bemisia tabaci MED cryptophyte adults: comparing the high-temperature knockdown time (A) and the low-temperature cold-induced stunning recovery time (B) of the bemisia tabaci MED cryptomorphic adults fed with Btiswi gene dsRNA, dsEGFP and 10% sucrose solution and CK.
Detailed Description
Example 1: full-length cDNA sequence clone of Bemisia tabaci MED cryptomorphic Btiswi gene
Respectively putting 200 heads of bemisia tabaci adults under different temperature stress conditions into a 1.5mL centrifuge tube, freezing the bemisia tabaci adults by using liquid nitrogen, grinding the bemisia tabaci adults into powder by using a grinding rod, extracting RNA, and storing the RNA at minus 80 ℃ for later use. The extracted RNA was reverse transcribed to synthesize cDNA according to the instructions of the full-scale gold reverse transcription kit (One-Step gDNAremoval and cDNA Synthesis SuperMix). And (3) designing a primer by taking the cDNA as a template, and carrying out PCR amplification. Primers were designed as shown in Table 1.
TABLE 1
The sequence in Table 1 is utilized to obtain the cDNA sequence of Btiswi gene with the full length of 3069bp through PCR amplification, the obtained gene has the nucleotide sequence shown as SEQ ID No. 1, and the gene codes 1022 amino acid sequences shown as SEQ ID No. 2. The conserved domain of the amino acid sequence was analyzed using an online database and found to contain structural features unique to the ISWI protein family: a DEXDc domain at the 137-324 site, a HELICC domain at the 474-558 site, a HAND domain at the 705-804 site, a SANT domain at the 805-855 site, a SLIDE domain at the 890-984 site, and an alpha helix joining the SANT-SLIDE domain at the 856-889 site. The conserved domain (A) and the predicted Btiswi-C terminal three-dimensional structure (B) of the gene are shown in figure 1.
Example 2: analysis of expression characteristics of Btiswi Gene
(1) Extracting RNA and synthesizing cDNA of bemisia tabaci adults under different temperature stresses
Selecting the preliminarily emerged Bemisia tabaci MED cryptomorphic imagoes, and carrying out stress treatment on the Bemisia tabaci imagoes at 0, 12, 26, 35 and 40 ℃. Each of the 3 biology is repeated, 3000 adults are obtained, and after the stress is finished, the adults are immediately placed in liquid nitrogen to be frozen for 3 minutes and then stored at the temperature of minus 80 ℃. RNA was extracted and reverse transcribed into cDNA according to the method of example 1.
(2) Detecting Btiswi expression quantity at different temperatures by fluorescent quantitative PCR:
primers for the Btiswi gene and two internal reference genes (EF 1-alpha, beta-tubulin) of the fluorescent quantitative PCR were designed:
iswi-QF:GCAGGTTAGATGGTCAAACTCCCC
iswi-QR:TTTTCCTCAACAGTATTTTCGGTG
EF1-α-F:TAGCCTTGTGCCAATTTCCG
EF1-α-R:CCTTCAGCATTACCGTCC
β-tub-F:TGTCAGGAGTAACGACGTGTTTG
β-tub-R:TTCGGGAACGGTAAGTGCTC
the reaction system is 20 μ L: 2 × TransStartTM Green qPCR 10.0 μ L, ROA 0.4 μ L, cDNA template 1.0 μ L, Primer-F0.4 μ L, Primer-R0.4 μ L, ddH2O 7.8. mu.L.
Reaction conditions are as follows: 30s at 95 ℃; 5s at 95 ℃, 30s at 60 ℃ and 40 cycles; and drawing a melting curve.
(3) Data analysis
The relative expression amount of the gene was calculated by the 2- Δ Δ Ct method. Data were statistically analyzed using SAS9.4 software, differences between different temperature treatments were analyzed using one-way analysis of variance (ANOVA), and Duncan's test was performed. Data are expressed as mean ± standard error with significance test level P < 0.05.
As shown in FIG. 2, real-time fluorescent quantitative PCR results show that the expression level of the MED cryptomorphic Btiswi gene is obviously increased after short-time high-temperature and low-temperature stress treatment.
Example 3: analyzing the influence of Btiswi gene on the temperature tolerance of the Bemisia tabaci MED cryptic species
3.1 Synthesis of dsRNA
(1) Primer sequences were designed to synthesize plus the T7 promoter (sequence underlined):
T7+Btiswi-F:5’-TAATACGACTCACTATAGGGCTCCGATTCACCCTCT-3’
T7+Btiswi-R:5’-TAATACGACTCACTATAGGGGTCCCAGTCTCCAGGC-3'. Synthesized by Shanghai Biotechnology service, Inc.
(2) Total RNA extraction and cDNA synthesis: the same as in example 1.
(3) And (3) carrying out PCR amplification and product purification on the T7 primer, wherein the purified PCR product is the template for synthesizing dsRNA. dsRNA was synthesized and purified using the kit, following the kit instructions.
3.2dsRNA feeding
The Parafilm membrane was previously treated with DEPC water to remove RNase. Adding dsRNA into sucrose solution with the concentration of 10%, wherein the concentration is 0.3-0.5 mu g/mu L. According to the feeding characteristics of the bemisia tabaci, the method for clamping the nutrient solution by the Parafilm membrane is correspondingly improved: taking about 200 heads of the primary eclosion bemisia tabaci adults, putting the initial eclosion bemisia tabaci adults into a glass tube with two transparent ends, covering the upper end of the glass tube with a double-layer Parafilm, adding 200 mu L of 10% sucrose solution between the two films, adding dsRNA to enable the final concentration to be 0.3-0.5 mu g/mu L, covering the lower end of the glass tube with gauze, and keeping ventilation. The periphery and the lower end of the glass tube are wrapped by black plastic, so that the bemisia tabaci can gather to a parafilm at the top end to take dsRNA better, the device is placed into an artificial climate box (the temperature is 26 +/-0.5 ℃, the illumination is carried out for 24 hours, the relative humidity is 60-70 percent), and feeding is carried out for 3 hours. Collecting the fed bemisia tabaci in a finger-type pipe, putting a group of pipe into a preheated high-temperature water bath kettle for thermal knock down, and recording the time until the bemisia tabaci cannot stand independently, wherein the treatment temperature is 45 ℃. The other group is put into a low-temperature water bath kettle for cold knock down for ten minutes and then taken out to record the cold-induced dizziness recovery time, and the treatment temperature is-5 ℃. Bemisia tabaci without any treatment (CK), fed with a 10% sucrose solution and fed with a 10% sucrose mixed solution containing dsEGFP (final concentration of dsEGFP 0.3-0.5. mu.g/. mu.L) was used as a control, and 4 biological replicates were set for each treatment.
The relative expression quantity of the gene is calculated by a 2-delta CT method, and the result is shown in figure 3, and the expression of the Btiswi gene can be obviously reduced by feeding dsBtiswi. SAS9.4 statistical software is used for analyzing the high-temperature knockdown time and the low-temperature cold-induced stunning recovery time of the Bemisia tabaci MED cryptophyte adults fed with different solutions, and the results are shown in figure 4, wherein the high-temperature knockdown time (A) of the Bemisia tabaci MED cryptophyte fed with Btiswi gene dsRNA is obviously lower than that of three control groups, and the low-temperature cold-induced stunning recovery time (B) is obviously higher than that of the control groups. Meanwhile, NCBI (http:// BLAST. NCBI. nlm. nih. gov /) BLAST shows that the fed target sequence has a sequence specific to Btiswi gene, thereby ensuring that the interference effect is generated by the Btiswi gene of the target Btiswi gene of the Bemisia tabaci MED cryptic species. Therefore, the Btiswi gene plays a key role in the temperature tolerance of the bemisia tabaci MED cryptic species.
The full-length cDNA of the Btiswi gene is cloned from the Bemisia tabaci MED cryptic species, and the fluorescent quantitative PCR shows that the Btiswi gene can be overexpressed under the stress of the adversity temperature; and finally, the Btiswi gene dsRNA is fed, so that the high-temperature knockdown time of the bemisia tabaci MED cryptophyte adults is obviously shortened, and the low-temperature cold-induced stunning recovery time is obviously prolonged. According to the specific embodiment of the invention, the test result confirms that the Btiswi gene plays a key role in the temperature tolerance of the Bemisia tabaci MED cryptic species. The invention lays a foundation for further defining the function of chromatin remodeling factors in the rapid adaptation of bemisia tabaci to adverse environmental conditions, and provides a theoretical basis for further disclosing the rapid expansion of hidden seeds of MED and the disaster-forming mechanism of outbreak. Can be used for destroying the temperature tolerance of the bemisia tabaci, and further preventing and controlling the harm and the diffusion of the bemisia tabaci.
Sequence listing
<110> institute of plant protection of Chinese academy of agricultural sciences
<120> chromatin remodeling factor ISWI, coding gene and role in diaphorina tabaci MED cryptic temperature tolerance
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3069
<212> DNA
<213> Bemisia tabaci (Bemis tabaci)
<400> 1
atggttaaaa cggggtctga aaaccggtca gacgacggtt ctgatggtga agaattgtcg 60
aacgaatcat cctctatgga agctccgccc gctccgaaaa gtcttaaagc agaattcgat 120
aaacctggag ttgaccagag taagcgcttt gaattcttac taaaacagac cgaaattttc 180
tctcacttca tgacgaacag caataaggat aaaacttccc caacaaccac tggaaaacca 240
aaaggtaggc ctcggaaaga acaacccaaa tcctcggact caccctctaa agattctgct 300
gatcatcgtc accggaaaac agagcaagag gaagatgaag aactactggc tgagagtaac 360
gcagccacaa agaccataac catgtttgat tcctcaccat tctacattaa aaatggtgaa 420
ttacgagatt accaagttcg tggtctaaac tggatgattt ctctctttga aaacggcatt 480
aacggtattc ttgccgatga gatgggtcta ggtaaaaccc ttcaaaccat ctcgctactt 540
ggttacatga agaacttccg taacatctct ggccctcata tggtcattgt ccctaagtca 600
accttgatga actggatgaa tgaattcaaa aagtggtgtc cctcgctgaa agcagtttgt 660
ttaattggag accaagaagc tcgtaataat ttcatcagag acgttttaat gcctggagac 720
tgggacgttt gtgtaacttc ttatgaaatg atcattcgag agaaaagcac cttgaagaaa 780
tttaattggc gttacatggt cattgacgaa gctcaccgta ttaaaaacga gaaatccaag 840
ttatcagaaa ttgttcgaga attcaagaca accaacagat tgctgctaac tggaactcca 900
ttacaaaaca accttcatga gttatggtct ctgttgaatt tcttgctacc tgatgtcttt 960
aattcatcag atgattttga tgcatggttc aatacgaata cttgtcttgg tgacaatgca 1020
cttgttgaaa gattgcatgc agttttaaga cctttcttgt tgcgtcgtct caagtctgaa 1080
gtggaaaagc gattgaaacc caaaaaagaa ttaaaggtgt atgttggctt aagtaaaatg 1140
caaagagagt ggtatactaa agtcctgatg aaagatattg acattgtgaa tggtgctgga 1200
aaaattgaga aaatgcggct tcaaaacatc ctgatgcaac tgcgaaagtg ctgtaaccac 1260
ccgtatcttt ttgatggcgc tgaacctggt ccaccatata caacagatga gcacttggta 1320
tttaactgtg gcaaaatggt cattcttgat aagctgctgc cgaaattaca agaacaagac 1380
tcaagggtgc taatttttag tcaaatgacg cgtatgattg acatccttga agatttctgc 1440
cactggcgtg gatataagta ttgcaggtta gatggtcaaa ctccccatga agatcgacag 1500
cggcagatca atgaatttaa tgccccaaac agcgacaaat tcattttcat gttgtcaact 1560
cgcgctggtg gtcttggtat caacttggca actgcagatg tagttatcat ttatgattct 1620
gactggaatc ctcaaatgga cttgcaggcc atggaccgag ctcatcgtat aggtcagaaa 1680
aaacaagtac gagttttccg actaatcacc gaaaatactg ttgaggaaaa aattgttgaa 1740
agagcagaag tcaaattacg tttggacaag ctggtcattc aacaaggtcg cttagtcgac 1800
aacaaggctg ctctccaaaa agacgaaatg cttaacatga ttcggcatgg tgccaatcat 1860
gtctttgctt caaaagactc agaaattaca gatgaagata ttgatacaat tcttgagaaa 1920
ggtgaggcta agactgaaga gatgaagcag aagctagaaa cgctcgggga atcctctctt 1980
cgaaatttca ccctcgatgc tcccactgaa tctgtttatc agtttgaagg ggaagactac 2040
cgtgaaaagc aaaaactcac cgggattgga aattggattg agcctcctaa gagagagagg 2100
aaagcaaact atgctgtcga tgcatatttc cgtgaagcgc tccgagtttc agaaccgaaa 2160
gcaccaaaag ctccaagacc tccaaaacaa ccaattgtcc aagatttcca gttctttcca 2220
atgcgtctat ttgagctgtt agatcaagaa atctactatt tccgcaagtc agtgggctac 2280
cgggtaccca agaacccaga gttgggtgta gatgcaaaca aaatacagaa agaagagcag 2340
aagaagatcg acgaggcaca accactgact gaagaagaac tgttggaaaa agaagatctt 2400
ctgacacaag gatttaccaa ctggacgaag cgtgatttca accaatttat aaaagctaat 2460
gaaaaattcg gtagagacga tattcacaac atttgcaagg aagtcgaagg caaaaccccc 2520
gaagaagtta tagagtatag cagtgtattt tgggaacgct gtcaggaatt acaagatatt 2580
gaacgaataa tggctcaaat agaacgtggt gaagcaaaaa tccaacgccg tgccagtata 2640
aagcgagcct tagatgctaa aatggagagg tatcaagcgc cattccacca gctgagaata 2700
tcctatggca caaacaaagg caaaaactac accgaagaag aagatcggtt tttggtttgt 2760
atgttgcatc gacttggatt cgacaaggag aatgtgtatg aggaactccg atctgcaaca 2820
agatttgccc ctcagttccg ctttgactgg ttcatcaaga gcagaactgc gatggaattg 2880
cagcgacgat gtaacacatt aatcacactc attgagcgag aaaatcaaga actagaggag 2940
aaagagaaag cagctgacaa aacaaagaac aagcgaggac ctcgtgctgg ccaaggcaaa 3000
cggaaaagcg aagctaacgc tgtggccgat tcgaaaccaa cctcagctaa aaagaagaaa 3060
aagaactaa 3069
<210> 2
<211> 1022
<212> PRT
<213> Bemisia tabaci (Bemis tabaci)
<400> 2
Met Val Lys Thr Gly Ser Glu Asn Arg Ser Asp Asp Gly Ser Asp Gly
1 5 10 15
Glu Glu Leu Ser Asn Glu Ser Ser Ser Met Glu Ala Pro Pro Ala Pro
20 25 30
Lys Ser Leu Lys Ala Glu Phe Asp Lys Pro Gly Val Asp Gln Ser Lys
35 40 45
Arg Phe Glu Phe Leu Leu Lys Gln Thr Glu Ile Phe Ser His Phe Met
50 55 60
Thr Asn Ser Asn Lys Asp Lys Thr Ser Pro Thr Thr Thr Gly Lys Pro
65 70 75 80
Lys Gly Arg Pro Arg Lys Glu Gln Pro Lys Ser Ser Asp Ser Pro Ser
85 90 95
Lys Asp Ser Ala Asp His Arg His Arg Lys Thr Glu Gln Glu Glu Asp
100 105 110
Glu Glu Leu Leu Ala Glu Ser Asn Ala Ala Thr Lys Thr Ile Thr Met
115 120 125
Phe Asp Ser Ser Pro Phe Tyr Ile Lys Asn Gly Glu Leu Arg Asp Tyr
130 135 140
Gln Val Arg Gly Leu Asn Trp Met Ile Ser Leu Phe Glu Asn Gly Ile
145 150 155 160
Asn Gly Ile Leu Ala Asp Glu Met Gly Leu Gly Lys Thr Leu Gln Thr
165 170 175
Ile Ser Leu Leu Gly Tyr Met Lys Asn Phe Arg Asn Ile Ser Gly Pro
180 185 190
His Met Val Ile Val Pro Lys Ser Thr Leu Met Asn Trp Met Asn Glu
195 200 205
Phe Lys Lys Trp Cys Pro Ser Leu Lys Ala Val Cys Leu Ile Gly Asp
210 215 220
Gln Glu Ala Arg Asn Asn Phe Ile Arg Asp Val Leu Met Pro Gly Asp
225 230 235 240
Trp Asp Val Cys Val Thr Ser Tyr Glu Met Ile Ile Arg Glu Lys Ser
245 250 255
Thr Leu Lys Lys Phe Asn Trp Arg Tyr Met Val Ile Asp Glu Ala His
260 265 270
Arg Ile Lys Asn Glu Lys Ser Lys Leu Ser Glu Ile Val Arg Glu Phe
275 280 285
Lys Thr Thr Asn Arg Leu Leu Leu Thr Gly Thr Pro Leu Gln Asn Asn
290 295 300
Leu His Glu Leu Trp Ser Leu Leu Asn Phe Leu Leu Pro Asp Val Phe
305 310 315 320
Asn Ser Ser Asp Asp Phe Asp Ala Trp Phe Asn Thr Asn Thr Cys Leu
325 330 335
Gly Asp Asn Ala Leu Val Glu Arg Leu His Ala Val Leu Arg Pro Phe
340 345 350
Leu Leu Arg Arg Leu Lys Ser Glu Val Glu Lys Arg Leu Lys Pro Lys
355 360 365
Lys Glu Leu Lys Val Tyr Val Gly Leu Ser Lys Met Gln Arg Glu Trp
370 375 380
Tyr Thr Lys Val Leu Met Lys Asp Ile Asp Ile Val Asn Gly Ala Gly
385 390 395 400
Lys Ile Glu Lys Met Arg Leu Gln Asn Ile Leu Met Gln Leu Arg Lys
405 410 415
Cys Cys Asn His Pro Tyr Leu Phe Asp Gly Ala Glu Pro Gly Pro Pro
420 425 430
Tyr Thr Thr Asp Glu His Leu Val Phe Asn Cys Gly Lys Met Val Ile
435 440 445
Leu Asp Lys Leu Leu Pro Lys Leu Gln Glu Gln Asp Ser Arg Val Leu
450 455 460
Ile Phe Ser Gln Met Thr Arg Met Ile Asp Ile Leu Glu Asp Phe Cys
465 470 475 480
His Trp Arg Gly Tyr Lys Tyr Cys Arg Leu Asp Gly Gln Thr Pro His
485 490 495
Glu Asp Arg Gln Arg Gln Ile Asn Glu Phe Asn Ala Pro Asn Ser Asp
500 505 510
Lys Phe Ile Phe Met Leu Ser Thr Arg Ala Gly Gly Leu Gly Ile Asn
515 520 525
Leu Ala Thr Ala Asp Val Val Ile Ile Tyr Asp Ser Asp Trp Asn Pro
530 535 540
Gln Met Asp Leu Gln Ala Met Asp Arg Ala His Arg Ile Gly Gln Lys
545 550 555 560
Lys Gln Val Arg Val Phe Arg Leu Ile Thr Glu Asn Thr Val Glu Glu
565 570 575
Lys Ile Val Glu Arg Ala Glu Val Lys Leu Arg Leu Asp Lys Leu Val
580 585 590
Ile Gln Gln Gly Arg Leu Val Asp Asn Lys Ala Ala Leu Gln Lys Asp
595 600 605
Glu Met Leu Asn Met Ile Arg His Gly Ala Asn His Val Phe Ala Ser
610 615 620
Lys Asp Ser Glu Ile Thr Asp Glu Asp Ile Asp Thr Ile Leu Glu Lys
625 630 635 640
Gly Glu Ala Lys Thr Glu Glu Met Lys Gln Lys Leu Glu Thr Leu Gly
645 650 655
Glu Ser Ser Leu Arg Asn Phe Thr Leu Asp Ala Pro Thr Glu Ser Val
660 665 670
Tyr Gln Phe Glu Gly Glu Asp Tyr Arg Glu Lys Gln Lys Leu Thr Gly
675 680 685
Ile Gly Asn Trp Ile Glu Pro Pro Lys Arg Glu Arg Lys Ala Asn Tyr
690 695 700
Ala Val Asp Ala Tyr Phe Arg Glu Ala Leu Arg Val Ser Glu Pro Lys
705 710 715 720
Ala Pro Lys Ala Pro Arg Pro Pro Lys Gln Pro Ile Val Gln Asp Phe
725 730 735
Gln Phe Phe Pro Met Arg Leu Phe Glu Leu Leu Asp Gln Glu Ile Tyr
740 745 750
Tyr Phe Arg Lys Ser Val Gly Tyr Arg Val Pro Lys Asn Pro Glu Leu
755 760 765
Gly Val Asp Ala Asn Lys Ile Gln Lys Glu Glu Gln Lys Lys Ile Asp
770 775 780
Glu Ala Gln Pro Leu Thr Glu Glu Glu Leu Leu Glu Lys Glu Asp Leu
785 790 795 800
Leu Thr Gln Gly Phe Thr Asn Trp Thr Lys Arg Asp Phe Asn Gln Phe
805 810 815
Ile Lys Ala Asn Glu Lys Phe Gly Arg Asp Asp Ile His Asn Ile Cys
820 825 830
Lys Glu Val Glu Gly Lys Thr Pro Glu Glu Val Ile Glu Tyr Ser Ser
835 840 845
Val Phe Trp Glu Arg Cys Gln Glu Leu Gln Asp Ile Glu Arg Ile Met
850 855 860
Ala Gln Ile Glu Arg Gly Glu Ala Lys Ile Gln Arg Arg Ala Ser Ile
865 870 875 880
Lys Arg Ala Leu Asp Ala Lys Met Glu Arg Tyr Gln Ala Pro Phe His
885 890 895
Gln Leu Arg Ile Ser Tyr Gly Thr Asn Lys Gly Lys Asn Tyr Thr Glu
900 905 910
Glu Glu Asp Arg Phe Leu Val Cys Met Leu His Arg Leu Gly Phe Asp
915 920 925
Lys Glu Asn Val Tyr Glu Glu Leu Arg Ser Ala Thr Arg Phe Ala Pro
930 935 940
Gln Phe Arg Phe Asp Trp Phe Ile Lys Ser Arg Thr Ala Met Glu Leu
945 950 955 960
Gln Arg Arg Cys Asn Thr Leu Ile Thr Leu Ile Glu Arg Glu Asn Gln
965 970 975
Glu Leu Glu Glu Lys Glu Lys Ala Ala Asp Lys Thr Lys Asn Lys Arg
980 985 990
Gly Pro Arg Ala Gly Gln Gly Lys Arg Lys Ser Glu Ala Asn Ala Val
995 1000 1005
Ala Asp Ser Lys Pro Thr Ser Ala Lys Lys Lys Lys Lys Asn
1010 1015 1020
Claims (1)
1. A method for shortening the high-temperature knockdown time of the aleyrodid tobacco plant MED cryptic species and prolonging the low-temperature cold-induced stunning recovery time of the aleyrodid tobacco plant MED cryptic species is characterized by comprising the step of feeding dsRNA of an aleyrodid tobacco plant MED cryptic chromatin remodeling gene Btiswi to the aleyrodid tobacco plant MED cryptic species, wherein the nucleotide sequence of the chromatin remodeling gene is shown as SEQ ID No. 1,
the dsRNA is obtained by amplifying the following primers:
Btiswi-F:5’-TAATACGACTCACTATAGGGCTCCGATTCACCCTCT-3’,
Btiswi-R:5’-TAATACGACTCACTATAGGGGTCCCAGTCTCCAGGC-3’。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010741312.3A CN111763253B (en) | 2020-07-29 | 2020-07-29 | Chromatin remodeling factor ISWI, coding gene and role in diaphorina tabaci MED cryptic temperature tolerance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010741312.3A CN111763253B (en) | 2020-07-29 | 2020-07-29 | Chromatin remodeling factor ISWI, coding gene and role in diaphorina tabaci MED cryptic temperature tolerance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111763253A CN111763253A (en) | 2020-10-13 |
CN111763253B true CN111763253B (en) | 2022-03-25 |
Family
ID=72727695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010741312.3A Active CN111763253B (en) | 2020-07-29 | 2020-07-29 | Chromatin remodeling factor ISWI, coding gene and role in diaphorina tabaci MED cryptic temperature tolerance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111763253B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114380899B (en) * | 2022-01-17 | 2023-09-29 | 中国农业科学院植物保护研究所 | Tomato leaf miner chromatin remodelling factor BRM, and encoding gene and application thereof |
CN114437192B (en) * | 2022-01-17 | 2023-09-29 | 中国农业科学院植物保护研究所 | Tomato leaf miner chromatin remodelling factor ISWI, and encoding gene and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201629224A (en) * | 2014-12-16 | 2016-08-16 | 陶氏農業科學公司 | Parental RNAi suppression of chromatin remodeling genes to control coleopteran pests |
CN111848768B (en) * | 2020-01-09 | 2022-03-25 | 中国农业科学院植物保护研究所 | BtISWI gene and application thereof in regulating and controlling cryptogenic temperature preference of bemisia tabaci MEAM1 |
-
2020
- 2020-07-29 CN CN202010741312.3A patent/CN111763253B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111763253A (en) | 2020-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2270227T3 (en) | MET-1 CORN PROMOTER. | |
CN111763253B (en) | Chromatin remodeling factor ISWI, coding gene and role in diaphorina tabaci MED cryptic temperature tolerance | |
CN110791523A (en) | Cotton drought-resistant related gene GhRCHY1 and application thereof | |
CN111499706B (en) | Cotton zinc finger protein GhZFPH4, and coding gene and application thereof | |
CN105063085B (en) | The application of cabbage type rape gene BnMPK3 and its anti-sclerotinia sclerotiorum | |
CN110684756B (en) | Bemisia tabaci MED cryptophyte soluble trehalase, gene BtTreh1 and application thereof | |
Park et al. | Isolation of cDNAs differentially expressed in response to drought stress and characterization of the Ca-LEAL1 gene encoding a new family of atypical LEA-like protein homologue in hot pepper (Capsicum annuum L. cv. Pukang) | |
Lou et al. | Characterization and primary functional analysis of a bamboo ZEP gene from Phyllostachys edulis | |
CN111763252B (en) | Bemisia tabaci MED cryptomorphic chromatin remodeling factor Btbrm2 and coding gene and application thereof | |
CN111925429B (en) | Bemisia tabaci MED cryptomorphic chromatin remodeling factor Btbrm1 and coding gene application thereof | |
CN102776203A (en) | Cold resistant transcription factor PtrICE1 of trifoliate orange and application thereof in cold resistant improvement of plant | |
CN108588082B (en) | Bemisia tabaci MED cryptomorphic high-temperature tolerance related gene BtDnmt3 and application thereof | |
CN102719451B (en) | Poncirus trifoliata basic helix-loop-helix (PtrbHLH) and application in improving cold resistance of plant | |
CN108276481B (en) | Upland cotton GhLEA3 gene and application thereof in low-temperature stress resistance | |
CN113845578A (en) | MYB transcription factor for regulating and controlling plant procyanidine synthesis, and coding gene and application thereof | |
CN110669750B (en) | Bemisia tabaci MED cryptomorphic dopamine decarboxylase, coding gene BtDDC and application thereof | |
CN101525617A (en) | Eriocheir sinensis Crustin-1 gene and in-vitro recombination expression | |
CN112029776A (en) | Application of MdBZR1 gene and protein in improving salt tolerance of apples | |
CN114507674B (en) | Application of circadian rhythm gene LUX of tea tree in improving cold resistance of plants | |
CN111909911B (en) | Bemisia tabaci MED cryptohistone acetyltransferase gene gcn5, application thereof and method for reducing temperature tolerance of Bemisia tabaci | |
CN115161332B (en) | Vitis spinosa VdERF2 gene and encoding protein and application thereof | |
CN111848768B (en) | BtISWI gene and application thereof in regulating and controlling cryptogenic temperature preference of bemisia tabaci MEAM1 | |
CN113373161B (en) | Application of GhERF017 gene in regulating and controlling plant salt tolerance | |
CN108060146A (en) | Migratory locusts peroxiredoxin PRX5 and its encoding gene and application | |
CN110156882B (en) | Loquat EjAP3 gene and its coded protein and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |