CN111762850B - 一种钛合金复合材料 - Google Patents

一种钛合金复合材料 Download PDF

Info

Publication number
CN111762850B
CN111762850B CN202010593686.5A CN202010593686A CN111762850B CN 111762850 B CN111762850 B CN 111762850B CN 202010593686 A CN202010593686 A CN 202010593686A CN 111762850 B CN111762850 B CN 111762850B
Authority
CN
China
Prior art keywords
acid
lead oxide
titanium
anode
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010593686.5A
Other languages
English (en)
Other versions
CN111762850A (zh
Inventor
赵玉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoji Unique Titaniumm Industry Co ltd
Original Assignee
Baoji Unique Titaniumm Industry Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoji Unique Titaniumm Industry Co ltd filed Critical Baoji Unique Titaniumm Industry Co ltd
Priority to CN202010593686.5A priority Critical patent/CN111762850B/zh
Publication of CN111762850A publication Critical patent/CN111762850A/zh
Application granted granted Critical
Publication of CN111762850B publication Critical patent/CN111762850B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/06Electrolytic coating other than with metals with inorganic materials by anodic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明提供一种高效苯酚废水降解用阳极材料,所述阳极材料的氧化铅与钛基材的结合力高,使用寿命长、稳定性好、电催化氧化活性高、阳极的析氧电位为1.81V,使用所述阳极进行苯酚废水降解100min后,苯酚的去除率为84.1,COD去除率为66.3%。

Description

一种钛合金复合材料
技术领域
本发明涉及一种高效阳极材料的制备方法,并将其用于电催化氧化去除水中有机污染物,属于电催化氧化处理工业废水技术领域。
技术背景
苯酚是重要的基本有机化工原料,随着工业经济的发展,特别是合成材料的品种和产量迅速扩大和增长,世界范围内苯酚的需求量和下游产品的开发持续升高,在药物合成、油漆、染料、炸药、防腐剂、煤气化,炼油、纤维、机械、管材等诸多行业中广泛地应用。由于工业门类、产品种类和工艺条件不同,废水组成及含酚浓度差别较大,特别是加工酚醛树脂的废水含有极高浓度的苯酚。
苯酚毒性过程为:在生物体内有氧代谢产生自由基,与细胞氧分子、脂质、蛋白质等相互作用,引起脂质过氧化反应,并对生物大分子造成损伤,同时这些氧自由基可以破坏调节细胞生长、增殖、分化的信号分子,引起 DNA 损伤,诱导细胞凋亡和致癌性突变。
苯酚废水经过优良的处理技术处理后,不仅能避免给环境带来的危害,还可实现苯酚的回收利用,主要包括物化法、生物法和高级氧化法。目前在实际处理中,常常将三者灵活地进行联合应用,可实现优势互补和协同促进,保持处理系统稳定工作,其中化学法主要有芬顿法、湿式催化氧化、超声波氧化法、光催化氧化、臭氧氧化、电催化氧化等。
电催化氧化法(ECO)是通过阳极反应产生·OH、O3等氧化剂,可彻底分解有机物。该方法氧化能力强、处理量大、处理效率高、适用范围广,且设备简单、运行简易、安全可靠,有着良好的应用前景。但是因电催化氧化反应电流效率低、电极的寿命短,而使得其推广工业化应用受制约。目前 ECO 在国内外仍处于开拓性研究中,制备电催化活性高、导电性好、使用寿命长,成本低、易于加工的电极依旧是本领域技术人员的共同追求。
一般认为,电催化氧化反应包括在阳极发生的直接氧化和间接催化氧化共存的体系。直接氧化路径中,有机污染物先被吸附在阳极表面,通过电子转移在阳极氧化为脂肪醛、醇、酮、酸等,再进一步矿化降解,最终产物为 CO2和H2O,阳极材料先后经历了金属电极、石墨电极、金属氧化物电极三大时期,这也是电化学中的三大电极材料体系。金属氧化物电极克服了传统碳电极、铂电极、铅合金电极等不足,是目前电化学研究学者们关注的热点领域。通常以过渡金属为主,包括铂族金属氧化物、锡锑氧化物、二氧化铅、二氧化锰等电极。
用于电解工业中的不溶阳极至少应具备三个条件:高的导电性、较好的电催化活性和良好的耐蚀性。钛基二氧化铅阳极是一种新型的不溶性金属氧化物阳极材料,由于其具有析氧电位高、氧化能力强、耐蚀性好、导电性好、可通过大电流等特征而广泛应用于冶金、环保以及各类有机物和无机物的电解制备上也被广泛应用。虽然PbO2钛电极具有众多优点,但由于β-PbO2具有较大的内应力,导致镀层出现裂缝,在基体上生成TiO2,致使β-PbO2与基体结合力下降镀层易脱落,导致电极的使用寿命大为缩短,严重影响了工程上可靠性和经济效益。为解决上述问题,目前主要集中在两方面对电极进行改性:(1)是通过添加中间层增加表面活性层与基体之间的结合等综合性能来改善电极的使用寿命;(2)是通过对表面活性层进行掺杂等改性来提高电极的稳定性等。其中在中间层制备方面,可供选择的方法有刷涂热分解、电沉积等。刷涂热分解存在有机气体挥发,会伤害操作者自身健康和危害环境,而且,热解温度过低则金属氧化物结晶不够影响电极催化活性,而温度过高又导致钛基材过氧化,甚至中间层热损伤而造成导电不良。电沉积方法虽可控性强,但不论沉积金属层还是α-PbO2都效果不明显。采用钛丝材原位氧化/氮化,制备工艺繁琐,存在性能调控有限不易控制的弊端。利用贵金属导电中间层虽增加耐蚀性、导电性,有助于提高电极稳定性,但其高成本注定无法工程应用。而热解、电沉积α-PbO2多层过渡层亦能起到一定的增长寿命的作用。
现有技术中,淮南师范学院(CN108793339 A)公开了一种新型高催化活性电极制备及其电催化降解邻氯苯酚的方法,先采用阳极氧化法制备Ti/TiO2NT电极,通过电还原将Ti4+还原成Ti3+,将还原好的Ti/TiO2NT电极为阳极,Pt片为阴极,饱和KCl电极为参比电极,将还原好的Ti/TiO2NT电极为阳极,不锈钢片为阴极,饱和KCl电极为参比电极,放入2.0g/L含有石墨烯纳米片(GNS)的电镀液中;采用电沉积的方法在制备好的二氧化钛纳米管上涂覆一层石墨烯纳米片中间层,稀土Sm掺杂PbO2表面活性层的制备采用直流电沉积的方法,沉积液组分为0.1~0.5M Pb(NO3)2,0.01~0.02M Sm(NO3)3·6H2O和0.01M NaF,调节溶液pH=2,电流密度设为50~70mA/cm2,于65℃下电沉积60~100min。但所述现有技术面临如下几个技术问题:(1)经过阳极氧化处理的氧化钛的导电性不高,因此加入石墨烯来改善,以改善所述阳极的导电性,但是所述阳极氧化钛为多孔结构,使用片状石墨烯进行导电性提升,会阻塞孔道;(2)石墨烯与氧化钛之间虽然使用电沉积法,但其结合力来源于吸附,并没有任何化合键合,后续进行氧化铅的电沉积,势必造成氧化铅与氧化钛的结合力降低,显然所述现有技术虽然提高了活性,但其寿命完全达不到实际生产需求;(3)氧化铅为β晶型,应力较大,容易重基材表面剥离。
此外,现有技术内蒙古工业大学CN109382083 A一种碳纳米管掺杂的二氧化钛纳米管光催化材料及其制备方法。制备过程:以表面镀有钛膜的基材或纯钛片为阳极,利用阳极氧化法在阳极表面原位生成二氧化钛纳米管阵列;其中,电解液主要由含氟离子的化合物、碳纳米管、有机溶剂和水组成,电解液中碳纳米管的浓度为0.01~0.1wt.%,优选0.05~0.1wt.%;然后取出阳极,在惰性气氛下进行退火处理,得到碳纳米管掺杂的二氧化钛纳米管光催化材料。本发明同步进行碳纳米管的掺杂和二氧化钛纳米管的制备,简化了制备工艺,所得的光催化材料相比纯二氧化钛纳米管阵列具有吸收波长范围更广、光催化效率更高、循环使用寿命更长等优势。所述现有技术提供了一种将碳纳米管与氧化膜复合的手段,但是面临如下技术问题:(1)碳纳米管没有进行任何预处理,导致其余氧化钛的结合力有待考量;(2)所述基材用为光催化材料可广泛应用于光催化、染料敏化电池、气体传感器等多个领域,没有任何启示可以用于电极制备。
此外,现有技术中制备Ti/α-PbO2/β-PbO2的专利较多,如CN108217852 A重庆大学公开的高寿命、高催化活性二氧化铅电极,以SnO2-Sb2O3作为底层,以α-PbO2作为中间层,并以β-PbO2作为表面活性层而制备。本发明所得到的二氧化铅致密均匀,颗粒较小,具有较大的比表面积。同时,表面活性层附着力强,不易脱落;表面光滑牢固,可耐酸碱腐蚀,具有良好的催化活性及使用寿命。如CN108914122 A山东龙安泰环保科技有限公司公开的一种钛基二氧化铅阳极的制备方法,以带有锡锑氧化物底层的电极作为阳极,钛板为阴极,在溶解有PbO的氢氧化钠镀液中电沉积α-PbO2中间层;将钛板为阳极,钛板为阴极,电沉积制得含二氧化铈、饵、氟的改性β-PbO2活性层,获得所述钛基二氧化铅阳极,如CN101054684 A浙江工业大学公开的一种在钛基体上制备含氟二氧化铅电极的方法,。所述的含氟二氧化铅电极其镀层结构为:由钛基体表面由内至外依次镀有锡锑氧化物底层、α-PbO2层、含氟β-PbO2层。所述的方法包括将钛基体进行表面粗化处理、再通过热分解法镀制锡锑氧化物底层、然后经碱性电镀α-PbO2和酸性复合电镀含氟β-PbO2,获得钛基体含氟β-PbO2电极,但上述公开的制备的阳极,由于其结合力不强,其寿命均都有待提高。
基于上述内容,作为Ti/PbO2电极,其性能和使用方法的改进,国外已经发表了许多专利,关于Ti基材的预处理,阳极氧化,获得α或βPbO2,以及使用掺杂元素进行粗化改进,已经趋于成熟,但是在所述阳极寿命的改性上,依旧亟需提高,且严重限制了工业应用。
发明内容
基于上述现有技术存在的问题,本发明提出了一种高效苯酚废水降解用阳极材料,所述阳极材料由下至上依次为钛或钛合金基材、氧化钛多孔层、α-氧化铅中间层,β-氧化铅活性层,所述氧化钛多孔层与α-氧化铅活性层之间设置有碳纳米管,所述碳纳米管通过混酸处理,所述阳极材料电极加速寿命测试时间为387h,预测工业使用寿命4.25年。
进一步的,所述钛或钛合金基材经过预处理,处理过程包括有机械打磨-碱洗-酸洗,所述打磨为依次使用300目和800目砂纸打磨抛光,然后去离子水冲洗,所述碱洗为10-20g/L碳酸钠、10-20g/L磷酸三钠、10-20g/L硅酸钠、1-2g/L辛基酚聚氧乙烯醚的混合水溶液,温度40-50oC,时间10-15min,酸洗为2-3wt.%草酸和1-1.5wt.%盐酸的复合酸洗液,酸洗温度50-60oC,时间30-40min,酸洗后使用去离子多次洗涤。
进一步的,所述碳纳米管混酸处理是将碳纳米管置于三口烧瓶内,经过100oC混酸酸化,冷却水回流处理5h,所述混酸为体积比为2.5:1的98wt.%的H2SO4和65%-67wt.%的HNO3混酸,所述碳纳米管的管径50-70nm,长度5-8μm。
进一步的,所述氧化钛多孔层通过阳极氧化处理获得,阳极氧化液为4-5g/L氟化铵、300-500ml乙二醇、0.15~2wt.%酸化处理的碳纳米管的水溶液50-60ml,电压15-20V,反应时间60~120min。
进一步的,进行阳极氧化后,获得Ti/TiO2-CNT材料,所述CNT包覆于阳极氧化膜内,通过酸腐蚀所述Ti/TiO2-CNT材料,露出CNT,所述酸腐蚀为化学腐蚀,腐蚀条件:5-15wt.%的酒石酸,腐蚀时间为10-15min,温度40-50oC。
进一步的,所述α-氧化铅中间层和β-氧化铅活性层通过阳极电化学氧化获得。
进一步的,制备α-氧化铅中间层的电解液为碱性电解液包括有15-20g/L氧化铅,氢氧化钠100-120g/L,电流密度为30-50mA/cm2,温度30-35oC,时间40-50min,极板间距1.5-2cm。
进一步的,制备β-氧化铅活性层的电解液酸性铅电沉积液:0.45mol/L的Pb(NO3)2、0.01mol/L的NaF、适量HNO3、使用酒石酸调节电解液的pH为1-2,
进一步的,制备β-氧化铅的电沉积参数为:电沉积时间1.0-1.5h,沉积温度为40-50℃,电沉积电流密度为10-15mA/cm2,极板间距3-4cm。
进一步的,所述阳极材料的析氧电位为1.81V,在40oC,30mA/cm2下,使用所述阳极进行模拟苯酚废水降解100min后,苯酚的去除率为84.1%,COD去除率为66.3%。
(a)关于预处理:预处理的主要目的在于清除附着在钛板表面的油渍等有机物和其它氧化物,同时把钛基表面刻蚀成凹凸不平的新鲜粗糙面,以增加钛基体的真实表面积,这样也可使活性涂层和基体的结合力加强,提高其机械粘结度,延长涂层寿命,打磨的目的是使金属粗糙表面平坦、光滑。
碱洗:钛基体在加工过程中沾染了油污,附着有防锈油、切削油等,因此在酸洗工序之前必须把油污除掉,使用碳酸钠取代氢氧化钠,碳酸钠碱性比氢氧化钠弱,有一定的皂化能力,对溶液的pH值有缓冲作用,但其水洗性能较差,因此加入磷酸三钠,本身具有除油和缓存效果,且水洗性能好,此外加入硅酸钠,硅酸钠能够增强碱洗液中的缓蚀性能,且与后续的辛基酚聚氧乙烯醚复合使用,能够具有一定的皂化能力,而作为润湿剂、润滑剂。在进行化学除油时除油溶液应该加温:一方面加热使皂化、乳化作用加强;另一方面,温度升高,肥皂溶解度增加.但也不宜过高,一般控制在40-50oC
(b)酸洗:酸处理的目的是为了增强基体与阳极氧化物的结合力,从而改善导电性,延长电极使用寿命。经过酸蚀刻的基体表面会形成凹凸不平的麻面状,具有较大的表面积,降低了电流密度,改善了电极的电化学性能。同时,能除去钛基体表面的氧化膜。一般而言,用强氧化性酸进行酸蚀刻容易使钛基体表面钝化,而弱酸往往会因为腐蚀性不够而导致电极表面机械契合力不好,本发明采用的酸洗为2-3wt.草酸和1-1.5wt.%盐酸的复合洗液进行酸洗,处理好的钛基体呈灰色均匀麻面,失去金属光泽,如附图3所示,酸蚀后获得粗糙凹凸不平的表面,有利于后续的阳极氧化处理。
(c)阳极氧化处理:阳极氧化液氟化铵、乙二醇和酸化处理的碳纳米管水溶液,氟化铵和乙二醇为常见的阳极氧化液成分,其中主要加入的碳纳米管,公知的,碳纳米管表面无明显基团,因此其水溶性,有机溶液溶性都极差,直接放入电解液中,会发明明显的固液分离,因此必须对碳纳米管进行酸化,所述酸化处理的碳纳米管过程如下:将碳纳米管置于三口烧瓶内,经过100oC混酸酸化,冷却水回流处理5h,所述混酸为体积比为2.5:1的98wt.%的H2SO4和65%-67wt.%的HNO3混酸,在其表面接枝羟基,碳纳米管水溶性显著提高,并且能够完美的复合于阳极氧化钛表面或者包覆于阳极氧化膜内部,为方便后续的腐蚀过程,优选碳纳米管的管径50-70nm,长度5-8μm,浓度0.15~2wt.%。
电压:在氧化过程中,电压的增加应该缓慢,如上升太快,会造成新生成氧化膜的不均匀处电流集中,导致该处出现严重的电击穿,引起金属钛的腐蚀,电压优选为15-20V。
温度:温度升高,膜层减薄,如果在较高温度时,膜的厚度可增加,最佳的温度在25-35℃之间,优选30oC。
(d)所述腐蚀过程为本发明的关键内容,其主要目的在于腐蚀氧化钛,使得氧化钛中包覆的碳纳米管露出,此外,本发明的腐蚀液为纯酒石酸腐蚀液,如果同浓度的使用硝酸、盐酸、硫酸,或者草酸、柠檬酸,其腐蚀效果均无法有效的露出碳纳米管,可能与酒石酸的本身性质有关,其具体原理有待研究,腐蚀露出碳纳米管的主要目的在于(1)有效提高Ti/TiO2-CNT的导电性,单纯的氧化钛的导电性能较差,不利于后续的氧化铅的电沉积,CNT的加入,有效的改善了所述材料的导电性;(2)后续氧化铅的电沉积过程中,碳纳米管也会发生氧化铅的沉积,起到类似于缝合作用,在当氧化铅从氧化钛表面剥离时,碳纳米管可以起到缝合加强作用,能够有效提高阳极材料的寿命,所述缝合作用对于Ti/TiO2-CNT/α-PbO2/β-PbO2的长寿性能不可或缺,如附图2示意图所示,碳纳米管可以有效的缝合氧化铅和氧化钛。
此外,必须应当注意的问题,二氧化钛的半导体特性使得其自身电阻很大,不适合用于电镀中间层,而在阳极氧化膜中参入碳纳米管也仅仅是部分的改善了所述基材的导电性,如果为了获得导电性高的氧化钛基材,可依需对所述腐蚀后的Ti/TiO2-CNT材料进行还原活化处理,具体的操作是将所述Ti/TiO2-CNT设置为阴极,施加电压,使得Ti/TiO2-CNT内部就产生较多的自由电荷,进而增强了自身的导电性,所述过程中使用硫酸铵溶液作为电解液,还原事件控制到1min以内,即可得到导电性能良好的底层。
(e)电沉积氧化铅:
原理:阳极Pb2++2H2O→PbO2+4H++2e;2H2O→O2+4H++4e(副反应)
阴极Pb2++2e→Pb;2H++2e→H2
电沉积液的酸碱度、电沉积液的温度、电流密度、电镀液的组分等都是电沉积法的影响因素。
在Ti/β-Pb02电极增加中间层,目的是为了增强βPb02镀层与钛基体结合的牢固度,以及缓和表面镀层的电积畸变。由于Pb4+离子半径大,而且又都是同晶型氧化物,各层之间匹配性差,从而导致结合性能变差。因而本实验中采用不存在电沉积应力的α-Pb02作为中间层以缓和电积畸变,并使表面层分布均匀。中间层是在碱性条件下电沉积α-Pb02制得。
酸度:按结晶类型区分有 α 型和 β 型,α-PbO2为斜方晶系,晶粒的尺寸结构小,结合力较强,但是导电性差,稳定性相对较好,一般从碱性铅电镀液中获得;β-PbO2为四方晶系,晶粒尺寸相对较大,大部分为多孔疏松结构,它的电阻率大小为 96μΩ·cm,一般从酸性铅电镀液中获得。α-Pb02时pH一般控制在10-12左右,β-Pb02一般控制在1-2左右, pH过小,则电极表面活性层变脆,机械性能减弱,影响电极使用寿命:pH过高,阴极铅离子的析出严重。
温度:试验表明,一定温度范围内,温度越高镀层内应力越小,镀制的电极机械性能越好,这可能与电沉积层的晶体结构有关,因为加热处理有助于晶体内部离子位置的调整消除内应力。但温度过高,会使基体在Pb02沉积之前即发生氧化,生成表面电阻分布不均的氧化膜,导致Pb02不能均匀地沉积在基体上,因此对不同基体的最佳电沉积温度要视情况而定。
电流密度:由于用恒电位法进行电沉积速度过于缓慢,并且晶粒粗大,真实表面积较小,因此通常采用恒电流法。在大电流密度下获得的多为α-PbO2,在小电流密度下获得的多为β-PbO2
如附图4所示:沉积的 α-PbO2颗粒大小更加均匀,且镀层表面变的更加平整,这也许会增强与表面活性 β-PbO2镀层的结合力;表面更加平整,也可能会使电极的析氧电催化活性提高。
如附图5所示:表面活性层β-PbO2呈现金字塔形状的,且均匀的凹凸不平,这可以使得电极表面接触的反应活性面积增大,而表面越来越凹凸不平也可以提高电极表面的活化面积,有更多的活性表面积参与到反应中,从而有利于提高电极的电催化活性,简而言之,制备的 β-PbO2层表面更加凹凸不平,从而使得 β-PbO2镀层参与反应的面积大大提升,提升了电极的析氧电催化活性,显得十分重要。
基于上述内容,和附图1所示,本发明的具体过程如下:
(1)提供钛或钛合金金属基材,并对所述金属基材进行预处理,以露出金属基材,并获得粗糙金属表面,如附图1(a)所示。
(2)配置含有碳纳米管的阳极氧化液,通过阳极氧化,在所述金属基材表面形成阳极氧化膜,所述阳极氧化膜内部包覆有碳纳米管,如附图1(b)所示
(3)通过酒石酸化学腐蚀除去部分阳极氧化膜,露出碳纳米管, 如附图1(c)所示;
(4)通过阳极碱性电沉积获得α-氧化铅,通过酸性电沉积获得β-氧化铅。
(5)获得高寿Ti/TiO2-CNT/α-氧化铅/β-氧化铅阳极,如附图1(d)所示。
有益技术效果:
(1)通过打磨-碱蚀-酸洗,钛基表面刻蚀成凹凸不平的粗糙面,以增加钛基体的真实表面积,这样也可使活性涂层和基体的结合力加强,提高其机械粘结度,延长涂层寿命。
(2)混酸处理的碳纳米管与电解液均匀混合,且一步获得氧化钛氧化膜与碳纳米管复合氧化层,所述氧化钛与碳纳米管的结合力强。
(3)特定酒石酸腐蚀阳极氧化膜效果好,且露出碳纳米管后,Ti/TiO2-CNT材料作为阳极的导电性增强,并且可以作为氧化铅的沉积位点,有效提高后续Ti/TiO2-CNT/α-氧化铅/β-氧化铅阳极的寿命。
(4)调节合适的电压,电流密度,获得高活性的β-氧化铅阳极。
(5)本发明电催化氧化降解苯酚废水的效率高,降解过程稳定性好,100min内,苯酚的去除率为84.1,COD去除率为66.3%,降解高效率。
附图说明
图1为本发明的阳极材料的制备过程示意图。
图2为本发明阳极氧化膜与α-β-氧化铅活性表面CNT缝合示意图。
图3为本发明的钛金属基材经过酸洗后的SEM图。
图4为本发明α-氧化铅的SEM图。
图5为本发明β-氧化铅的SEM图。
图6为本发明实施例2阳极电极LSV曲线。
图7为本发明实施例2阳极材料降解苯酚去除率曲线。
图8为本发明实施例2阳极材料降解苯酚COD去除率示意图。
具体实施方式
实施例1
一种钛合金复合材料,所述材料通过如下方法制备:
(1)提供钛或钛合金金属基材,并对所述金属基材进行预处理,所述预处理包括有机械打磨-碱洗-酸洗,所述打磨为依次使用300目和800目砂纸打磨抛光,然后去离子水冲洗,所述碱洗为10g/L碳酸钠、10g/L磷酸三钠、10g/L硅酸钠、1g/L辛基酚聚氧乙烯醚的混合水溶液,温度40oC,时间10min,
酸洗为2wt.%草酸和1wt.%盐酸的复合酸洗液,酸洗温度50oC,时间30min,酸洗后使用去离子多次洗涤。
(2)配置含有碳纳米管的阳极氧化液,所述阳极氧化液为4g/L氟化铵、300ml乙二醇、0.15wt.%酸化处理的碳纳米管的水溶液50ml,所述碳纳米管的管径50-70nm,长度5-8μm,所述酸化处理的碳纳米管过程如下:将碳纳米管置于三口烧瓶内,经过100oC混酸酸化,冷却水回流处理5h,所述混酸为体积比为2.5:1的98wt.%的H2SO4和65%-67wt.%的HNO3混酸。
(3)以步骤(1)预处理后的金属基材为阳极,以步骤(2)配置的阳极氧化液为电解液,对所述基材进行阳极氧化处理,在所述金属基材表面形成阳极氧化膜,所述阳极氧化膜内部包覆有碳纳米管,阳极氧化的电压15V,反应时间60min。
(4)化学腐蚀除去部分阳极氧化膜,露出碳纳米管;化学腐蚀的溶液为5wt.%的酒石酸,腐蚀时间为10min,温度40oC。
(5)去离子水洗涤获得Ti/TiO2-CNT材料。
(6)配置碱性铅电沉积液;碱性铅电沉积液包括有15-20g/L氧化铅,氢氧化钠100g/L。
(7)以步骤(5)中获得的Ti/TiO2-CNT材料为阳极,铂片为阴极,电解制备获得Ti/TiO2-CNT/α-氧化铅材料,去离子多次洗涤;电解参数如下:电流密度为30mA/cm2,温度30oC,时间40min,极板间距1.5cm。
(8)配置酸性铅电沉积液;铅电沉积液0.45mol/L的Pb(NO3)2、0.01mol/L的NaF、适量HNO3、使用酒石酸调节电解液的pH为1。
(9)以步骤(7)中获得的Ti/TiO2-CNT/α-氧化铅材料为阳极,铂片为阴极,电解制备获得Ti/TiO2-CNT/α-氧化铅/β-氧化铅材料, 电沉积时间1.0h,沉积温度为40℃,电沉积电流密度为10mA/cm2,极板间距3cm。
实施例2
一种钛合金复合材料,所述材料通过如下方法制备:
(1)提供钛或钛合金金属基材,并对所述金属基材进行预处理,所述预处理包括有机械打磨-碱洗-酸洗,所述打磨为依次使用300目和800目砂纸打磨抛光,然后去离子水冲洗,所述碱洗为15g/L碳酸钠、15g/L磷酸三钠、15g/L硅酸钠、1.5g/L辛基酚聚氧乙烯醚的混合水溶液,温度15oC,时间12.5min,
酸洗为2.5wt.草酸和1.25wt.%盐酸的复合酸洗液,酸洗温度55oC,时间35min,酸洗后使用去离子多次洗涤。
(2)配置含有碳纳米管的阳极氧化液,所述阳极氧化液为4.5g/L氟化铵、400ml乙二醇、0.175wt.%酸化处理的碳纳米管的水溶液55ml,所述碳纳米管的管径50-70nm,长度5-8μm,所述酸化处理的碳纳米管过程如下:将碳纳米管置于三口烧瓶内,经过100oC混酸酸化,冷却水回流处理5h,所述混酸为体积比为2.5:1的98wt.%的H2SO4和65%-67wt.%的HNO3混酸。
(3)以步骤(1)预处理后的金属基材为阳极,以步骤(2)配置的阳极氧化液为电解液,对所述基材进行阳极氧化处理,在所述金属基材表面形成阳极氧化膜,所述阳极氧化膜内部包覆有碳纳米管,阳极氧化的电压17.5V,反应时间90min。
(4)化学腐蚀除去部分阳极氧化膜,露出碳纳米管;化学腐蚀的溶液为10wt.%的酒石酸,腐蚀时间为12.5min,温度45oC。
(5)去离子水洗涤获得Ti/TiO2-CNT材料。
(6)配置碱性铅电沉积液;碱性铅电沉积液包括有27.5g/L氧化铅,氢氧化钠110g/L。
(7)以步骤(5)中获得的Ti/TiO2-CNT材料为阳极,铂片为阴极,电解制备获得Ti/TiO2-CNT/α-氧化铅材料,去离子多次洗涤;电解参数如下:电流密度为40mA/cm2,温度32.5oC,时间45min,极板间距1.75cm。
(8)配置酸性铅电沉积液;铅电沉积液0.45mol/L的Pb(NO3)2、0.01mol/L的NaF、适量HNO3、使用酒石酸调节电解液的pH为1.5。
(9)以步骤(7)中获得的Ti/TiO2-CNT/α-氧化铅材料为阳极,铂片为阴极,电解制备获得Ti/TiO2-CNT/α-氧化铅/β-氧化铅材料, 电沉积时间1.25h,沉积温度为45℃,电沉积电流密度为12.5mA/cm2,极板间距3.5cm。
实施例3
一种钛合金复合材料,所述材料通过如下方法制备:
(1)提供钛或钛合金金属基材,并对所述金属基材进行预处理,所述预处理包括有机械打磨-碱洗-酸洗,所述打磨为依次使用300目和800目砂纸打磨抛光,然后去离子水冲洗,所述碱洗为20g/L碳酸钠、20g/L磷酸三钠、20g/L硅酸钠、2g/L辛基酚聚氧乙烯醚的混合水溶液,温度50oC,时间15min,
酸洗为3wt.草酸和1.5wt.%盐酸的复合酸洗液,酸洗温度60oC,时间40min,酸洗后使用去离子多次洗涤。
(2)配置含有碳纳米管的阳极氧化液,所述阳极氧化液为5g/L氟化铵、300-500ml乙二醇、2wt.%酸化处理的碳纳米管的水溶液60ml,所述碳纳米管的管径50-70nm,长度5-8μm,所述酸化处理的碳纳米管过程如下:将碳纳米管置于三口烧瓶内,经过100oC混酸酸化,冷却水回流处理5h,所述混酸为体积比为2.5:1的98wt.%的H2SO4和65%-67wt.%的HNO3混酸。
(3)以步骤(1)预处理后的金属基材为阳极,以步骤(2)配置的阳极氧化液为电解液,对所述基材进行阳极氧化处理,在所述金属基材表面形成阳极氧化膜,所述阳极氧化膜内部包覆有碳纳米管,阳极氧化的电压20V,反应时间120min。
(4)化学腐蚀除去部分阳极氧化膜,露出碳纳米管;化学腐蚀的溶液为15wt.%的酒石酸,腐蚀时间为15min,温度50oC。
(5)去离子水洗涤获得Ti/TiO2-CNT材料。
(6)配置碱性铅电沉积液;碱性铅电沉积液包括有20g/L氧化铅,氢氧化钠120g/L。
(7)以步骤(5)中获得的Ti/TiO2-CNT材料为阳极,铂片为阴极,电解制备获得Ti/TiO2-CNT/α-氧化铅材料,去离子多次洗涤;电解参数如下:电流密度为50mA/cm2,温度35oC,时间50min,极板间距2cm。
(8)配置酸性铅电沉积液;铅电沉积液0.45mol/L的Pb(NO3)2、0.01mol/L的NaF、适量HNO3、使用酒石酸调节电解液的pH为2。
(9)以步骤(7)中获得的Ti/TiO2-CNT/α-氧化铅材料为阳极,铂片为阴极,电解制备获得Ti/TiO2-CNT/α-氧化铅/β-氧化铅材料, 电沉积时间1.5h,沉积温度为50℃,电沉积电流密度为15mA/cm2,极板间距4cm。
以实施例2的方法制备获得的样品进行电催化活性测试。
(1)线性LSV测试:操作参数:电压范围1.0-2.2V,扫速为100mV/s,溶液0.1M硫酸钠。
线性扫描伏安法(LSV)是研究电极在发生电催化氧化时产生的析氧过电位的一种传统方法。在电氧化有机废水时,阳极可能会发生副反应导致氧气的产生,这既不能
降解有机物又会引起电能的损耗,造成降解有机废水效率降低。更高的析氧电位意味着羟基自由基 更难发生析氧副反应,析氧副反应是羟基自由基参与有机污染物矿化过程中主要的竞争反应,从而提高了羟基自由基的有效利用率,使电极片具有更高催化活性 因此,在降解有机废水过程中,一个催化性能优异的阳极材料其析氧过电位要足够大,从而在一定电压下氧化有机废水时不会发生析氧副反应,提高降解效率。如图6线性扫描伏安曲线LSV所示,Ti/TiO2-CNT/α-氧化铅/β-氧化铅电极的吸氧过电位1.81V,此外,苯酚在电极上的氧化峰电位为0.69V,峰电流密度为0.51mA/cm2,所述析氧电位与苯酚电催化氧化电位之差为1.12V
,充分说明高过氧电位在降解过程中容易产生更多的强氧化剂或羟基自由基,有利于提高降解有机废水效率。
(2)降解苯酚测试:以实施例2的样品为阳极,钛片为阴极,控制间距1.5cm,反应温度40oC,30mA/cm2下,通过紫外分光光度计测试不同降解时间苯酚的浓度,通过如下公式计算:
Figure DEST_PATH_IMAGE002
其中C0为初始苯酚浓度,Ct为t时间后苯酚浓度,同时检测有机碳量的变化,如下公式
Figure DEST_PATH_IMAGE004
其中,TOC0为初始苯酚所含有机碳量,TOCt为t时间后有机碳量浓度,
如附图7和附图8所示,在40oC,30mA/cm2下,使用所述阳极进行模拟苯酚废水降解100min后,苯酚的去除率为84.1,COD去除率为66.3%。
(3)寿命测试:
以所制实施例2制备的电极为阳极,铜板为阴极,电极间距为 10mm,测定电极在60℃下、1.0mol/L H2SO4水溶液中,电流密度从零开始每分钟增加 0.5A/cm2,直到电流密度为 4.0A/cm2,保持稳定的电流密度 4.0A/cm2进行测试,初始槽电压在 4.5V 左右,当操作电压上升到 10V 时作为评价电极失活的判据,此时的电解时间即为该电极的寿命。
热冲击实验条件:样品初始试验温度为 140℃,将电极置于马弗炉中 10分钟,取出并迅速置于 20℃的水中,马弗炉升高 20℃后,再将电极放置于马弗炉中煅烧,直到涂层破坏暴露基体。
本发明实施例2发生击穿电压的时间分别为387h,换算成工业寿命为4.25年,达到了工业使用标准。
本发明实施例2的热冲击终点温度为 290 ℃,其与电极寿命对应。
以上,虽然通过优选的实施例对本实用发明进行了例示性的说明,但本发明并不局限于这种特定的实施例,可以在记载于本发明的保护范围的范畴内实施适当的变更。

Claims (5)

1.一种钛合金复合材料,其特征在于所述钛合金作为阳极材料用于高效苯酚废水降解,所述阳极材料由下至上依次为钛合金基材、氧化钛多孔层、α-氧化铅中间层,β-氧化铅活性层,所述氧化钛多孔层与α-氧化铅活性层之间设置有碳纳米管,所述碳纳米管通过混酸处理,所述阳极材料电极加速寿命测试时间为387h,预测工业使用寿命4.25年,
其中所述氧化钛多孔层通过阳极氧化处理获得,阳极氧化液为4-5g/L氟化铵、300-500ml乙二醇、0.15~2wt.%酸化处理的碳纳米管的水溶液50-60ml,电压15-20V,反应时间60~120min;
所述阳极氧化后,获得Ti/TiO2-CNT材料,所述CNT包覆于阳极氧化膜内,通过酸腐蚀所述Ti/TiO2-CNT材料露出CNT,所述酸腐蚀为化学腐蚀,腐蚀条件:5-15wt.%的酒石酸,腐蚀时间为10-15min,温度40-50℃;
所述α-氧化铅中间层和β-氧化铅活性层通过阳极电化学氧化获得:制备α-氧化铅中间层的电解液为碱性电解液包括有15-20g/L氧化铅,氢氧化钠100-120g/L,电流密度为30-50mA/cm2,温度30-35℃,时间40-50min,极板间距1.5-2cm;制备β-氧化铅活性层的电解液酸性铅电沉积液:0.45mol/L的Pb(NO3)2、0.01mol/L的NaF、适量HNO3、使用酒石酸调节电解液的pH为1-2。
2.如权利要求1所述的一种钛合金复合材料,其特征在于所述钛合金基材经过预处理,处理过程包括有机械打磨-碱洗-酸洗,所述打磨为依次使用300目和800目砂纸打磨抛光,然后去离子水冲洗,所述碱洗为10-20g/L碳酸钠、10-20g/L磷酸三钠、10-20g/L硅酸钠、1-2g/L辛基酚聚氧乙烯醚的混合水溶液,温度40-50℃,时间10-15min,酸洗为2-3wt.%草酸和1-1.5wt.%盐酸的复合酸洗液,酸洗温度50-60℃,时间30-40min,酸洗后使用去离子多次洗涤。
3.如权利要求1所述的一种钛合金复合材料,其特征在于所述碳纳米管混酸处理是将碳纳米管置于三口烧瓶内,经过100℃混酸酸化,冷却水回流处理5h,所述混酸为体积比为2.5:1的98wt.%的H2SO4和65%-67wt.%的HNO3混酸,所述碳纳米管的管径50-70nm,长度5-8μm。
4.如权利要求1所述的一种钛合金复合材料,其特征在于制备β-氧化铅的电沉积参数为:电沉积时间1.0-1.5h,沉积温度为40-50℃,电沉积电流密度为10-15mA/cm2,极板间距3-4cm。
5.如权利要求1所述的一种钛合金复合材料,其特征在于所述复合材料的析氧电位为1.81V,在40℃,30mA/cm2下,使用所述复合材料进行模拟苯酚废水降解100min后,苯酚的去除率为84.1%,COD去除率为66.3%。
CN202010593686.5A 2020-06-27 2020-06-27 一种钛合金复合材料 Active CN111762850B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010593686.5A CN111762850B (zh) 2020-06-27 2020-06-27 一种钛合金复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010593686.5A CN111762850B (zh) 2020-06-27 2020-06-27 一种钛合金复合材料

Publications (2)

Publication Number Publication Date
CN111762850A CN111762850A (zh) 2020-10-13
CN111762850B true CN111762850B (zh) 2023-07-04

Family

ID=72722063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010593686.5A Active CN111762850B (zh) 2020-06-27 2020-06-27 一种钛合金复合材料

Country Status (1)

Country Link
CN (1) CN111762850B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1189183A (en) * 1966-08-27 1970-04-22 Basf Ag Applying Lead Dioxide Coatings to Metallic Titanium by Anodic Deposition
WO2014165912A1 (en) * 2013-04-10 2014-10-16 Murdoch University Coated composite anodes
CA2987938A1 (en) * 2015-06-01 2016-12-08 Pneumaticoat Technologies Llc Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638615B1 (ko) * 2004-09-14 2006-10-26 삼성전기주식회사 전계방출 에미터전극 제조방법
CN106277216A (zh) * 2016-08-05 2017-01-04 浙江工业大学 铟掺杂钛基二氧化铅电极及其制备方法和应用
CN107740097B (zh) * 2017-09-30 2019-11-19 中国科学院合肥物质科学研究院 一种含碳纳米管涂层材料及其制备方法
CN107902729B (zh) * 2017-11-17 2020-02-07 吉林大学 一种钛基掺镧二氧化铅电极及其制备方法
CN109382083B (zh) * 2018-11-30 2021-07-20 内蒙古工业大学 碳纳米管掺杂的二氧化钛纳米管光催化材料及其制备方法
CN109628957A (zh) * 2018-12-27 2019-04-16 西安泰金工业电化学技术有限公司 一种锌电积用钛基纳米复合阳极的制备方法
CN111298664B (zh) * 2020-03-16 2020-10-27 中国人民解放军火箭军工程设计研究院 一种中空纤维气体分离复合膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1189183A (en) * 1966-08-27 1970-04-22 Basf Ag Applying Lead Dioxide Coatings to Metallic Titanium by Anodic Deposition
WO2014165912A1 (en) * 2013-04-10 2014-10-16 Murdoch University Coated composite anodes
CA2987938A1 (en) * 2015-06-01 2016-12-08 Pneumaticoat Technologies Llc Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings

Also Published As

Publication number Publication date
CN111762850A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
CN111634982B (zh) 一种高效苯酚废水降解用阳极材料的制备方法
CN101857288B (zh) 钛基二氧化钛纳米管二氧化锡电极的制备方法
An et al. The synthesis and characterization of Ti/SnO2–Sb2O3/PbO2 electrodes: the influence of morphology caused by different electrochemical deposition time
EP1409767B1 (de) Elektrochemische herstellung von peroxo-dischwefelsäure unter einsatz von diamantbeschichteten elektroden
WO2018023912A1 (zh) 铟掺杂钛基二氧化铅电极及其制备方法和应用
CN105621541A (zh) 一种用于废水处理的过渡金属掺杂二氧化铅电极及其制备方法和应用
CN105110425A (zh) 一种碳纳米管改性三维多孔钛基体二氧化铅电极的制备方法
CN101225526A (zh) 纳米晶二氧化锰涂层阳极及其制备方法
CN106283105A (zh) 一种添加镍中间层制备低能耗、长寿命钛基PbO2阳极的方法
CN103253743A (zh) 一种Fe掺杂PTFE-PbO2/TiO2-NTs/Ti电极的制备方法和应用
Ma et al. Electrochemical removal of ammonia in coking wastewater using Ti/SnO2+ Sb/PbO2 anode
AU2014252764A1 (en) Coated composite anodes
CN106044963A (zh) 一种钛基聚苯胺掺杂二氧化铅复合电极材料的制备方法
CN108328703B (zh) 钛基二氧化钛纳米管沉积锡锑氟电极的制备及其对电镀铬废水中铬抑雾剂降解的应用
CN113800606A (zh) 一种循环冷却水处理用涂层钛阳极、制备方法及应用
CN110980890A (zh) 用于降解罗丹明b的钛基二氧化铅电极及其制备方法和应用
CN111607805B (zh) 一种高寿阳极材料
Yang et al. Optimized Fabrication of TiO 2 Nanotubes Array/SnO 2-Sb/Fe-Doped PbO 2 Electrode and Application in Electrochemical Treatment of Dye Wastewater
CN111763979B (zh) 一种高寿阳极材料的制备方法
KR102012834B1 (ko) 오폐수 처리 및 살균소독용 그래핀 복합 전기분해 전극 제조 방법
CN111939914B (zh) 一种利用废弃铜箔制备高活性三元金属析氧催化剂的方法
CN111762850B (zh) 一种钛合金复合材料
CN106830204B (zh) 一种电化学阴极激发高锰酸盐降解水中污染物的方法及装置
CN108060451B (zh) 一种疏水天然纤维复合二氧化铅阳极的制备方法
CN115626693B (zh) 一种具有中间层的铅锑涂层钛阳极板及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20230302

Address after: 721000 Dongguan Science and Technology Industrial Park, Chencang District, Baoji City, Shaanxi Province (West of Keji 8th Road)

Applicant after: BAOJI UNIQUE TITANIUMM INDUSTRY CO.,LTD.

Address before: 215300 603, building 18, Jintang garden, Zhoushi Town, Kunshan City, Suzhou City, Jiangsu Province

Applicant before: Zhao Yuping

GR01 Patent grant
GR01 Patent grant