CN111744555B - 一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法 - Google Patents

一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法 Download PDF

Info

Publication number
CN111744555B
CN111744555B CN202010666590.7A CN202010666590A CN111744555B CN 111744555 B CN111744555 B CN 111744555B CN 202010666590 A CN202010666590 A CN 202010666590A CN 111744555 B CN111744555 B CN 111744555B
Authority
CN
China
Prior art keywords
zif
aginse
paper
solution
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010666590.7A
Other languages
English (en)
Other versions
CN111744555A (zh
Inventor
周晨曦
于京华
刘悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202010666590.7A priority Critical patent/CN111744555B/zh
Publication of CN111744555A publication Critical patent/CN111744555A/zh
Application granted granted Critical
Publication of CN111744555B publication Critical patent/CN111744555B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明涉及一种纸基Au‑AgInSe2‑ZIF‑8纳米复合材料的制备方法,属于纳米材料制备技术领域,特别涉及到一种纸基原位生长Au纳米粒子和AgInSe2量子点‑ZIF8光催化剂的制备方法。在该发明过程中,首先利用原位生长的方法在纸纤维表面生长了一层Au纳米粒子,提高了纸张的导电性和比表面积,然后通过分步合成的方法分别合成了AgInSe2量子点和ZIF‑8纳米粒子,并通过浸渍法进一步将AgInSe2量子点和ZIF‑8纳米粒子复合,制备了AgInSe2‑ZIF‑8复合纳米材料,最后,将制得的AgInSe2‑ZIF‑8复合纳米材料溶液滴加到纸基Au表面制得了纸基Au‑AgInSe2‑ZIF‑8纳米复合材料。该方法制得的纸基Au‑AgInSe2‑ZIF‑8纳米复合材料形貌规整,尺寸均一,在有机溶剂中具有良好的分散性,制备的纸基Au‑AgInSe2‑ZIF‑8纳米复合材料在生物传感分析领域和光电化学中具有较好的应用前景。

Description

一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法
技术领域
本发明涉及一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法,属于纳米材料制备技术领域,特别涉及到一种纸基原位生长Au纳米粒子和AgInSe2量子点- ZIF8光催化剂的制备方法。
背景技术
纸张作为一种廉价的材料,近年来逐渐受到关注并被应用到分析检测领域当中,其中纸纤维的疏松多孔的特征和大的比表面积为很多分子的反应提供了良好的场所,被作为基底应用到生物传感器的构建当中,但是由于纸张本身不能导电,无法满足电化学分析中对于电子传输和导电性的要求,而通过原位生长的方法在纸纤维表面生长一层Au纳米颗粒,可以极大地提高纸基的导电性和电子传输速率,改善了纸张不能导电的缺陷,在生物分析领域得到了广泛的应用。光催化作为最有前景的技术之一,在环境修复和替代清洁能源中被广泛应用,例如空气/水净化,太阳能电池和氢析出,由此引发出来的光催化材料也引起了人们的广泛关注,光催化材料具有无毒、热稳定性、化学稳定性好等优点, 且材料的光催化活性高, 可以进一步提高光催化的效能。目前改进光催化材料的方法主要是通过对半导体材料进行改性和修饰,提高材料的量子效率而改善其光催化活性。作为纳米技术领域的一种新材料,金属-有机骨架(metal-organic framework,MOF)材料(也称为SURMOFs)获得了越来越多研究者的关注,具有很高的应用价值。例如ZIFs结合了传统MOFs材料和沸石材料的优点, 表面具有丰富的微孔结构,使其具有较高的热稳定性和化学稳定性。目前已有很多关于MOFs材料应用的报道。Siwen Li, Sijia Peng, Linsong Huang, Xiaoqi Cui,Abdullah M. Al-Enizi, and Gengfeng Zheng, ACS Appl. Mater. Interfaces, 2016,8 (32), pp 20534-20539.合成了ZIF-67衍生的碳包覆Co3+硒化钴催化剂。Awu Zhou, Rui-Mei Guo, Jian Zhou, Yibo Dou, Ya Chen, and Jian-Rong Li, ACS SustainableChem. Eng., 2018, 6 (2), pp 2103-2111.合成了Pd@ZIF-67衍生的可回收Pd基催化剂。Xuerong Chen, Dan Liu, Guojun Cao, Yong Tang, and Can Wu, ACS Appl. Mater.Interfaces, 2019, 11 (9), pp 9374–9384.原位合成了三明治样石墨烯@ZIF-67异质结构用于光催化。ZhiGang Gu, DeJing Li, Chan Zheng, Yao Kang, Christof Wçll, JianZhang, Angew. Chem. 2017, 129, 1-7合成了量子点ZIF-67材料用于光催化发光。其中,由于AgInSe2量子点具有良好的化学性质,如高化学稳定性,低毒性和良好的生物相容性,因此引起了巨大的研究兴趣。已经提出或已经实现了许多AgInSe2量子点的应用领域,包括催化,荧光,传感器装置的制造,能量转换和生物成像,以及药物输送等等。但到目前为止,没有任何关于AgInSe2量子点-ZIF-8复合纳米材料的制备方法。
发明内容
本发明所要解决的是一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法,具体是利用原位生长的方法在纸纤维表面生长一层Au纳米粒子,提高纸基的导电性和电子传输速率,然后利用分步法分别合成AgInSe2量子点和ZIF-8纳米材料,然后通过化学反应将AgInSe2量子点掺杂到ZIF-8的表面,并维持ZIF-8的骨架结构,最终得到纸基Au-AgInSe2-ZIF-8纳米复合材料,本发明所用试剂与设备均价廉易得,材料制备方法简单,反应条件温和,是一种绿色环保的纳米材料制备方法,其特征是包括以下步骤:
(1)在计算机上利用Adobe Illustrator CS6软件设计一个疏水蜡打印图案并利用喷蜡打印机将其批量打印到裁剪的A4尺寸滤纸上,随后将其在加热板加热至蜡融化并渗透整个纸的厚度,形成疏水区域,样式和尺寸如附图1所示,纸基图案为30 mm×30 mm的正方形,中间亲水区域为直径为10 mm的圆形,外围为疏水区域;
(2)纸基原位生长Au纳米粒子:根据现有方法,通过原位生长机理在纸纤维表面上生长Au纳米粒子,简而言之,将80 mL去离子水放入三颈烧瓶中并加热至90 ℃,然后将0.8mL 1%氯金酸(HAuCl4)溶液加入上述溶液中并加热至96 ℃保持1 min,接下来,加入2.8mL的1%的柠檬酸三钠溶液,并搅拌15 min,最后,将溶液搅拌并冷却,接下来配制Au纳米粒子生长液,称取0.1390 g盐酸羟胺溶解在10 mL去离子水中,取上述盐酸羟胺溶液和合成好的Au种子溶液按照体积比1:1的比例充分混合配成Au纳米粒子生长液,用移液枪每次吸取Au纳米粒子生长液80 μL滴加到纸基亲水区域,让纸张自然晾干,重复滴加过程三次,最后用去离子水清洗亲水区域以去除物理吸附在纸纤维表面的Au纳米粒子;
(3)AgInSe2量子点的制备:通过在室温下于氩气饱和条件下将1.0 mmol SeO2和2.0 mmol NaBH4溶解在5 mL去离子水中10 min来制备Se前体,将该新鲜制备的0.8 mL Se前体溶液添加至15.0 mL的含有0.01 mmol AgNO3,In(NO)3和柠檬酸钠的摩尔比为1:6:14的去离子水中,然后将混合物溶液密封在30 mL微波反应瓶中,随后,将小瓶在160℃ 下装入最大磁控管输出功率为850 W的单模微波反应器中10 min,反应结束后,将水溶液通过孔径为0.22 mm的硅胶微孔膜过滤,然后通过添加过量的异丙醇并在转速为6000 rpm下离心15min来收集制得的AgInSe2量子点;
(4)ZIF-8的合成:称取1.17 g氯化锌固体溶于8mL去离子水中,称取22.70 g 2-甲基咪唑固体溶于80 mL去离子水中,将氯化锌溶液在室温下加到2-甲基咪唑溶液中以使2-甲基咪唑与锌的摩尔比为70:1,将混合物在室温搅拌5 min,通过转速为24000 rpm,时间为10 min进行离心收集产物,并用去离子水洗涤三次,最后在烘箱中在65 ℃下干燥24 h;
(5)AgInSe2- ZIF-8复合纳米材料的制备:采用浸渍法合成AgInSe2- ZIF-8复合纳米材料,首先,将1 mg步骤(3)中合成的AgInSe2量子点溶解在10 mL去离子水中,接着,在搅拌下将完全溶解的溶液滴加到100 mg步骤(4)中制备的ZIF-8粉末中,并在室温下继续剧烈搅拌20 min,最后,将制得的浆料干燥,得到最终的AgInSe2- ZIF-8复合纳米材料,并将AgInSe2- ZIF-8复合纳米材料溶解到2 mL去离子水中备用;
(6)纸基Au-AgInSe2-ZIF-8纳米复合材料的制备:用移液枪量取步骤(5)中制得的AgInSe2- ZIF-8复合纳米材料水溶液100 μL,一次性滴加到生长Au的纸纤维表面,在4 ℃下反应2 h,并用去离子水洗涤纸基表面,去除物理吸附的AgInSe2- ZIF-8的纳米粒子,让纸基自然晾干,得到纸基Au-AgInSe2-ZIF-8纳米复合材料。
本发明的有益效果:
(1)一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法,材料制备方法操作简单,反应条件温和,是一种绿色环保的复合纳米材料合成方法。
(2)纸基金纳米颗粒的生长,增大了纸张的比表面积及有效减少纸的背景荧光,提高了检测的灵敏度。
(3)纸基传感器柔韧灵活,携带方便,可以剪裁、弯曲、折叠和可塑,后处理简单,不会对环境造成污染。
(4)纸基材原料丰富、质量轻、廉价、易折叠、可降解。
(5)纸基Au-AgInSe2-ZIF-8纳米复合材料具有更好的光催化活性。
附图说明:
下面结合附图和具体实施方案对本发明作进一步详细描述:
图1是疏水蜡打印纸基图案。
具体实施方式
一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法,其特征是包括以下步骤:
(1)在计算机上利用Adobe Illustrator CS6软件设计一个疏水蜡打印图案并利用喷蜡打印机将其批量打印到裁剪的A4尺寸滤纸上,随后将其在加热板加热至蜡融化并渗透整个纸的厚度,形成疏水区域,样式和尺寸如附图1所示,纸基图案为30 mm×30 mm的正方形,中间亲水区域为直径为10 mm的圆形,外围为疏水区域;
(2)纸基原位生长Au纳米粒子:根据现有方法,通过原位生长机理在纸纤维表面上生长Au纳米粒子,简而言之,将80 mL去离子水放入三颈烧瓶中并加热至90 ℃,然后将0.8mL 1%氯金酸(HAuCl4)溶液加入上述溶液中并加热至96 ℃保持1 min,接下来,加入2.8mL的1%的柠檬酸三钠溶液,并搅拌15 min,最后,将溶液搅拌并冷却,接下来配制Au纳米粒子生长液,称取0.1390 g盐酸羟胺溶解在10 mL去离子水中,取上述盐酸羟胺溶液和合成好的Au种子溶液按照体积比1:1的比例充分混合配成Au纳米粒子生长液,用移液枪每次吸取Au纳米粒子生长液80 μL滴加到纸基亲水区域,让纸张自然晾干,重复滴加过程三次,最后用去离子水清洗亲水区域以去除物理吸附在纸纤维表面的Au纳米粒子;
(3)AgInSe2量子点的制备:通过在室温下于氩气饱和条件下将1.0 mmol SeO2和2.0 mmol NaBH4溶解在5 mL去离子水中10 min来制备Se前体,将该新鲜制备的0.8 mL Se前体溶液添加至15.0 mL的含有0.01 mmol AgNO3,In(NO)3和柠檬酸钠的摩尔比为1:6:14的去离子水中,然后将混合物溶液密封在30 mL微波反应瓶中,随后,将小瓶在160℃ 下装入最大磁控管输出功率为850 W的单模微波反应器中10 min,反应结束后,将水溶液通过孔径为0.22 mm的硅胶微孔膜过滤,然后通过添加过量的异丙醇并在转速为6000 rpm下离心15min来收集制得的AgInSe2量子点;
(4)ZIF-8的合成:称取1.17 g氯化锌固体溶于8mL去离子水中,称取22.70 g 2-甲基咪唑固体溶于80 mL去离子水中,将氯化锌溶液在室温下加到2-甲基咪唑溶液中以使2-甲基咪唑与锌的摩尔比为70:1,将混合物在室温搅拌5 min,通过转速为24000 rpm,时间为10 min进行离心收集产物,并用去离子水洗涤三次,最后在烘箱中在65 ℃下干燥24 h;
(5)AgInSe2- ZIF-8复合纳米材料的制备:采用浸渍法合成AgInSe2- ZIF-8复合纳米材料,首先,将1 mg步骤(3)中合成的AgInSe2量子点溶解在10 mL去离子水中,接着,在搅拌下将完全溶解的溶液滴加到100 mg步骤(4)中制备的ZIF-8粉末中,并在室温下继续剧烈搅拌20 min,最后,将制得的浆料干燥,得到最终的AgInSe2- ZIF-8复合纳米材料,并将AgInSe2- ZIF-8复合纳米材料溶解到2 mL去离子水中备用;
(6)纸基Au-AgInSe2-ZIF-8纳米复合材料的制备:用移液枪量取步骤(5)中制得的AgInSe2- ZIF-8复合纳米材料水溶液100 μL,一次性滴加到生长Au的纸纤维表面,在4 ℃下反应2 h,并用去离子水洗涤纸基表面,去除物理吸附的AgInSe2- ZIF-8的纳米粒子,让纸基自然晾干,得到纸基Au-AgInSe2-ZIF-8纳米复合材料。

Claims (2)

1.一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法,其特征是包括以下步骤:
(1)在计算机上利用Adobe Illustrator CS6软件设计一个疏水蜡打印图案并利用喷蜡打印机将其批量打印到裁剪的A4尺寸滤纸上,随后将其在加热板加热至蜡融化并渗透整个纸的厚度,形成疏水区域;
(2)纸基原位生长Au纳米粒子:通过原位生长机理在纸纤维表面上生长Au纳米粒子,将80 mL去离子水放入三颈烧瓶中并加热至90 ℃,然后将0.8 mL 1%氯金酸(HAuCl4)溶液加入上述溶液中并加热至96 ℃保持1 min,接下来,加入2.8 mL 的1%的柠檬酸三钠溶液,并搅拌15 min,最后,将溶液搅拌并冷却,接下来配制Au纳米粒子生长液,称取0.1390 g盐酸羟胺溶解在10 mL去离子水中,取上述盐酸羟胺溶液和合成好的Au种子溶液按照体积比1:1的比例充分混合配成Au纳米粒子生长液,用移液枪每次吸取Au纳米粒子生长液80 μL滴加到纸基亲水区域,让纸张自然晾干,重复滴加过程三次,最后用去离子水清洗亲水区域以去除物理吸附在纸纤维表面的Au纳米粒子;
(3)AgInSe2量子点的制备:通过在室温下于氩气饱和条件下将1.0 mmol SeO2和2.0mmol NaBH4溶解在5 mL去离子水中10 min来制备Se前体,将该新鲜制备的0.8 mL Se前体溶液添加至15.0 mL的含有0.01 mmol AgNO3,In(NO)3和柠檬酸钠的摩尔比为1:6:14的去离子水中,然后将混合物溶液密封在30 mL微波反应瓶中,随后,将小瓶在160℃ 下装入最大磁控管输出功率为850 W的单模微波反应器中10 min,反应结束后,将水溶液通过孔径为0.22 mm的硅胶微孔膜过滤,然后通过添加过量的异丙醇并在转速为6000 rpm下离心15min来收集制得的AgInSe2量子点;
(4)ZIF-8的合成:称取1.17 g氯化锌固体溶于8mL去离子水中,称取22.70 g 2-甲基咪唑固体溶于80 mL去离子水中,将氯化锌溶液在室温下加到2-甲基咪唑溶液中以使2-甲基咪唑与锌的摩尔比为70:1,将混合物在室温搅拌5 min,通过转速为24000 rpm,时间为10min进行离心收集产物,并用去离子水洗涤三次,最后在烘箱中在65 ℃下干燥24 h;
(5)AgInSe2-ZIF-8复合纳米材料的制备:采用浸渍法合成AgInSe2-ZIF-8复合纳米材料,首先,将1 mg步骤(3)中合成的AgInSe2量子点溶解在10 mL去离子水中,接着,在搅拌下将完全溶解的溶液滴加到100 mg步骤(4)中制备的ZIF-8粉末中,并在室温下继续剧烈搅拌20 min,最后,将制得的浆料干燥,得到最终的AgInSe2-ZIF-8复合纳米材料,并将AgInSe2-ZIF-8复合纳米材料溶解到2 mL去离子水中备用;
(6)纸基Au-AgInSe2-ZIF-8纳米复合材料的制备:用移液枪量取步骤(5)中制得的AgInSe2- ZIF-8复合纳米材料水溶液100 μL,一次性滴加到生长Au的纸纤维表面,在4 ℃下反应2 h,并用去离子水洗涤纸基表面,去除物理吸附的AgInSe2-ZIF-8的纳米粒子,让纸基自然晾干,得到纸基Au-AgInSe2-ZIF-8纳米复合材料。
2.根据权利要求1所述一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法,其特征是利用原位生长的方法在纸纤维表面生长一层Au纳米粒子,提高纸基的导电性和电子传输速率,然后利用分步法分别合成AgInSe2量子点和ZIF-8纳米材料,然后通过化学反应将AgInSe2量子点掺杂到ZIF-8的表面,并维持ZIF-8的骨架结构,最终得到纸基Au-AgInSe2-ZIF-8纳米复合材料。
CN202010666590.7A 2020-07-13 2020-07-13 一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法 Expired - Fee Related CN111744555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010666590.7A CN111744555B (zh) 2020-07-13 2020-07-13 一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010666590.7A CN111744555B (zh) 2020-07-13 2020-07-13 一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111744555A CN111744555A (zh) 2020-10-09
CN111744555B true CN111744555B (zh) 2021-09-21

Family

ID=72711075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010666590.7A Expired - Fee Related CN111744555B (zh) 2020-07-13 2020-07-13 一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111744555B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114687235B (zh) * 2022-05-12 2023-08-15 广东省科学院生物与医学工程研究所 超疏水纸及其制备方法、应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000006298U (ko) * 1998-09-10 2000-04-15 전상설 팬츠
CN105154084A (zh) * 2015-07-21 2015-12-16 东华大学 一种水相合成颜色可调的三元银铟硒AgInSe2荧光量子点的制备方法
CN108760730B (zh) * 2018-05-14 2021-05-28 济南大学 一种纸基双模式检测镁离子的方法
CN111074311B (zh) * 2020-01-06 2021-10-26 济南大学 纸基金-四棱锥状氧化亚铜纳米复合材料的制备方法

Also Published As

Publication number Publication date
CN111744555A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
Vinoth et al. Synergistically enhanced electrocatalytic performance of an N-doped graphene quantum dot-decorated 3D MoS2–graphene nanohybrid for oxygen reduction reaction
CN103480399B (zh) 一种微纳结构磷酸银基复合可见光催化材料及其制备方法
CN103480398B (zh) 一种微纳结构石墨烯基复合可见光催化材料及其制备方法
CN103721708B (zh) 一种银/二氧化钛复合异质结构及其制备方法
CN106904596A (zh) 基于金属有机框架化合物低温热解制备的碳纳米管组装的纳米结构材料及其制备和应用
CN104888832A (zh) 一种金属/金属氧化物/g-C3N4复合光催化材料及其制备方法
CN113121838B (zh) 一种原子层沉积辅助制备mof/碳复合材料的方法及所得产品和应用
Shi et al. Constructing conductive channels between platinum nanoparticles and graphitic carbon nitride by gamma irradiation for an enhanced oxygen reduction reaction
CN101515648A (zh) 一种可用于燃料电池的新型膜电极组件,制备方法及其应用
CN110614105A (zh) 用于析氢的Mo2C/NiCoSex异质结电催化材料及其制备方法
CN107321368A (zh) 一种Au原子修饰的CoSe2纳米带及其制备方法和应用
CN113649075B (zh) 一种类苦瓜状NaNbO3@ZIF-8压电-光催化剂的制备方法
CN112086648A (zh) 一种合成AuPd@C材料用于氧还原反应电催化的方法
CN103342368B (zh) 一种空心二氧化硅微球的制备方法
CN111744555B (zh) 一种纸基Au-AgInSe2-ZIF-8纳米复合材料的制备方法
CN104707590B (zh) 一种形貌可控铟纳米催化剂的制备方法及其应用
CN107694580A (zh) 一种纳米复合硒化物及其制备方法
CN108514877B (zh) 一种钌/碳双壳层电解水催化剂及其制备方法
Jin et al. Interfacing Ag2S Nanoparticles and MoS2 Nanosheets on Polypyrrole Nanotubes with Enhanced Catalytic Performance
CN107188163B (zh) 一种自组装石墨烯原位生长纳米棒阵列复合膜及其制备方法
CN101412533A (zh) 一种在水溶液中制备均匀氧化锌纳米管阵列的方法
CN111389469A (zh) 一种用于去除水体藻类的光催化异质结纳米复合材料的制备方法
CN105148918B (zh) 一种Co-B/Ni-B非晶纳米球复合合金催化剂的制备方法及其应用
CN107385468B (zh) 一种金铜双生结构的电解水催化材料
Yuan et al. Thermal perturbation nucleation and controllable growth of silver vanadate crystals by dynamic template route

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210921