CN111732438B - SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法 - Google Patents

SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法 Download PDF

Info

Publication number
CN111732438B
CN111732438B CN202010515747.6A CN202010515747A CN111732438B CN 111732438 B CN111732438 B CN 111732438B CN 202010515747 A CN202010515747 A CN 202010515747A CN 111732438 B CN111732438 B CN 111732438B
Authority
CN
China
Prior art keywords
sic
refractory material
under
blank
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010515747.6A
Other languages
English (en)
Other versions
CN111732438A (zh
Inventor
余超
吴欣欣
邓承继
丁军
祝洪喜
郑永翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Science and Engineering WUSE
Original Assignee
Wuhan University of Science and Engineering WUSE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Science and Engineering WUSE filed Critical Wuhan University of Science and Engineering WUSE
Priority to CN202010515747.6A priority Critical patent/CN111732438B/zh
Publication of CN111732438A publication Critical patent/CN111732438A/zh
Application granted granted Critical
Publication of CN111732438B publication Critical patent/CN111732438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/003Pressing by means acting upon the material via flexible mould wall parts, e.g. by means of inflatable cores, isostatic presses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance

Abstract

本发明涉及一种SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法。其技术方案是:将装有Al4SiC4坯体的坩埚置于高温气压炉内,真空条件下加热至1150~1250℃,充氮气至0.1~5MPa,保压条件下升温至1600~1800℃,保温保压10~300min,制得制品。或将装有Al4SiC4坯体的坩埚置于高温气压炉内,在真空条件下加热至1150~1250℃,用5~10min充氮气至0.1~1MPa,保压条件下加热至1500~1600℃,保温保压10~300min;再用5~10min充氮气至1.2~7MPa,保压条件下继续加热至1600~1800℃,保温保压10~60min,制得制品。所述坯体是将Al4SiC4粉体模压成型或将Al4SiC4粉体模压成型后再等静压成型。本发明所制制品抗氧化性能优异、致密度高且力学性能好。

Description

SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法
技术领域
本发明属于非氧化物陶瓷结合碳复合耐火材料技术领域。具体涉及一种SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法。
背景技术
碳材料具有质量轻、热膨胀系数低、高温力学性能优异、导电及导热性能好、耐腐蚀和抗渣性能强的特点,广泛应用于航空航天、国防、体育和医学等领域。但由于碳材料在400℃时就发生氧化且强度低,难以与其他物质形成化学结合,限制其在高温行业中的应用。为使碳材料能应用于高温结构部件,目前最有效的方法是将陶瓷材料引入碳材料中,制备陶瓷-碳复合材料,结果表明该种方式可以有效提高单相碳材料的强度和抗氧化等性能。
氧化物陶瓷-碳复合材料在现有耐火材料的广泛应用已经相对成熟,例如铝碳(Al2O3-C)耐火材料(J.Ding,C.Yu,J.P.Liu,et al.Effects of silicon powder contenton the properties and interfacebonding of nitrided Al2O3-C refractories[J].Materials Chemistry and Physics,206,2018,193-203)应用于钢铁行业中的堵头、包盖或浸入式喷嘴器件,这种材料虽对液体炉渣的润湿性差和耐腐蚀性好,但在高温下易被氧化,使用寿命低。非氧化物陶瓷-碳复合材料作为一种新型耐火材料具有轻质、高强的特点,且能够应用于超高温极端环境中,近年来受到越来越多学者关注,如S.B.Zhou等人(S.B.Zhou,Z.Wang,W.Zhang,Effect of graphite flake orientation onmicrostructure and mechanical properties of ZrB2-SiC-graphite composite,Journal of Alloys and Compounds,485,2009,181-185.)采用粒径为2μm的ZrB2细粉、粒径为2μm的SiC细粉与粒径为15μm且厚度为2μm的鳞片石墨为原料,通过球磨湿混干燥等步骤,采用热压烧结的方法,在30MPa单向压力下,1900℃保温1h氩气气氛下烧结制得ZrB2-SiC-graphite复合材料。采用此种制备方法的材料容易存在原料混合不充分、产物化学成分分布不均匀、制备过程需要高温高压的环境、条件苛刻和成本高等缺陷,且该类材料通常采用细粉为原料,没有现有耐火材料粗颗粒骨料构筑的骨架结构,其中的陶瓷和碳颗粒之间通过简单的物理堆积的方式结合,亦无法形成强化学键结合,因此材料的力学性能差。Chen等人(W.W.Chen,Y.Miyamoto,T.Tojo,M.Naito,Densification and properties ofAlN ceramic bonded carbon,Journal of the European Ceramic Society,32,2012,245-250.)通过结合凝胶注模和放电等离子烧结技术制备出AlN陶瓷结合C材料,虽然该材料中AlN陶瓷相形成了连续的网络状骨架结构,碳聚集体被包覆在连续的陶瓷骨架中,但该法制备工艺复杂,陶瓷相与碳聚集体之间的结合弱,断裂极易发生在陶瓷-碳界面结合处和碳聚集体中,影响材料的致密性和机械性能。
发明内容
本发明旨在克服现有技术缺陷,目的在于是提供一种工艺简单、成本低的SiC晶须增强AlN陶瓷结合C复合耐火材料的制备方法,用该方法制备的SiC晶须增强AlN陶瓷结合C复合耐火材料力学性能优异、高温抗氧化性能优异和致密性高。
为实现上述目的,本发明采用的技术方案是:
将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1150~1250℃;再用5~10min充氮气至0.1~5MPa,保压条件下升温至1600~1800℃,保温保压10~300min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料。
或将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1150~1250℃,用5~10min充氮气至0.1~1MPa,保压条件下再加热至1500~1600℃,保温保压10~300min;再用5~10min充氮气至1.2~7MPa,保压条件下继续加热至1600~1800℃,保温保压10~60min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料。
所述Al4SiC4坯体为坯体I或为坯体II:坯体I是将Al4SiC4粉体在5~50MPa条件下模压成型,即得Al4SiC4坯体I;坯体II是将Al4SiC4粉体在5~50MPa条件下模压成型,再于100~200MPa条件下等静压成型,即得Al4SiC4坯体II。
所述Al4SiC4粉体的纯度≥98.0wt%,粒度≤74μm。
所述氮气纯度为≥99.999%。
由于采用上述技术方案,本发明与现有技术相比的有益效果在于:
本发明仅采用单一的Al4SiC4粉体为原料,产物化学成分分布和微观结构均匀;本发明制得的SiC晶须增强AlN陶瓷结合C复合耐火材料,先采用模压或者模压与等静压结合的方法制坯体,然后直接置于高温气压炉内用气压烧结的方法在氮气气氛下烧成,工艺简单,可制得复杂形状的制品;采用模压与等静压结合的方法,坯体的密度更加均匀一致,制品缺陷少。
本发明采用两步气压烧结法制的SiC晶须增强AlN陶瓷结合C复合耐火材料,与一步气压烧结法相比,所制制品致密度更高和机械性能更加优异;本发明制备的SiC晶须增强AlN陶瓷结合C复合耐火材料在1600~1800℃和0.1~7MPa条件下烧成,制备温度低、压强小和条件简单,能显著降低生产成本。
本发明制得的SiC晶须增强AlN陶瓷结合C复合耐火材料,形成了AlN包裹SiC晶须和C的网络状结构,其中原位形成的SiC晶须均匀分散在在C聚集体之间,形成连续的SiC晶须网络,使被分散包裹的碳聚集体变成由晶须网络骨架来加固,而AlN和SiC的结构相似,更容易形成有效的化学结合,因而SiC晶须网络与AlN陶瓷骨架可形成紧密的化学结合,使原本AlN陶瓷与碳聚集体之间的弱结合通过SiC晶须网络加固,因此所制备的SiC晶须增强AlN陶瓷结合C复合耐火材料的力学性能好、抗氧化性能优异且致密性高。
本发明制得的SiC晶须增强AlN陶瓷结合C复合耐火材料经检测,相对密度为75.8~90%,抗折强度为106.9~200MPa。
因此,本发明制备工艺简单和成本低,所制备的SiC晶须增强AlN陶瓷结合C复合耐火材料不仅化学成分分布和微观结构均匀,且高温抗氧化性能优异、致密度高和力学性能好。
附图说明
图1是本发明制备的一种SiC晶须增强AlN陶瓷结合C复合耐火材料的XRD图;
图2是图1所示SiC晶须增强AlN陶瓷结合C复合耐火材料的TEM图。
具体实施方式
现结合附图和具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。
本具体实施方式中:
所述Al4SiC4粉体的纯度≥98.0wt%,粒度≤74μm。
所述氮气纯度为≥99.999%。
实施例中不再赘述。
实施例1
一种SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法。本实施例所述制备方法是:
将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1150℃;再用5min充氮气至0.1MPa,保压条件下升温至1600℃,保温保压300min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料。
所述Al4SiC4坯体是将Al4SiC4粉体在5MPa条件下模压成型,即得Al4SiC4坯体。
本实施例制得的SiC晶须增强AlN陶瓷结合C复合耐火材料经检测,相对密度为75.9%,抗折强度为107MPa。
实施例2
一种SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法。本实施例所述制备方法是:
将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1180℃;再用7min充氮气至1MPa,保压条件下升温至1680℃,保温保压200min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料。
所述Al4SiC4坯体是将Al4SiC4粉体在20MPa条件下模压成型,即得Al4SiC4坯体。
本实施例制得的SiC晶须增强AlN陶瓷结合C复合耐火材料经检测,相对密度为77.8%,抗折强度为120MPa。
实施例3
一种SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法。本实施例所述制备方法是:
将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1220℃;再用8min充氮气至3MPa,保压条件下升温至1750℃,保温保压100min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料。
所述Al4SiC4坯体是将Al4SiC4粉体在35MPa条件下模压成型,再于170MPa条件下等静压成型,即得Al4SiC4坯体。
本实施例制得的SiC晶须增强AlN陶瓷结合C复合耐火材料经检测,相对密度为81.2%,抗折强度为141MPa。
实施例4
一种SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法。本实施例所述制备方法是:
将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1250℃;再用10min充氮气至5MPa,保压条件下升温至1800℃,保温保压10min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料。
所述Al4SiC4坯体是将Al4SiC4粉体在50MPa条件下模压成型,再于200MPa条件下等静压成型,即得Al4SiC4坯体。
本实施例制得的SiC晶须增强AlN陶瓷结合C复合耐火材料经检测,相对密度为86.8%,抗折强度为186MPa。
实施例5
一种SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法。本实施例所述制备方法是:
将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1150℃,用5min充氮气至0.1MPa,保压条件下再加热至1500℃,保温保压300min;再用5min充氮气至1.2MPa,保压条件下继续加热至1600℃,保温保压60min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料。
所述Al4SiC4坯体是将Al4SiC4粉体在5MPa条件下模压成型,再于100MPa条件下等静压成型,即得Al4SiC4坯体。
本实施例制得的SiC晶须增强AlN陶瓷结合C复合耐火材料经检测:相对密度为79.4%;抗折强度为129MPa。
实施例6
一种SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法。本实施例所述制备方法是:
将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1180℃,用7min充氮气至0.3MPa,保压条件下再加热至1530℃,保温保压200min;再用7min充氮气至3MPa,保压条件下继续加热至1680℃,保温保压45min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料。
所述Al4SiC4坯体是将Al4SiC4粉体在20MPa条件下模压成型,再于130MPa条件下等静压成型,即得Al4SiC4坯体。
本实施例制得的SiC晶须增强AlN陶瓷结合C复合耐火材料经检测:相对密度为82.9%;抗折强度为154MPa。
实施例7
一种SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法。本实施例所述制备方法是:
将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1220℃,用8min充氮气至0.7MPa,保压条件下再加热至1570℃,保温保压100min;再用8min充氮气至5MPa,保压条件下继续加热至1750℃,保温保压30min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料。
所述Al4SiC4坯体是将Al4SiC4粉体在35MPa条件下模压成型,即得Al4SiC4坯体。
本实施例制得的SiC晶须增强AlN陶瓷结合C复合耐火材料经检测:相对密度为84.9%;抗折强度为168MPa。
实施例8
一种SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法。本实施例所述制备方法是:
将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1250℃,用10min充氮气至1MPa,保压条件下再加热至1600℃,保温保压100min;再用10min充氮气至7MPa,保压条件下继续加热至1800℃,保温保压10min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料。
所述Al4SiC4坯体是将Al4SiC4粉体在50MPa条件下模压成型,即得Al4SiC4坯体。
本实施例制得的SiC晶须增强AlN陶瓷结合C复合耐火材料经检测:相对密度为88.7%;抗折强度为198MPa。
本具体实施方式与现有技术相比的有益效果在于:
本具体实施方式仅采用单一的Al4SiC4粉体为原料,所制制品化学成分分布和微观结构均匀;本具体实施方式制得的SiC晶须增强AlN陶瓷结合C复合耐火材料,先采用模压或者模压与等静压结合的方法制坯体,然后直接置于高温气压炉内用气压烧结的方法在氮气气氛下烧成,工艺简单,可制得复杂形状的制品;采用模压与等静压结合的方法,坯体的密度更加均匀一致,制品缺陷少。
本具体实施方式采用两步气压烧结法制的SiC晶须增强AlN陶瓷结合C复合耐火材料,与一步气压烧结法相比,所制制品致密度更高和机械性能更加优异;本具体实施方式制备的SiC晶须增强AlN陶瓷结合C复合耐火材料在1600~1800℃和0.1~7MPa条件下烧成,制备温度低、压强小和条件简单,能显著降低生产成本。
本具体实施方式制得的SiC晶须增强AlN陶瓷结合C复合耐火材料如图1所示,图1是实施例3制备的SiC晶须增强AlN陶瓷结合C复合耐火材料的XRD图;图2是图1所示SiC晶须增强AlN陶瓷结合C复合耐火材料的TEM图。从图1可以看出:所制制品的主要成分为AlN,SiC,C和少量未反应完全的原料Al4SiC4;从图2可以看出:AlN包裹在SiC和C颗粒的周围,其中“蛆状”SiC晶须均匀分布在C聚集体颗粒中。
本具体实施方式的制品形成了AlN包裹SiC晶须和C的网络状结构,其中原位形成的SiC晶须均匀分散在在C聚集体之间,形成连续的SiC晶须网络,使被分散包裹的碳聚集体变成由晶须网络骨架来加固,而AlN和SiC的结构相似,更容易形成有效的化学结合,因而SiC晶须网络与AlN陶瓷骨架可形成紧密的化学结合,使原本AlN陶瓷与碳聚集体之间的弱结合通过SiC晶须网络加固,所制备的SiC晶须增强AlN陶瓷结合C复合耐火材料的力学性能好、抗氧化性能优异且致密性高。
本具体实施方式制得的SiC晶须增强AlN陶瓷结合C复合耐火材料经检测:相对密度为75.8~90%;抗折强度为106.9~200MPa。
因此,本具体实施方式制备工艺简单和成本低,所制备的SiC晶须增强AlN陶瓷结合C复合耐火材料不仅化学成分分布和微观结构均匀,且高温抗氧化性能优异、致密度高和力学性能好。

Claims (2)

1.一种SiC晶须增强AlN陶瓷结合C复合耐火材料的制备方法,其特征在于:
将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1150~1250°C;再用5~10min充氮气至0.1~5MPa,保压条件下升温至1600~1800°C,保温保压10~300min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料;
或将Al4SiC4坯体装入石墨坩埚内,然后将所述坩埚置于高温气压炉内,在真空度≤10Pa条件下从室温加热至1150~1250°C,用5~10min充氮气至0.1~1MPa,保压条件下再加热至1500~1600°C,保温保压10~300min;再用5~10min充氮气至1.2~7MPa,保压条件下继续加热至1600~1800°C,保温保压10~60min,冷却至室温,制得SiC晶须增强AlN陶瓷结合C复合耐火材料;
所述Al4SiC4坯体为坯体I或为坯体II:坯体I是将Al4SiC4粉体在5~50MPa条件下模压成型,即得Al4SiC4坯体I;坯体II是将Al4SiC4粉体在5~50MPa条件下模压成型,再于100~200MPa条件下等静压成型,即得Al4SiC4坯体II;
所述Al4SiC4粉体的纯度≥98.0wt%,粒度≤74μm;
所述氮气纯度为≥99.999%。
2.一种SiC晶须增强AlN陶瓷结合C复合耐火材料,其特征在于所述SiC晶须增强AlN陶瓷结合C复合耐火材料是根据权利要求1所述SiC晶须增强AlN陶瓷结合C复合耐火材料的制备方法所制备的SiC晶须增强AlN陶瓷结合C复合耐火材料。
CN202010515747.6A 2020-06-09 2020-06-09 SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法 Active CN111732438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010515747.6A CN111732438B (zh) 2020-06-09 2020-06-09 SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010515747.6A CN111732438B (zh) 2020-06-09 2020-06-09 SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111732438A CN111732438A (zh) 2020-10-02
CN111732438B true CN111732438B (zh) 2022-08-30

Family

ID=72648644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010515747.6A Active CN111732438B (zh) 2020-06-09 2020-06-09 SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111732438B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107687025A (zh) * 2017-09-06 2018-02-13 武汉科技大学 一种Al4O4C晶须/碳纳米管复合材料的合成方法
CN107675260B (zh) * 2017-09-25 2020-03-10 武汉科技大学 一种AlN-SiC固溶体晶须及其制备方法

Also Published As

Publication number Publication date
CN111732438A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN109553419B (zh) 一种气压固相烧结碳化硼复相陶瓷及其制备方法
WO2020042950A1 (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN112981164B (zh) 一种高可靠性高导热金刚石增强金属基复合材料的制备方法
CN112267039B (zh) 一种高体积分数碳化硅颗粒增强铝基复合材料的制备工艺
CN108707770B (zh) 一种镀锆金刚石颗粒增强铝基复合材料的制备方法
CN109824382B (zh) 一种热管理用SiC/石墨膜层状复合材料及其制备方法
Chen et al. Preparation of AlN ceramic bonded carbon by gelcasting and spark plasma sintering
CN101984112B (zh) 一种高热导率铜增强铝复合材料及其制备方法
WO2022089379A1 (zh) 一种基于放电等离子烧结的氮化硅/碳化钛陶瓷材料制备方法
CN112592188A (zh) 一种石墨烯复合碳化硅陶瓷材料的制备方法
CN103553653B (zh) 一种具有梯度功能的高纯氧化锆耐火制品及制备方法
CN111732438B (zh) SiC晶须增强AlN陶瓷结合C复合耐火材料及其制备方法
CN113443919A (zh) 一种非晶态合金喷嘴材料及其制备方法
CN105218105A (zh) 薄带连铸用氮化硼复相陶瓷侧封板及其制备方法
CN107619282B (zh) 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件的制备方法
CN109665847B (zh) 一种全致密碳化硼陶瓷复合材料及制备方法
CN104844214A (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
JP6617153B2 (ja) アルミニウム合金−炭化珪素質複合体の製造方法
CN115636671A (zh) 基于层状碳化硅的高强度低温烧结多孔陶瓷及其制备方法
CN112645713B (zh) 一种高强韧陶瓷复合材料及其制备方法
CN107573076B (zh) 一种高韧性钛碳化硅-碳化硅复相陶瓷异形件
CN114736007A (zh) 一种低导热高性能铝镁碳熔池砖及其制备方法
CN111704465A (zh) 原位生成氮化铝-碳化硅固溶体复相陶瓷及其制备方法
CN111423243A (zh) 一种SiC晶须增强ZrB2/SiC复相陶瓷基复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant