CN111725331A - 正负电极同侧的多结砷化镓太阳电池芯片及其制备方法 - Google Patents

正负电极同侧的多结砷化镓太阳电池芯片及其制备方法 Download PDF

Info

Publication number
CN111725331A
CN111725331A CN202010528196.7A CN202010528196A CN111725331A CN 111725331 A CN111725331 A CN 111725331A CN 202010528196 A CN202010528196 A CN 202010528196A CN 111725331 A CN111725331 A CN 111725331A
Authority
CN
China
Prior art keywords
electrode
substrate
layer
adopting
grid line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010528196.7A
Other languages
English (en)
Other versions
CN111725331B (zh
Inventor
肖祖峰
杜伟
杨文奕
丁杰
黄嘉敬
何键华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co ltd
Original Assignee
Zhongshan Dehua Chip Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co ltd filed Critical Zhongshan Dehua Chip Technology Co ltd
Priority to CN202010528196.7A priority Critical patent/CN111725331B/zh
Publication of CN111725331A publication Critical patent/CN111725331A/zh
Application granted granted Critical
Publication of CN111725331B publication Critical patent/CN111725331B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种正负电极同侧的多结砷化镓太阳电池芯片及其制备方法,在P型Ge衬底上用MOCVD方法形成外延多结电池结构后,采用化学腐蚀等方法形成沟槽,并对沟槽进行绝缘填充,进而用电子束蒸镀上金属电极,将电池受光面的负电极引到电池背面,使正、负电极同处于电池的背面。采用本发明制备的太阳电池芯片,可以免于在电池受光面进行电极焊接,降低了在受光面进行焊接的电池损伤及污染风险,提高封装良率;另外,可方便电池直接焊接在带有串并联电路设计的基板上,可降低在电池受光面进行焊接时,与电极焊接在一起的互联片易与电池侧壁接触而短路的风险,提高电池的可靠性。

Description

正负电极同侧的多结砷化镓太阳电池芯片及其制备方法
技术领域
本发明涉及太阳电池的技术领域,尤其是指一种正负电极同侧的多结砷化镓太阳电池芯片及其制备方法。
背景技术
业内习知,多结砷化镓太阳电池作为第三代太阳电池,具有转化效率高、温度特性好、耐辐照性能强和重量轻等优点,目前已广泛应用于地面聚光光伏系统和空间电源系统。
传统的三结砷化镓太阳电池芯片的制备方法为:在P型Ge衬底上依次制备N型GaInP成核层、N型GaInAs缓冲层、中底电池隧穿结、GaInAs子电池、中顶电池隧穿结、GaInP顶电池、N型AlInP窗口层、N型GaInAs帽子层,形成外延层的完整结构;然后分别在Ge衬底背面和外延层面制作正电极和负电极,并退火形成良好的欧姆接触。通过选择性腐蚀的方法,腐蚀掉非负电极区域的帽子层;最后通过光刻和电子束蒸镀的方法,制备减反射膜,露出电极区域以供电性测试和封装焊接。这种结构的太阳电池及其制备方法,具有以下缺点:
1、减反射膜蒸镀前需要光刻工艺,且蒸镀时温度较高,对光刻胶的耐热性能要求较高;
2、位于电池受光面一侧的负电极,无绝缘介质保护,为提高电池可靠性及方便焊接,一般需要采用贵金属Au作为电极最上层的材料;
3、电池的正电极和负电极分别位于电池背面一侧和电池的受光面一侧,对电池受光面一侧的负电极进焊接时,易对电池产生损伤及污染,影响电池的性能及外观;
4、焊接的负电极金属互连片,有与电池侧壁接触从而造成短路的风险,影响电池的可靠性;
5、电池的正电极和负电极分别位于电池的两侧,不易对多个电池进行串并联设计。
若能设计一种新型多结砷化镓太阳电池结构,解决上述缺点,无疑将提高电池封装良率及可靠性、方便电池串并联封装系统设计,对砷化镓太阳电池在各能源需求领域的广泛应用具有重要意义。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提出了一种正负电极同侧的多结砷化镓太阳电池芯片及其制备方法,将电池受光面的负电极引到电池背面,使正、负电极同处于电池的背面,可以免于在电池受光面进行电极焊接,降低了在受光面进行焊接的电池损伤及污染风险,提高封装良率;另外,可方便电池直接焊接在带有串并联电路设计的基板上,可降低在电池受光面进行焊接时,与电极焊接在一起的互联片易与电池侧壁接触而短路的风险,提高电池的可靠性。
为实现上述目的,本发明所提供的技术方案为:正负电极同侧的多结砷化镓太阳电池芯片,包括Ge衬底,所述Ge衬底上形成有沟槽,通过对沟槽进行绝缘填充,使得沟槽内形成电池永久性的绝缘部分,从而将Ge衬底区分为两个独立绝缘的部分,分别为第一Ge衬底部分和第二Ge衬底部分,所述Ge衬底的背面制备相互独立的第一电极和第二电极作为正、负电极,所述第一电极和第二电极对应于Ge衬底上述两个独立绝缘的部分,即第一电极位于第一Ge衬底部分上,第二电极位于第二Ge衬底部分上,所述第一电极和第二电极之间制备有第一绝缘介质,所述第一绝缘介质位于电池永久性的绝缘部分底部,所述第一Ge衬底部分的正面制备有外延层,所述绝缘部分的顶部与外延层靠近绝缘部分的侧壁制备有第二绝缘介质,所述外延层和第二绝缘介质的顶部制备有互连的第三电极和金属栅线,所述第三电极和金属栅线通过与第二Ge衬底部分相接触来实现与第二电极的连通,即与负电极连通,所述外延层包含叠置的窗口层和帽子层,所述第三电极和金属栅线与帽子层相接触,采用选择性腐蚀的方法,将第三电极和金属栅线以外的帽子层腐蚀掉,露出窗口层,并在窗口层、第三电极和金属栅线上制备减反射膜层。
进一步,所述Ge衬底为P型Ge单晶片,厚度为140μm~200μm。
进一步,所述外延层包括按照层状结构依次叠加的N型GaInP成核层、N型GaInAs缓冲层、第一隧穿结、GaInAs中电池、第二隧穿结、GaInP顶电池、N型AlInP窗口层、N型GaInAs帽子层。
进一步,所述第一电极和第二电极的制作材料为Au、Pt、Pd、Zn、Cu、Ag、Cr、Ti、Al、TiW合金中的一种或几种组合。
进一步,所述绝缘部分采用SU8光刻胶进行高温固化。
进一步,所述第三电极和金属栅线的制作材料为Au、Pt、Ge、Ni、Ag、Cu、Cr、Ti、Al、AuGe合金、AuGeNi合金、TiW合金中的一种或几种组合。
进一步,所述第一绝缘介质和第二绝缘介质为SiO2或Si3N4绝缘介质。
进一步,所述减反射膜为双层或三层结构,由TiO2、SiO2、Al2O3、Ta2O5、Ti3O5、ZnS、Si3N4中的两种或三种组合,各层厚度为10nm~1000nm。
本发明也提供了一种上述正负电极同侧的多结砷化镓太阳电池芯片的制备方法,包括以下步骤:
1)提供Ge衬底,采用MOCVD技术在该Ge衬底的正面外延生长有逐层依次叠加的N型GaInP成核层、通过隧穿结相互串联的多结子电池、N型AlInP窗口层、N型GaInAs帽子层,形成外延层;
2)在Ge衬底的背面采用光刻胶剥离技术制备第一电极和第二电极;
3)采用湿法腐蚀技术在第一电极和第二电极之间制备SiO2或Si3N4绝缘介质,为第一绝缘介质;
4)采用光刻技术和ICP刻蚀技术将部分外延层刻蚀至Ge衬底,并采用湿法腐蚀技术将Ge衬底上的N型Ge刻蚀掉;
5)采用光刻及湿法腐蚀与去胶技术,刻透部分Ge衬底,形成沟槽,沟槽对准Ge衬底上的第一绝缘介质;
6)采用光刻技术,用SU8光刻胶对沟槽进行填充,并进行高温固化,形成电池永久性的绝缘部分;
7)采用PECVD技术、光刻及湿法腐蚀与去胶技术,在被腐蚀外延层的侧壁和电池永久性的绝缘部分顶部制备SiO2或Si3N4绝缘介质,为第二绝缘介质;
8)在外延层和第二绝缘介质顶部采用光刻胶剥离技术制备互连的第三电极和金属栅线,并直接与Ge衬底接触,从而实现与Ge衬底背面的负电极连通;
9)采用选择性腐蚀的方法,将第三电极和金属栅线以外的N型GaInAs帽子层腐蚀掉,露出N型AlInP窗口层;
10)在N型AlInP窗口层、第三电极和金属栅线上,采用电子束蒸镀的方法镀上减反射膜,得到电池制品;
11)采用机械切割或激光切割的方法对电池制品进行切割,形成完整独立的电池芯片。
在步骤2)中,在Ge衬底背面采用负性光刻胶制备光刻图形,然后蒸镀金属,蒸镀完成后经过剥离去胶工艺,即可形成第一电极和第二电极;
在步骤3)中,采用PECVD在Ge衬底背面镀制一层SiO2或Si3N4绝缘介质,然后采用光刻、湿法刻蚀与去胶技术在第一电极和第二电极之间形成第一绝缘介质;
在步骤8)中,在外延层和第二绝缘介质顶部采用负性光刻胶制备电极和栅线图形,并采用电子束蒸镀金属,然后通过剥离去胶技术形成互连的第三电极和金属栅线;
在步骤9)中,利用第三电极和金属栅线作为掩膜,采用氨水和双氧水溶液进行选择性腐蚀的方法,将第三电极和金属栅线以外的N型GaInAs帽子层腐蚀掉,露出N型AlInP窗口层;
在步骤10)中,所述减反射膜是全部覆盖住N型AlInP窗口层、第三电极和金属栅线。
本发明与现有技术相比,具有如下优点与有益效果:
1、本发明电池芯片的正、负电极都位于电池背面一侧,可以免于在电池受光面进行电极焊接,降低了在受光面进行焊接的电池损伤及污染风险,提高了封装良率。
2、本发明电池芯片的正、负电极位于电池同侧,容易对多个电池进行串并联设计形成电池组件与电源系统。
3、本发明电池芯片降低了焊接的负电极金属互连片与电池侧壁接触,从而造成短路的风险,提高了电池的可靠性。
4、本发明位于电池受光面一侧的负电极,可不采用贵金属Au作为最上层电极材料,减少了贵金属Au的使用,可降低成本。
5、本发明的减反射膜镀制,无需采用光刻技术,无对耐热性能高的光刻胶的需求,制作更加容易。
附图说明
图1是本发明所述正负电极同侧的多结砷化镓太阳电池芯片的结构示意图。
图2是制备过程中形成的外延层结构示意图。
图3是本发明所述正负电极同侧的多结砷化镓太阳电池芯片的正面俯视图。
图4是本发明所述正负电极同侧的多结砷化镓太阳电池芯片的背面俯视图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
如图1至图4所示,本实施例提供了一种正负电极同侧的多结砷化镓太阳电池芯片,包括Ge衬底2,所述Ge衬底2为P型Ge单晶片,厚度为140μm~200μm;所述Ge衬底2上形成有沟槽,通过对沟槽进行绝缘填充,具体是采用SU8光刻胶进行高温固化,使得沟槽内形成电池永久性的绝缘部分7,从而将Ge衬底2区分为两个独立绝缘的部分,分别为第一Ge衬底部分和第二Ge衬底部分,所述Ge衬底2的背面制备相互独立的第一电极1和第二电极6作为正、负电极,所述第一电极1和第二电极6对应于Ge衬底2上述两个独立绝缘的部分,即第一电极1位于第一Ge衬底部分上,第二电极6位于第二Ge衬底部分上,所述第一电极1和第二电极6之间制备有第一绝缘介质5,所述第一绝缘介质5位于电池永久性的绝缘部分7底部,所述第一Ge衬底部分的正面制备有外延层3,所述绝缘部分7的顶部与外延层3靠近绝缘部分7的侧壁制备有第二绝缘介质8,所述外延层3和第二绝缘介质8的顶部制备有互连的第三电极9和金属栅线10,所述第三电极9和金属栅线10通过与第二Ge衬底部分相接触来实现与第二电极6的连通,即与负电极连通;所述外延层3包括按照层状结构依次叠加的N型GaInP成核层31、N型GaInAs缓冲层32、第一隧穿结33、GaInAs中电池34、第二隧穿结35、GaInP顶电池36、N型AlInP窗口层37、N型GaInAs帽子层38,所述第三电极9和金属栅线10与N型GaInAs帽子层38相接触,采用选择性腐蚀的方法,将第三电极9和金属栅线10以外的N型GaInAs帽子层38腐蚀掉,露出N型AlInP窗口层37,并在N型AlInP窗口层37、第三电极9和金属栅线10上制备减反射膜层4。
所述第一电极1和第二电极6的制作材料为Au、Pt、Pd、Zn、Cu、Ag、Cr、Ti、Al、TiW合金中的一种或几种组合。
所述第三电极9和金属栅线10的制作材料为Au、Pt、Ge、Ni、Ag、Cu、Cr、Ti、Al、AuGe合金、AuGeNi合金、TiW合金中的一种或几种组合。
所述第一绝缘介质5和第二绝缘介质8为SiO2或Si3N4绝缘介质。
所述减反射膜4为双层或三层结构,由TiO2、SiO2、Al2O3、Ta2O5、Ti3O5、ZnS、Si3N4中的两种或三种组合,各层厚度为10nm~1000nm。
本实施例也提供了一种上述正负电极同侧的多结砷化镓太阳电池芯片的制备方法,包括以下步骤:
步骤1:提供Ge衬底2,为P型Ge单晶片,采用MOCVD技术在该Ge衬底2的正面外延生长有逐层依次叠加的N型GaInP成核层31、N型GaInAs缓冲层32、第一隧穿结33、GaInAs中电池34、第二隧穿结35、GaInP顶电池36、N型AlInP窗口层37、N型GaInAs帽子层38,形成外延层3。
步骤2:在Ge衬底背面采用负性光刻胶制备光刻图形,然后依次蒸镀金属Ti、Au,蒸镀完成后经过剥离去胶工艺,形成第一电极1和第二电极6。
步骤3:采用PECVD在Ge衬底2背面镀制一层SiO2,然后采用光刻、湿法刻蚀与去胶技术在第一电极1和第二电极6之间形成SiO2绝缘介质,为第一绝缘介质5。
步骤4:采用光刻技术和ICP刻蚀技术将部分外延层刻蚀至Ge衬底2,留下如图2所示的外延层3;并采用湿法腐蚀工艺继续将Ge衬底2上的N型Ge部分刻蚀掉后去除光刻胶。
步骤5:采用光刻及湿法腐蚀与去胶技术,刻透部分Ge衬底,形成沟槽,沟槽对准Ge衬底上的第一绝缘介质5。
步骤6:采用光刻技术,用SU8光刻胶对沟槽进行填充,并进行200℃高温固化,形成电池永久性的绝缘部分7。
步骤7:采用PECVD技术、光刻及湿法腐蚀与去胶技术,在被腐蚀外延层的侧壁和电池永久性的绝缘部分7顶部制备SiO2绝缘介质,为第二绝缘介质8。
步骤8:在外延层3和第二绝缘介质8顶部上采用负性光刻胶制备电极和栅线图形,采用电子束蒸镀依次蒸镀AuGeNi、Ag和TiW,然后通过剥离去胶技术形成互连的第三电极9和金属栅线10。
步骤9:利用第三电极9和金属栅线10作为掩膜,采用氨水和双氧水溶液进行选择性腐蚀的方法,将第三电极9和金属栅线10以外的N型GaInAs帽子层38腐蚀掉,露出N型AlInP窗口层37。
步骤10:在N型AlInP窗口层37、第三电极9和金属栅线10上,采用电子束蒸镀的方法镀制TiO2和SiO2,形成减反射膜4,得到电池制品。
步骤11:采用机械切割或激光切割的方法对电池制品进行切割,形成完整独立的电池芯片。
以上所述实施例只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (10)

1.正负电极同侧的多结砷化镓太阳电池芯片,包括Ge衬底(2),其特征在于:所述Ge衬底(2)上形成有沟槽,通过对沟槽进行绝缘填充,使得沟槽内形成电池永久性的绝缘部分(7),从而将Ge衬底(2)区分为两个独立绝缘的部分,分别为第一Ge衬底部分和第二Ge衬底部分,所述Ge衬底(2)的背面制备相互独立的第一电极(1)和第二电极(6)作为正、负电极,所述第一电极(1)和第二电极(6)对应于Ge衬底(2)上述两个独立绝缘的部分,即第一电极(1)位于第一Ge衬底部分上,第二电极(6)位于第二Ge衬底部分上,所述第一电极(1)和第二电极(6)之间制备有第一绝缘介质(5),所述第一绝缘介质(5)位于电池永久性的绝缘部分(7)底部,所述第一Ge衬底部分的正面制备有外延层(3),所述绝缘部分(7)的顶部与外延层(3)靠近绝缘部分(7)的侧壁制备有第二绝缘介质(8),所述外延层(3)和第二绝缘介质(8)的顶部制备有互连的第三电极(9)和金属栅线(10),所述第三电极(9)和金属栅线(10)通过与第二Ge衬底部分相接触来实现与第二电极(6)的连通,即与负电极连通,所述外延层(3)包含叠置的窗口层和帽子层,所述第三电极(9)和金属栅线(10)与帽子层相接触,采用选择性腐蚀的方法,将第三电极(9)和金属栅线(10)以外的帽子层腐蚀掉,露出窗口层,并在窗口层、第三电极(9)和金属栅线(10)上制备减反射膜层(4)。
2.根据权利要求1所述的正负电极同侧的多结砷化镓太阳电池芯片,其特征在于:所述Ge衬底(2)为P型Ge单晶片,厚度为140μm~200μm。
3.根据权利要求1所述的正负电极同侧的多结砷化镓太阳电池芯片,其特征在于:所述外延层(3)包括按照层状结构依次叠加的N型GaInP成核层(31)、N型GaInAs缓冲层(32)、第一隧穿结(33)、GaInAs中电池(34)、第二隧穿结(35)、GaInP顶电池(36)、N型AlInP窗口层(37)、N型GaInAs帽子层(38)。
4.根据权利要求1所述的正负电极同侧的多结砷化镓太阳电池芯片,其特征在于:所述第一电极(1)和第二电极(6)的制作材料为Au、Pt、Pd、Zn、Cu、Ag、Cr、Ti、Al、TiW合金中的一种或几种组合。
5.根据权利要求1所述的正负电极同侧的多结砷化镓太阳电池芯片,其特征在于:所述绝缘部分(7)采用SU8光刻胶进行高温固化。
6.根据权利要求1所述的正负电极同侧的多结砷化镓太阳电池芯片,其特征在于:所述第三电极(9)和金属栅线(10)的制作材料为Au、Pt、Ge、Ni、Ag、Cu、Cr、Ti、Al、AuGe合金、AuGeNi合金、TiW合金中的一种或几种组合。
7.根据权利要求1所述的正负电极同侧的多结砷化镓太阳电池芯片,其特征在于:所述第一绝缘介质(5)和第二绝缘介质(8)为SiO2或Si3N4绝缘介质。
8.根据权利要求1所述的正负电极同侧的多结砷化镓太阳电池芯片,其特征在于:所述减反射膜(4)为双层或三层结构,由TiO2、SiO2、Al2O3、Ta2O5、Ti3O5、ZnS、Si3N4中的两种或三种组合,各层厚度为10nm~1000nm。
9.如权利要求1至8任意一项所述正负电极同侧的多结砷化镓太阳电池芯片的制备方法,其特征在于,包括以下步骤:
1)提供Ge衬底(2),采用MOCVD技术在该Ge衬底的正面外延生长有逐层依次叠加的N型GaInP成核层(31)、通过隧穿结相互串联的多结子电池、N型AlInP窗口层(37)、N型GaInAs帽子层(38),形成外延层(3);
2)在Ge衬底(2)的背面采用光刻胶剥离技术制备第一电极(1)和第二电极(6);
3)采用湿法腐蚀技术在第一电极(1)和第二电极(6)之间制备SiO2或Si3N4绝缘介质,为第一绝缘介质(5);
4)采用光刻技术和ICP刻蚀技术将部分外延层刻蚀至Ge衬底(2),并采用湿法腐蚀技术将Ge衬底上的N型Ge刻蚀掉;
5)采用光刻及湿法腐蚀与去胶技术,刻透部分Ge衬底,形成沟槽,沟槽对准Ge衬底上的第一绝缘介质(5);
6)采用光刻技术,用SU8光刻胶对沟槽进行填充,并进行高温固化,形成电池永久性的绝缘部分(7);
7)采用PECVD技术、光刻及湿法腐蚀与去胶技术,在被腐蚀外延层的侧壁和电池永久性的绝缘部分(7)顶部制备SiO2或Si3N4绝缘介质,为第二绝缘介质(8);
8)在外延层(3)和第二绝缘介质(8)顶部采用光刻胶剥离技术制备互连的第三电极(9)和金属栅线(10),并直接与Ge衬底(2)接触,从而实现与Ge衬底(2)背面的负电极连通;
9)采用选择性腐蚀的方法,将第三电极(9)和金属栅线(10)以外的N型GaInAs帽子层(38)腐蚀掉,露出N型AlInP窗口层(37);
10)在N型AlInP窗口层(37)、第三电极(9)和金属栅线(10)上,采用电子束蒸镀的方法镀上减反射膜(4),得到电池制品;
11)采用机械切割或激光切割的方法对电池制品进行切割,形成完整独立的电池芯片。
10.根据权利要求9所述的正负电极同侧的多结砷化镓太阳电池芯片的制备方法,其特征在于:在步骤2)中,在Ge衬底(2)背面采用负性光刻胶制备光刻图形,然后蒸镀金属,蒸镀完成后经过剥离去胶工艺,即可形成第一电极(1)和第二电极(6);
在步骤3)中,采用PECVD在Ge衬底(2)背面镀制一层SiO2或Si3N4绝缘介质,然后采用光刻、湿法刻蚀与去胶技术在第一电极(1)和第二电极(6)之间形成第一绝缘介质(5);
在步骤8)中,在外延层(3)和第二绝缘介质(8)顶部采用负性光刻胶制备电极和栅线图形,并采用电子束蒸镀金属,然后通过剥离去胶技术形成互连的第三电极(9)和金属栅线(10);
在步骤9)中,利用第三电极(9)和金属栅线(10)作为掩膜,采用氨水和双氧水溶液进行选择性腐蚀的方法,将第三电极(9)和金属栅线(10)以外的N型GaInAs帽子层(38)腐蚀掉,露出N型AlInP窗口层(37);
在步骤10)中,所述减反射膜(4)是全部覆盖住N型AlInP窗口层(37)、第三电极(9)和金属栅线(10)。
CN202010528196.7A 2020-06-11 2020-06-11 正负电极同侧的多结砷化镓太阳电池芯片及其制备方法 Active CN111725331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010528196.7A CN111725331B (zh) 2020-06-11 2020-06-11 正负电极同侧的多结砷化镓太阳电池芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010528196.7A CN111725331B (zh) 2020-06-11 2020-06-11 正负电极同侧的多结砷化镓太阳电池芯片及其制备方法

Publications (2)

Publication Number Publication Date
CN111725331A true CN111725331A (zh) 2020-09-29
CN111725331B CN111725331B (zh) 2021-10-08

Family

ID=72566421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010528196.7A Active CN111725331B (zh) 2020-06-11 2020-06-11 正负电极同侧的多结砷化镓太阳电池芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN111725331B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948593A (zh) * 2021-09-23 2022-01-18 中山德华芯片技术有限公司 一种太阳能电池背金结构及其应用
CN115172501A (zh) * 2022-07-21 2022-10-11 中山德华芯片技术有限公司 一种电压匹配的空间用多结太阳电池及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575148A (ja) * 1991-09-18 1993-03-26 Sanyo Electric Co Ltd 太陽電池の製造方法
US5421908A (en) * 1992-12-28 1995-06-06 Fuji Electric Co., Ltd. Thin-film solar cell and method for the manufacture thereof
US20110011983A1 (en) * 2003-04-14 2011-01-20 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
CN104617168A (zh) * 2014-12-26 2015-05-13 天津蓝天太阳科技有限公司 一种抗辐照三结级联砷化镓太阳电池及制备方法
CN107579122A (zh) * 2016-06-30 2018-01-12 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575148A (ja) * 1991-09-18 1993-03-26 Sanyo Electric Co Ltd 太陽電池の製造方法
US5421908A (en) * 1992-12-28 1995-06-06 Fuji Electric Co., Ltd. Thin-film solar cell and method for the manufacture thereof
US20110011983A1 (en) * 2003-04-14 2011-01-20 The Boeing Company Multijunction photovoltaic cell grown on high-miscut-angle substrate
CN104617168A (zh) * 2014-12-26 2015-05-13 天津蓝天太阳科技有限公司 一种抗辐照三结级联砷化镓太阳电池及制备方法
CN107579122A (zh) * 2016-06-30 2018-01-12 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113948593A (zh) * 2021-09-23 2022-01-18 中山德华芯片技术有限公司 一种太阳能电池背金结构及其应用
CN115172501A (zh) * 2022-07-21 2022-10-11 中山德华芯片技术有限公司 一种电压匹配的空间用多结太阳电池及其制备方法和应用
CN115172501B (zh) * 2022-07-21 2023-05-30 中山德华芯片技术有限公司 一种电压匹配的空间用多结太阳电池及其制备方法和应用

Also Published As

Publication number Publication date
CN111725331B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN101882645B (zh) 具有iv族合金的反向多结太阳能电池
US8263856B2 (en) Inverted metamorphic multijunction solar cells with back contacts
US20060180198A1 (en) Solar cell, solar cell string and method of manufacturing solar cell string
CN111725331B (zh) 正负电极同侧的多结砷化镓太阳电池芯片及其制备方法
CN103975449A (zh) 太阳能电池
WO2015032241A1 (zh) 集成旁路二极管的太阳电池及其制备方法
CN101901854A (zh) 一种InGaP/GaAs/InGaAs三结薄膜太阳能电池的制备方法
CN111799344A (zh) 一种柔性砷化镓太阳能电池及其制作方法
JP2006228900A (ja) 薄膜化合物太陽電池およびその製造方法
CN216597603U (zh) 一种提升绝缘隔离效果的背接触异质结太阳能电池
CN111524984A (zh) 一种柔性砷化镓太阳能电池芯片及其制作方法
JP2021504980A (ja) フレキシブル二重接合太陽電池
CN104022176A (zh) 四结太阳能电池及其制备方法
CN108878550B (zh) 多结太阳能电池及其制备方法
CN104733556B (zh) 一种具有表面粗化结构的三结GaAs太阳电池的制备方法
CN102244151A (zh) 一种太阳能电池的制作方法
CN111048602B (zh) 一种基于内连技术的激光充电高效太阳电池及其制备方法
CN112038419B (zh) 一种兼具激光供能与太阳发电的光伏电池制作方法
CN106374001B (zh) 具有锥形背散射层的GaAs薄膜太阳电池及其制备方法
CN111726076B (zh) 基于太阳能的发电储能一体化器件及其制备方法
CN114566560B (zh) 一种砷化镓激光光伏电池及其制备方法
CN106611803B (zh) 一种太阳能电池片、其制备方法及其组成的太阳能电池组
CN204596812U (zh) 一种具有表面粗化结构的三结GaAs太阳电池
Mizuno et al. A “smart stack” triple-junction cell consisting of InGaP/GaAs and crystalline Si
CN113659019B (zh) 一种柔性太阳能电池及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant