CN111048602B - 一种基于内连技术的激光充电高效太阳电池及其制备方法 - Google Patents

一种基于内连技术的激光充电高效太阳电池及其制备方法 Download PDF

Info

Publication number
CN111048602B
CN111048602B CN201911204397.5A CN201911204397A CN111048602B CN 111048602 B CN111048602 B CN 111048602B CN 201911204397 A CN201911204397 A CN 201911204397A CN 111048602 B CN111048602 B CN 111048602B
Authority
CN
China
Prior art keywords
layer
solar cell
thickness
gaas
doping concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911204397.5A
Other languages
English (en)
Other versions
CN111048602A (zh
Inventor
石梦奇
姜德鹏
毕林杰
陈开建
贺虎
张闻
张帆
张里盛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Space Power Sources
Original Assignee
Shanghai Institute of Space Power Sources
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Space Power Sources filed Critical Shanghai Institute of Space Power Sources
Priority to CN201911204397.5A priority Critical patent/CN111048602B/zh
Publication of CN111048602A publication Critical patent/CN111048602A/zh
Application granted granted Critical
Publication of CN111048602B publication Critical patent/CN111048602B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种基于内连技术的激光充电高效太阳电池及其制备方法,本发明所提供的基于内连技术的激光充电高效太阳电池设计其制备方法包括:该激光充电高效太阳电池的半导体材料结构从下到上依次为Ge衬底,缓冲层I型GaAs层,p型GaInP选择性层2,p+++GaAs帽子层,p型GaInP选择性层1,反转隧穿结,N背场、基区、发射区、窗口层和p++GaAs帽子层。正电极、背电极、内连金线、减反射膜。该激光充电高效太阳电池是由数个子电池平面串联在砷化镓衬底上,满足激光充电电池高电压的需求。

Description

一种基于内连技术的激光充电高效太阳电池及其制备方法
技术领域
本发明属于新能源以及空间电源领域太阳电池应用的研究,特别是一种基于内连技术的激光充电高效太阳电池设计其制备方法,具体涉及各部分结构和材料等方面内容。
背景技术
光伏技术已有50多年的发展历史。从上个世纪七十年代起,在空间飞行器能源系统需求的牵引下,光伏领域不断取得重要技术突破。太阳电池是一种应用半导体的光伏效应将太阳光直接转换为电能的器件,晶体硅太阳电池、非晶硅薄膜太阳电池、Ⅲ-Ⅴ族化合物半导体太阳电池、Ⅱ-Ⅵ族化合物半导体多晶薄膜太阳电池等多种太阳电池技术日趋成熟。光电转换效率的不断提高以及制造成本的持续降低,使光伏技术在空间和地面都得到了越来越广泛的应用。
空间用砷化镓太阳电池作为航天器的主电源,其主要作用是在光照期为航天器上的负载提供电源,以及为航天器上的储能电源进行充电,以满足阴影期储能电源的放电要求,是航天器唯一的发电部件。
在航空航天领域,激光供能系统可以免受大气层和太空的强电磁、无线射频信号的干扰,光纤不导电的特性可以消除闪电等恶劣天气条件引起的爆炸危险。除了在空间太阳能电站方面的应用外,在空间飞行器、太空基地、无人机、机器人等的供能方面也有着广泛的应用,如为处于背阴面卫星供能;当月球的夜幕降临时,利用地面发射的激光给月球基地供能;为飞行器提供变换轨道的动力;对长航时无人机进行供电;对极端地区如核泄漏区工作的机器人进行激光供能,使其正常工作。
激光光伏电池是激光供能系统最核心的部件,激光光伏电池的转换效率是衡量激光光伏电池性能和影响激光供能系统能量效率的关键因素。
目前,市场上常见的光电池有硅光电池、掺锂光电池、硫化镉光电池等,但转换效率都不理想。GaAs室温下的禁带宽度Eg是1.43eV,可吸收目前市场上已有的810-830nm大功率激光并将光能转换为电能,而且内量子效率可达95%以上,是较为理想的激光光伏电池材料。
GaAs激光光伏电池的开路电压约为1V,一般不能直接应用于电子器件电路的供电电源。但实际应用中需要太阳电池的输出电压通常大于子电池的开路电压,因此有必要提供一种新的太阳电池以解决上述问题。
发明内容
本发明解决的问题是:克服现有技术的不足,提供一种基于内连技术的激光充电高效太阳电池其制备方法。
本发明技术方案是:一种基于内连技术的激光充电高效太阳电池,由多个子电池组成,每个子电池的半导体材料结构从下到上依次为锗衬底,缓冲层I型GaAs层,p型GaInP选择性层2,p+++GaAs帽子层,p型GaInP选择性层1,反转隧穿结,N背场、基区、发射区、窗口层和p++GaAs帽子层,多个子电池通过同一正负电极平面串联在砷化镓衬底上;正负电极表面蒸镀减反射膜。
优选的,所述的锗衬底厚度为140um到160u,缓冲层I型GaAs层厚度为400nm到600nm,p型GaInP选择性层2厚度为20nm到100nm,p+++GaAs帽子层厚度为200nm到500nm,p型GaInP选择性层1厚度为20nm到100nm,反转隧穿结厚度为20nm到50nm,N背场厚度为100nm到200nm、基区厚度为2500nm到3500nm、发射区厚度为80nm到130nm、窗口层厚度为20nm到50nm和p++GaAs帽子层厚度为200nm到500nm;正电极厚度为3um到5um、背电极厚度为3um到400um、减反射膜厚度为50nm到200nm。
优选的,所述锗衬底采用P型掺杂的Ge材料;所述I型GaAs层采用不掺杂的砷化镓材料。
优选的,所述p型GaInP选择性层2采用P型掺杂的砷化镓材料,其P型掺杂剂为Zn,掺杂浓度为2×1017-2×1019cm-3
优选的,所述p+++GaAs帽子层采用重P型掺杂的砷化镓材料,其P型掺杂剂为Zn,掺杂浓度为8×1017-8×1019cm-3
优选的,所述p型GaInP选择性层1采用P型掺杂的砷化镓材料,其P型掺杂剂为Zn,掺杂浓度为2×1017-2×1019cm-3
优选的,所述的反转隧穿结采用N-GaAs,掺杂浓度2×1018cm-3×2×1020cm-3;或者采用P-AlGaAs,掺杂浓度9×1018-9×1020cm-3
优选的,所述N背场采用Al0.15Ga0.85As材料,掺杂浓度为5×1016-5×1018cm-3
优选的,所述基区采用n-InGaAs材料,掺杂浓度为7×1015-7×1017cm-3
优选的,所述发射区采用p-InGaAs材料,掺杂浓度为1.5×1017-1.5×1019cm-3
优选的,所述窗口层采用p-Al0.76Ga0.24As材料,掺杂浓度为1.5×1017-1.5×1019cm-3
优选的,所述p+++GaAs帽子层采用p-GaAs镓材料,掺杂浓度为6×1017-6×1019
优选的,所述正电极采用金锗镍材料、背电极采用钛钯银材料、所述减反射膜采用SiO/TiO结构双层或多层膜结构减反射膜。
一种基于内连技术的激光充电高效太阳电池制备方法,通过下述方式实现:
步骤一、在锗衬底上,采用MOCVD生长其外延片,所述的外延片从下到上依次为锗衬底,缓冲层I型GaAs层,p型GaInP选择性层2,p+++GaAs帽子层,p型GaInP选择性层1,反转隧穿结,N背场、基区、发射区、窗口层和p++GaAs帽子层;
步骤二、在外延片全片表面涂覆光刻胶,采用光刻板曝光隔离槽图形,去除遮挡土层的光刻胶;
步骤三、刻蚀深隔离槽,刻蚀的深度至p型GaInP选择性层1;
步骤四、采用腐蚀液腐蚀隔离槽,腐蚀至p型GaInP选择性层2;
步骤五、去胶清洗,利用光刻来制作表面电极图形,制作正负金属电极并保护所述的电极;
步骤六、对电池表面进行减反射膜蒸镀,得到减反射膜。
优选的,所述步骤四中的腐蚀具体通过下述方式实现:利用腐蚀液1腐蚀p+++GaAs帽子层,腐蚀液2腐蚀p GaInP选择性层2;所述的腐蚀液1采用下述质量体积比的原料:磷酸、双氧水和水按1:1:2.1-3;腐蚀液2采用浓HCL。
本发明的优点包括:
1.可将较大面积的砷化镓太阳电池分隔成若干相互独立的子电池并进行串联得到较高的电压,多个子电池的开路电压可满足太阳电池的输出电压,从而可作为稳定的小功率电源。激光供能系统可以提供完全隔离的传感器和控制电路、武器和保险启动电路的电源和光纤信号通道,提高了控制电路、启动电路的可靠性和保密性。
2.光伏电池的下电极可直接制作在导电衬底的背面,有利于减小器件的串联电阻,最终将显著提升GaAs激光光伏电池的性能(转换效率、器件散热、最大输出功率等)。
3.具有良好机械性能衬底上生长I层绝缘层,可以使在同一衬底上的PN结进行隔离。
附图说明
图1是本发明一种基于内连技术的激光充电高效太阳电池设计及其制备方法流程示意图;
图2是本发明实施例所提出的基于内连技术的激光充电高效太阳电池的外延层结构图;
图3是本发明实施例所提出的基于内连技术的激光充电高效太阳电池的表面结构图;
图4是本发明实施例中电极厚度剖面示意图。
具体实施方式
参见示出本发明实施例的附图1-4,下文将更详细地描述本发明。然而,本发明可以以许多不同形式实现,并且不应解释为受在此提出之实施例的限制。相反,提出这些实施例是为了达成充分及完整公开,并且使本技术领域的技术人员完全了解本发明的范围。结合图1的流程图对本发明的方法步骤进行说明。
一种基于内连技术的激光充电高效太阳电池,由多个子电池组成,每个子电池的半导体材料结构从下到上依次为锗衬底,缓冲层I型GaAs层,p型GaInP选择性层2,p+++GaAs帽子层,p型GaInP选择性层1,反转隧穿结,N背场、基区、发射区、窗口层和p++GaAs帽子层,多个子电池通过同一正负电极平面串联在砷化镓衬底上,串联方式如图4所示,满足激光充电电池高电压的需求;正负电极表面蒸镀减反射膜。图3为基于内连技术的激光充电高效太阳电池的表面结构图,由12个子电池串联、开路电压为12V的激光光伏电池。
为了更好的控制激光充电高效太阳电池外延材料的精确性,本发明经过MOCVD进行外延片单层材料的浓度和厚度控制,经过大量的研究及试验确定如下激光充电高效太阳电池外延材料的厚度与沉积浓度。且通过对后道器件工艺的设计与研究,最终确认了腐蚀材料的浓度和腐蚀时间。
半导体材料结构从下到上依次为锗衬底厚度为140um到160u,缓冲层I型GaAs层厚度为400nm到600nm,p型GaInP选择性层厚度为20nm到100nm,p+++GaAs帽子层厚度为200nm到500nm,p型GaInP选择性层厚度为20nm到100nm,反转隧穿结厚度为20nm到50nm,N背场厚度为100nm到200nm、基区厚度为2500nm到3500nm;发射区厚度为80nm到130nm、窗口层厚度为20nm到50nm和p++GaAs帽子层厚度为200nm到500nm。正电极厚度为3um到5um、背电极厚度为3um到400um、减反射膜厚度为50nm到200nm。
锗衬底采用P型掺杂的Ge材料,I型GaAs层采用不掺杂的砷化镓材料,正电极采用金锗镍材料、背电极采用钛钯银材料、内连金线采用金线键合方式串联子电池。减反射膜采用SiO/TiO结构双层减反射膜。p型GaInP选择性层2采用P型掺杂的砷化镓材料,其P型掺杂剂为Zn,掺杂浓度为2×1017-2×1019cm-3;p+++GaAs帽子层采用重P型掺杂的砷化镓材料,其P型掺杂剂为Zn,掺杂浓度为8×1017-8×1019cm-3;p型GaInP选择性层1采用P型掺杂的砷化镓材料,其P型掺杂剂为Zn,掺杂浓度为2×1017-2×1019cm-3;反转隧穿结采用N-GaAs,掺杂浓度2×1018cm-3×2×1020cm-3;或者反转隧穿结采用P-AlGaAs,掺杂浓度9×1018-9×1020cm-3;N背场采用Al0.15Ga0.85As材料,掺杂浓度为5×1016-5×1018cm-3;基区采用n-InGaAs材料,掺杂浓度为7×1015-7×1017cm-3;发射区采用p-InGaAs材料,掺杂浓度为1.5×1017-1.5×1019cm-3;窗口层采用p-Al0.76Ga0.24As材料,掺杂浓度为1.5×1017-1.5×1019cm-3;帽子层采用p-GaAs镓材料,掺杂浓度为6×1017-6×1019;
如图1所示,通过下述步骤制备满足上述条件的太阳电池:
步骤一、在Ge衬底上,电池外延制作可采用MOCVD来生长其外延结构,外延片结构如图2所示,具体材料及厚度要求参见上述电池的相关描述。
步骤二、在外延片全片表面涂覆光刻胶,采用光刻板曝光隔离槽图形,去除遮挡土层的光刻胶;
步骤三、通过湿法来刻蚀深隔离槽,所需刻蚀的深度至p GaInP选择性层1,图3所示通过采用磷酸/双氧水/水和浓HCL交替腐蚀,直至腐蚀至p GaInP选择性层1下表面;所需要腐蚀的材料自上而下依次为,采用磷酸/双氧水/水腐蚀p++-GaAs帽子层、采用浓HCL腐蚀p-Al0.76Ga0.24As窗口层和p-InGaAs emitter发射区、采用磷酸/双氧水/水腐蚀n-InGaAsGaAs基区、采用浓HCL腐蚀n+-Al0.15Ga0.85As背场、采用磷酸/双氧水/水反转隧穿结N-GaAs、P-AlGaAs、采用浓HCL腐蚀p GaInP选择性层1;
步骤四、采用腐蚀液腐蚀隔离槽,腐蚀至p型GaInP选择性层2下表面。通过采用磷酸/双氧水/水和浓HCL交替腐蚀,采用磷酸/双氧水/水腐蚀帽子层2。采用浓HCL腐蚀选择层2。腐蚀液包括两种,腐蚀液1采用下述质量体积比的原料:磷酸、双氧水和水按1:1:2.1-3;腐蚀液2采用浓HCL。
该步骤是本发明重点之一,要求精确腐蚀至p+++GaAs cap下表面。腐蚀液1腐蚀至p GaInP选择性层1,腐蚀液2腐蚀至p GaInP选择性层2;若无选择层2p GaInP,将无法精确腐蚀出金属蒸镀接触层和电池与衬底绝缘层。
表1腐蚀工艺表
Figure GDA0003216163080000071
步骤五、去胶清洗,利用光刻来制作表面电极图形,并通过电子束蒸发或离子溅射等方式制作Ti/Pd/Au金属电极;
步骤六、通过去胶、剥离,通过套刻,保护正负金属电极。
步骤七、对电池表面进行减反射膜蒸镀,可以选择氧化钛/氧化铝或氧化硅/氧化钛;
步骤八、利用引线键合工艺对各个子电池进行串联,引线可选择金线或铜线。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (13)

1.一种基于内连技术的激光充电高效太阳电池制备方法,其特征在于通过下述方式实现:
步骤一、在锗衬底上,采用MOCVD生长其外延片,所述的外延片从下到上依次为锗衬底,缓冲层I型GaAs层,p型GaInP选择性层2,p+++GaAs帽子层,p型GaInP选择性层1,反转隧穿结,N背场、基区、发射区、窗口层和p++GaAs帽子层;
步骤二、在外延片全片表面涂覆光刻胶,采用光刻板曝光隔离槽图形,去除遮挡土层的光刻胶;
步骤三、刻蚀深隔离槽,刻蚀的深度至p型GaInP选择性层1;
步骤四、采用腐蚀液腐蚀隔离槽,腐蚀至p型GaInP选择性层2;
步骤五、去胶清洗,利用光刻来制作表面电极图形,制作正负金属电极并保护所述的电极;
步骤六、对电池表面进行减反射膜蒸镀,得到减反射膜;
所述步骤四中的腐蚀具体通过下述方式实现:
利用腐蚀液1腐蚀p+++GaAs帽子层,腐蚀液2腐蚀p GaInP选择性层2;所述的腐蚀液1采用下述质量体积比的原料:磷酸、双氧水和水按1:1:2.1-3;腐蚀液2采用浓HCL。
2.根据权利要求1所述的太阳电池制备方法,其特征在于:所述的锗衬底厚度为140um到160u,缓冲层I型GaAs层厚度为400nm到600nm,p型GaInP选择性层2厚度为20nm到100nm,p+++GaAs帽子层厚度为200nm到500nm,p型GaInP选择性层1厚度为20nm到100nm,反转隧穿结厚度为20nm到50nm,N背场厚度为100nm到200nm、基区厚度为2500nm到3500nm、发射区厚度为80nm到130nm、窗口层厚度为20nm到50nm和p++GaAs帽子层厚度为200nm到500nm;正电极厚度为3um到5um、背电极厚度为3um到400um、减反射膜厚度为50nm到200nm。
3.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述锗衬底采用P型掺杂的Ge材料;所述I型GaAs层采用不掺杂的砷化镓材料。
4.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述p型GaInP选择性层2采用P型掺杂的砷化镓材料,其P型掺杂剂为Zn,掺杂浓度为2×1017-2×1019cm-3
5.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述p+++GaAs帽子层采用重P型掺杂的砷化镓材料,其P型掺杂剂为Zn,掺杂浓度为8×1017-8×1019cm-3
6.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述p型GaInP选择性层1采用P型掺杂的砷化镓材料,其P型掺杂剂为Zn,掺杂浓度为2×1017-2×1019cm-3
7.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述的反转隧穿结采用N-GaAs,掺杂浓度2×1018cm-3×2×1020cm-3;或者采用P-AlGaAs,掺杂浓度9×1018-9×1020cm-3
8.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述N背场采用Al0.15Ga0.85As材料,掺杂浓度为5×1016-5×1018cm-3
9.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述基区采用n-InGaAs材料,掺杂浓度为7×1015-7×1017cm-3
10.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述发射区采用p-InGaAs材料,掺杂浓度为1.5×1017-1.5×1019cm-3
11.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述窗口层采用p-Al0.76Ga0.24As材料,掺杂浓度为1.5×1017-1.5×1019cm-3
12.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述p+++GaAs帽子层采用p-GaAs镓材料,掺杂浓度为6×1017-6×1019
13.根据权利要求1或2所述的太阳电池制备方法,其特征在于:所述正电极采用金锗镍材料、背电极采用钛钯银材料、所述减反射膜采用SiO/TiO结构双层或多层膜结构减反射膜。
CN201911204397.5A 2019-11-29 2019-11-29 一种基于内连技术的激光充电高效太阳电池及其制备方法 Active CN111048602B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911204397.5A CN111048602B (zh) 2019-11-29 2019-11-29 一种基于内连技术的激光充电高效太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911204397.5A CN111048602B (zh) 2019-11-29 2019-11-29 一种基于内连技术的激光充电高效太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN111048602A CN111048602A (zh) 2020-04-21
CN111048602B true CN111048602B (zh) 2021-11-16

Family

ID=70234064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911204397.5A Active CN111048602B (zh) 2019-11-29 2019-11-29 一种基于内连技术的激光充电高效太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN111048602B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141890B (zh) * 2021-11-22 2022-11-11 中国电子科技集团公司第十八研究所 一种三端结构具有光谱自适应的光电系统
CN115548156B (zh) * 2022-09-21 2023-06-20 江苏宜兴德融科技有限公司 薄膜型激光换能器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123923A (zh) * 2013-01-31 2013-05-29 中国科学院苏州纳米技术与纳米仿生研究所 一种激光光伏电池及其制作方法
CN103247635A (zh) * 2013-01-31 2013-08-14 中国科学院苏州纳米技术与纳米仿生研究所 Pnp结构的激光光伏电池及其制备方法
CN103268893A (zh) * 2013-01-31 2013-08-28 中国科学院苏州纳米技术与纳米仿生研究所 Npn结构的激光光伏电池及其制备方法
CN103337542A (zh) * 2013-05-24 2013-10-02 北京理工大学 一种激光-电能量转换器
CN104009046A (zh) * 2013-02-27 2014-08-27 中国科学院苏州纳米技术与纳米仿生研究所 倒装结构的激光光伏电池及其制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103123923A (zh) * 2013-01-31 2013-05-29 中国科学院苏州纳米技术与纳米仿生研究所 一种激光光伏电池及其制作方法
CN103247635A (zh) * 2013-01-31 2013-08-14 中国科学院苏州纳米技术与纳米仿生研究所 Pnp结构的激光光伏电池及其制备方法
CN103268893A (zh) * 2013-01-31 2013-08-28 中国科学院苏州纳米技术与纳米仿生研究所 Npn结构的激光光伏电池及其制备方法
CN104009046A (zh) * 2013-02-27 2014-08-27 中国科学院苏州纳米技术与纳米仿生研究所 倒装结构的激光光伏电池及其制作方法
CN103337542A (zh) * 2013-05-24 2013-10-02 北京理工大学 一种激光-电能量转换器

Also Published As

Publication number Publication date
CN111048602A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CN102184999B (zh) 基于npn结构的激光光伏电池及其制备工艺
US7863515B2 (en) Thin-film solar cell and method of manufacturing the same
US6239354B1 (en) Electrical isolation of component cells in monolithically interconnected modules
CN109273545B (zh) 一种碲化镉薄膜太阳能电池组件的制作方法
CN112038425B (zh) 一种多结叠层激光光伏电池
CN111048602B (zh) 一种基于内连技术的激光充电高效太阳电池及其制备方法
CN102651416A (zh) 三结叠层GaAs激光光伏电池及其制备方法
WO2015032241A1 (zh) 集成旁路二极管的太阳电池及其制备方法
CN102651420A (zh) 双结GaAs叠层激光光伏电池及其制备方法
CN108735848B (zh) 多结叠层激光光伏电池及其制作方法
US11812621B2 (en) Three terminal tandem solar generation unit
CN103247635B (zh) Pnp结构的激光光伏电池及其制备方法
EP4084086B1 (en) Photovoltaic cell and method for manufacturing same
CN104009046B (zh) 倒装结构的激光光伏电池及其制作方法
US20240038911A1 (en) Flip-chip solar cell
CN112038419B (zh) 一种兼具激光供能与太阳发电的光伏电池制作方法
CN114566560A (zh) 一种砷化镓激光光伏电池及其制备方法
KR20090019600A (ko) 고효율 태양전지 및 그의 제조방법
Hagar et al. A new approach for Multi junction solar cells from off the shelf individual cells: GaAs/Si
CN104576772B (zh) 激光光伏电池及其制作方法
CN104037251A (zh) 输出电压为6V的GaAs激光光伏电池及其制作方法
CN103268893B (zh) Npn结构的激光光伏电池及其制备方法
CN112909100B (zh) 一种太阳能电池及其制备方法
Xin et al. Research on Photovoltaic Cells for Laser Light on wireless energy transmission
CN104009047B (zh) 一种倒装结构的激光光伏电池及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant