CN111721877B - 一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检测方法 - Google Patents

一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检测方法 Download PDF

Info

Publication number
CN111721877B
CN111721877B CN202010607834.4A CN202010607834A CN111721877B CN 111721877 B CN111721877 B CN 111721877B CN 202010607834 A CN202010607834 A CN 202010607834A CN 111721877 B CN111721877 B CN 111721877B
Authority
CN
China
Prior art keywords
extraction
organic framework
metal organic
tea
soak solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010607834.4A
Other languages
English (en)
Other versions
CN111721877A (zh
Inventor
周佩佩
王学东
梅鹤
刘伟
李艳艳
张薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou Medical University
Original Assignee
Wenzhou Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Medical University filed Critical Wenzhou Medical University
Priority to CN202010607834.4A priority Critical patent/CN111721877B/zh
Publication of CN111721877A publication Critical patent/CN111721877A/zh
Application granted granted Critical
Publication of CN111721877B publication Critical patent/CN111721877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • G01N23/2005Preparation of powder samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/16Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using titration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • G01N2013/0208Investigating surface tension of liquids by measuring contact angle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3572Preparation of samples, e.g. salt matrices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/312Accessories, mechanical or electrical features powder preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检测方,包括注射器主体,所述注射器主体连接有过滤装置,所述过滤装置内设有金属有机骨架混合基质薄膜;所述过滤装置通过可拆卸接头结构固定在注射器主体的出液口处。本发明将MOFs制成金属有机骨架混合基质薄膜,这样既保留了MOFs的多孔性,又具有良好的稳定性和柔韧性,且可进行合成原位修饰,使得MOFs更易于处理和使用,成本较低;并通过基于MOF‑MMMs的注射器式膜微萃取结合HPLC/FLD方法实现茶浸泡液中多环芳烃的检测,避免了涡漩,超声的等辅助萃取手段,也解决了萃取后MOFs的回收问题。

Description

一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检 测方法
技术领域
本发明涉及一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检测 方法。
背景技术
近年来,一些不用或少用有机溶剂的绿色、环保前处理技术已成为分析化 学领域的主要发展方向。其中,以金属-有机骨架(MOFs)为吸附剂的固相萃取 技术在日渐走向成熟。MOFs是一类新型的多孔材料,他们通常是由无机的金属 离子和有机配体两部分通过相互杂化而形成的具有无限拓展的网状结构的多孔 晶体。由于自身结构和性质的多样性,MOFs在很多领域都得到了广泛的研究, 如催化、气体分离和存储、传感器、非线性光学药物传输和有机物的脱附等领 域,其中MOFs因官能团众多,在分析化学领域潜在应用前景广阔。
茶是仅次于水的第二大消费饮料。由于茶叶的高表面积和特殊的生产工艺, 它们可能会被空气和燃烧气体中多环芳烃(PAHs)所污染。PAHs由两个或多个 稠合芳环组成的多环芳烃,它是在食品中发现的一类众所周知的致癌物。
发明内容
本发明的目的是为了克服现有技术存在的缺点和不足,而提供一种注射器 式固体膜微萃取装置及茶浸泡液中多环芳烃的检测方法。
本发明所采取的技术方案如下:一种注射器式固体膜微萃取装置,包括注 射器主体,所述注射器主体连接有过滤装置,所述过滤装置内设有金属有机骨 架混合基质薄膜;所述过滤装置通过可拆卸接头结构固定在注射器主体的出液 口处。
所述过滤装置为可换膜滤头。
所述金属有机骨架混合基质薄膜的制备过程如下:将金属-有机骨架粉末均 匀地分散在丙酮中制得溶液A、PVDF粉末溶于二甲基乙酰胺制得溶液B,溶液 A,B以物理方式混合,除去丙酮,涂膜烘干得到金属有机骨架混合基质薄膜。
所述金属-有机骨架为UiO-66。
所述金属-有机骨架与PVDF的质量比为1-2:0.5-2。
一种茶浸泡液中多环芳烃的检测方法,包括以下步骤:
(1)通过权利要求1-5任一项所述的注射器式固体膜微萃取装置对待测的 茶浸泡液进行萃取,萃取技术后取出过滤装置内的金属有机骨架混合基质薄膜;
(2)用洗脱剂对步骤(1)萃取后得到的金属有机骨架混合基质薄膜进行 洗脱,得到洗脱液;
(3)去步骤(2)得到的洗脱液进行HPLC检测。
步骤(1)中,注射器式固体膜微萃取装置对待测的茶浸泡液进行反复萃取 6次。
步骤(1)中,将待测的茶浸泡液的PH调至4,然后进行萃取。
步骤(2)中,洗脱剂为3-4.5%酸性乙腈。
步骤(1)中,在待测的茶浸泡液加入氯化钠至氯化钠浓度为0-30%。
本发明的有益效果如下:本发明将金属-有机骨架(MOFs)制成金属有机骨 架混合基质薄膜,这样既保留了MOFs的多孔性,又具有良好的稳定性和柔韧 性,且可进行合成原位修饰,使得MOFs更易于处理和使用,成本较低;并将 金属有机骨架混合基质薄膜应用于注射器式固相膜微萃取,通过基于 MOF-MMMs的注射器式膜微萃取结合HPLC/FLD方法实现茶浸泡液中多环芳 烃(PAHs)的检测,避免了涡漩,超声的等辅助萃取手段,也解决了萃取后 MOFs的回收问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本发明的范畴。
图1为实施例1的结构示意图;
图中,1,注射器主体;2,过滤装置;3,金属有机骨架混合基质薄膜;
图2为萃取过程示意图;
图3为UiO-66(Zr)-MMM(A)和PVDF膜(B)的SEM图;
图4为UiO-66(Zr)-MMM的SEM图,A代表的是UiO-66(Zr)-MMM的SEM 图(放大倍数为20,000X),B代表A的局部放大图(放大倍数为160,000X);
图5为UiO-66(Zr)-MMM(a)和UiO-66(Zr)(b)的XRD图;
图6为PVDF膜(a),UiO-66(Zr)(b)和UiO-66(Zr)-MMM(c)的红外谱图对比;
图7为PVDF膜和Ui0-66(Zr)-MMM的接触角测定结果;
图8为随pH改变的Ui0-66(Zr)-MMM表面电荷变化;
图9为不同MOF-MMM种类的萃取效率;
图10为Ui0-66(Zr)-MMM应用SMME的萃取效率、Ui0-66(Zr)-MMM应用 VA-MME的萃取效率、PVDF膜的萃取效率的对比;
图11为不同MOF掺杂量的萃取效率;
图12为不同萃取次数的萃取效率;
图13为不同溶液pH的萃取效率;
图14为不同洗脱剂酸碱度的萃取效率;
图15为盐效应对萃取效率的影响;
图16为UiO-66(Zr)-MMM的重复利用性能。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明 作进一步地详细描述。
实施例1:
如图1所示,一种注射器式固体膜微萃取装置,包括注射器主体1,所述注 射器主体1连接有过滤装置2,所述过滤装置2内设有金属有机骨架混合基质薄 膜3;所述过滤装置2通过可拆卸接头结构固定在注射器主体1的出液口处。可 拆卸接头结构可以为Luer lock(旋锁接口)和Luer slip(滑锁接口)两种。
所述过滤装置为可换膜滤头。
所述金属有机骨架混合基质薄膜的制备过程如下:将金属-有机骨架粉末均 匀地分散在丙酮中制得溶液A、PVDF粉末溶于二甲基乙酰胺制得溶液B,溶液 A,B以物理方式混合,除去丙酮,涂膜烘干得到金属有机骨架混合基质薄膜。
实施例2:
一种茶浸泡液中多环芳烃的检测方法,包括以下步骤:
(1)通过实施例1所述的注射器式固体膜微萃取装置对待测的茶浸泡液进 行萃取,萃取技术后取出过滤装置内的金属有机骨架混合基质薄膜;
(2)用洗脱剂对步骤(1)萃取后得到的金属有机骨架混合基质薄膜进行 洗脱,得到洗脱液;
(3)去步骤(2)得到的洗脱液进行HPLC检测。
通过实验对实施例1所述的注射器式固体膜微萃取装置应用于茶浸泡液中 多环芳烃的检测进行研究分析,发现实施例1所述的注射器式固体膜微萃取装 置可以实现对茶汤中PAHs的高效分离、富集。该装置组装快速,成本低廉,操 作简单,且萃取膜可交于制膜工厂批量生产。本发明实现了固相萃取从实验室 走向野外的一次重大尝试,萃取和洗脱过程都完全摆脱了实验器材的限制,可 在野外独立完成,无需借助磁力搅拌器、涡漩仪、超声仪等实验用仪器。该装 置无疑扩展了固相膜微萃取的应用。同时,此装置可随身携带,成本低,核心 材料可重复利用。实现了高回收率、高富集倍数、低有机溶剂消耗量、操作简 便快速和低费用的固相萃取,为满足国家在水环境监测领域的需求做出贡献。 该方法具有可变性,通过合成或者修饰MOFs可萃取富集不同的污染物,能够 用于其它污染物的快速、高选择性、高灵敏检测。
具体实验过程如下:
1.实验试剂和仪器
芴(Flu),蒽(Ant),芘(Pyr),苯并[b]荧蒽(BbF)和苯并[a]芘(BaP) (纯度>98%)购自阿拉丁试剂公司(中国上海),氯化钠,氢氧化钠,盐酸和 乙醇购自国药控股化学试剂有限公司(中国北京),色谱级乙腈和甲醇购自百 灵威科技公司(中国上海)。超纯水(18.2MΩ,25℃)(Millipore Mill-Q Plus System,美国马萨诸塞州贝德福德)用于制备流动相和样品溶液。
表1实验试剂
Figure BDA0002559804250000051
HJ-6A磁力搅拌仪(金坛,中国江苏);PB-10pH计(Sartorius,德国); TDL-50C低速离心机(安亭仪器厂,中国上海);MTN-2800W氮吹仪(上 海,安谱);DZF-6090真空干燥机(紫一,中国上海);BS210S电子天平 (赛多利斯,德国);DHG-9123型电热恒温鼓风干燥箱(上海一恒科学仪器有 限公司,中国上海)。HC-3518型高速离心机(USTC Zonkia,安徽合肥)。100mL聚四氟乙烯内胆及不锈钢高温高压反应釜(上海樱洋,中国上海)。
2.测定PAHs的色谱条件和样品溶液的制备方法
使用配FLD的HPLC对PAHs进行含量测定,用Eclipse XDB-C18色谱柱 (5μm,150×4.6mm)分离PAHs。使用乙腈(A)和水(B)的二元流动相,在 1mL/min的恒定流速下进行,样品进样量为5μL。梯度程序如下:0-12.0min, 65-73%A;12.0-17.0分钟,73%-100%A,FLD的检测波长的设置:最初为 260/336nm(激发/发射波长),在8.0min时为260/390nm,在10.0min时为 270/385nm,最后在15.0min时为260/420nm。
将PAHs分别溶于50mL甲醇中,以制备100mg L-1标准溶液。通过在适当 体积的甲醇中稀释上述标准溶液来制备5mg L-1工作标准溶液,存储在4℃的 冰箱中备用。
两种绿茶和两种红茶是在当地超市所购买,茶汤的制作方法模仿了我们常 用的泡茶方法。100mL瓶装水在一个玻璃容器中煮沸,然后将1.5克的茶叶放 入容器中10分钟,等茶汤温度达到室温。茶样用0.22-μm尼龙膜滤器过滤,在 实验前,存放在冰箱中,保质期为2天。检测之前,将样品取出自然升至室温, 加入适量浓度标准品制成加标样品。
3.金属有机骨架的合成
UiO-66(Zr):将氯化锆(0.318g)和对苯二甲酸(0.204g)与40mL N,N- 二甲基甲酰胺混合,磁力搅拌10min后,然后将其放入高压釜中,在120℃下 反应24h。高压釜冷却至室温后,将产物在N,N-二甲基甲酰胺中浸泡30min, 8000rpm离心5min收集固体产物,再用超纯水和乙醇各洗涤三次,然后在60℃ 下真空干燥10h,最终获得的白色粉末。
MIL-53(Al):将3.38g的硝酸铝九水合物和1.00g的对苯二甲酸分散在44mL N,N-二甲基甲酰胺和16mL超纯水的混合溶液中,并在40℃的水浴中机械搅拌 2h。将该混合物转移至体积为100mL的高压釜中,然后在130℃的烘箱中反应 48小时。冷却后,将混合物在100mL N,N-二甲基甲酰胺中浸泡30min,8000rpm 离心5min收集固体产物,再用超纯水和乙醇各洗涤三次,然后在60℃下真空 干燥10h,最终,获得的白色粉末。
NH2-MIL-101(Fe):使用溶剂热法制备NH2-MIL-101(Fe)。在60mL DMF溶 液中加入六水合氯化铁(19.75mmol,5.338g)和对苯二甲酸(10.0mmol,1.812 g),将该混合物磁力搅拌10min,然后将其转移到100mL聚四氟乙烯内胆的 不锈钢高压釜中,并在110℃加热24h。冷却至室温后,将悬浮液移至100mL N,N-二甲基甲酰胺中,8000rpm离心5min收集棕黑色固体产物,用N,N-二甲 基甲酰胺充分洗涤除去未反应的NH2-BDC,再用超纯水,乙醇各洗涤三次,然 后在60℃下真空干燥10h,得到黑棕色固体粉末。
MIL-101(Fe):MIL-101(Fe)的合成与上述方法类似。将5.338g六水合氯 化铁(19.75mmol)和1.661mg对苯二甲酸(10mmol)溶于60mL N,N-二甲 基甲酰胺中。在室温下剧烈搅拌10min后,将混合溶液转移到聚四氟乙烯内胆 中,再转移到不锈钢高压釜中,密封反应釜,并在110℃下加热24h。冷却至 室温后,将悬浮液移至100mL N,N-二甲基甲酰胺中浸泡30min,8000rpm离心 5min收集固体产物,再用超纯水和乙醇各洗涤三次,然后在60℃下真空干燥 10h,得到橙色固体粉末。
4.金属有机骨架混合基质薄膜的制作
将140mg UiO-66(Zr)粉末分散在5mL丙酮,超声30min。然后将3.5mL PVDF溶液(100mg PVDF粉末溶于4mL DMAc中)滴加到上述混合物中,并 超声处理30min。氮气吹干丙酮,并将获得的混合物均匀地涂布在d=8cm的圆 形玻璃基板上。将该膜置于70℃鼓风干燥箱中1h,以除去溶剂。完全干燥后, 将玻璃基板浸入甲醇,金属有机骨架混合基质薄膜迅速分层脱离玻璃基板,然 后在空气中干燥,得到UiO-66(Zr)-MMM。
PVDF基膜的制作方法较简单,将3mL PVDF溶液均匀地涂布在d=8cm 的圆形玻璃基板上,烘干脱膜即可。
①MOFs和MOF-MMMs材料结构表征
SEM分析
扫描电子显微镜(SEM,Carl Zeiss SMT AG,德国)用来表征UiO-66 (Zr)-MMM的表面形貌。由图3可看出,UiO-66(Zr)呈经典的立方八面体结构, 这与之前报道的结构相吻合。对比图4A和B可知,由于UiO-66(Zr)均匀地分 布在基膜上,这使得UiO-66(Zr)-MMM的表面颗粒感要比PVDF基膜重。
XRD分析
通过X射线衍射仪(XRD,Bruker D8 Advance,德国)验证UiO-66(Zr)和 UiO-66(Zr)-MMM的晶体结构。由图5可知,在2θ=7.3°、8.4°、25.7°等位置出 现了UiO-66(Zr)的特征峰,实验室合成的UiO-66(Zr)与之前文献中指出的UiO 的衍射峰位置一致,表明本实验成功合成了UiO-66(Zr),且从图5中可以看出合 成的UiO-66(Zr)晶体结晶度高、晶型良好。对比图中的曲线可知,UiO-66(Zr)被 制成膜后,依旧保留着一定的晶体结构。
N2吸附脱附实验
UiO-66(Zr),四种MMMs和PVDF膜的比表面积和孔结构是在77K下通过 N2吸附测量的(Quadrasorb SI,美国)。基于Barrett-Joyner-Halenda(BJH)模 型,计算出它们的比表面积,孔体积和孔径,并绘制成表格。由表2可知, UiO-66(Zr)与UiO-66(Zr)-MMM相比,由于基膜的封闭作用,制膜后UiO-66 (Zr)-MMM的SBET只有UiO-66(Zr)的一半不到。UiO-66(Zr)-MMM与PVDF 膜相比,SBET大了10倍左右,萃取材料的SBET可能会影响萃取效率。
表2材料的比表面积,孔体积和孔径汇总
Figure BDA0002559804250000081
红外分析
为了检测UiO-66(Zr)-MMM的合成是否成功,傅里叶变换红外光谱仪 (FT-IR,Nicolet iN 10,美国)对比了UiO-66(Zr),UiO-66(Zr)-MMM和PVDF 膜三种材料的官能团。如图6所示,UiO-66(Zr)-MMM(c线)有1568、1020、 742、665和1180cm-1等特征吸收峰,1568cm-1归属于O-C-O的不对称伸缩振 动、1020cm-1羧酸中C-O键的伸缩振动、742和665cm-1两处的吸收峰与Zr-O 键有关,而1180cm-1C-F键的对称伸缩振动。前三个吸收峰是UiO-66(Zr)所特 有的,是UiO-66(Zr)存在的证据。最后一个吸收峰则是证明UiO-66(Zr)-MMM 中存在PVDF的重要证据。b线和c线在3350cm-1处有一个宽的吸收峰,一般 是归属于羟基的拉伸振动,在这是UiO中Zr6O4(OH)4的羟基基团造成的。综上 所述,UiO-66(Zr)-MMM已经成功合成。
接触角的测定
通过测定膜表面水接触角的大小可定性的分析膜的亲疏水性。若θ<90°,则 固体表面是亲水性的,即液体较易润湿固体,其角越小,表示润湿性越好;若 θ>90°,则固体表面是疏水性的,即液体不容易润湿固体,容易在表面上移动。 如图3-8所示,从膜表面水接触角的变化情况可以看出,Ui0-66(Zr)的加入降低 了膜的水接触角。PVDF膜表面的接触角约为120°,而Ui0-66(Zr)-MMM的接 触角降低至82°。这归因于Ui0-66中含有大量羟基基团,羟基与水分子间相互 作用,改善了膜的亲水性。
膜电位分析
采用酸碱滴定法测定了材料的等电点:将0.1g膜放入100mL无CO2水溶 液,向混合物中加入浓度为0.1M HNO3或NaOH,并记录。每次加入酸或碱后, 等待20分钟左右,以稳定溶液的pH值,然后记录混合物的pH值。通过电位 滴定实验确定膜的表面电荷σ,计算方式如下:
Figure BDA0002559804250000091
公式1中CA和CB分别是达到一定的pH值时添加的酸和碱(M)的浓度, [H+]和[OH-]分别是H+和OH-的浓度(M),F为法拉第常数(96,490C/mol), m为膜剂量(g/L)。结果如图8所示,UiO膜的等电点大概在4左右。
5.SMME萃取过程
将膜打孔裁剪,得到d=25mm的圆片,装入可换滤膜的滤头中,然后将滤 头连接到带luer-lock(旋锁接口)尖端的注射器上。在下一步中,将样品溶液(10 mL,pH=4)装入注射器,并使其以一定的流速通过装有UiO-66(Zr)-MMM的 滤头。反复六次以后,用1mL含3%盐酸的乙腈进行洗脱,洗脱过程也是反复 六次。最后,取洗脱液5μL注入HPLC系统进行检测。图2给出了MOF-MMMs 的制作过程和SMME的萃取示意图。
6.影响因素的优化
①MOF-MMMs的筛选
四种合成方法成熟的MOF晶体作为候选者:UiO-66(Zr),MIL-53(Al)以及 本实验室自行合成的MIL-101和NH2-MIL-101。由图9可知,UiO-66(Zr)-MMM 的萃取效率最高,MIL-53(Al)-MMM次之,MIL-101-MMM第三,NH2-MIL-101 最差。一般来说,材料的高比表面积和大孔径可以大大提高其吸附效率,这是 因为,高比表面积和较大孔容积大大缩短了离子扩散长度,并为有机化合物的 吸附提供了更多的活性位点,这可能会大大增强材料与带分析物之间的相互作 用。结合之前的BET表面积的分析,推测UiO-66(Zr)-MMM获得最高的萃取效率与它拥有最高的BET比表面积和最大的孔容积有关。
为了探究PVDF基膜在萃取过程中做的贡献大小并且对比注射器式膜微萃 取和涡漩辅助膜微萃取(VA-MME)的萃取效果,我们将d=25mm的圆片PVDF 膜和Ui0-66(Zr)-MMM放入样品溶液中涡漩10min后,洗脱,进样分析。萃取 效果如图10所示,PVDF膜的萃取效率低于所有的MOF-MMM,由此可见, MOF的掺杂提高了膜的萃取效率。同时,注射器式膜微萃取比涡漩微萃取的萃 取效果好,我们推测这是由于膜与PAHs的接触的有效面积变小导致的。在萃取 过程中,我们观察到在涡漩时,膜会因向心力的作用紧贴在试管壁上,膜不能 充分与待测物接触,导致萃取效果不好。综上所述,本实验的最优吸附材料为 Ui0-66(Zr)-MMM。
②MOFs的用量优化
同时,我们还研究了膜中MOFs质量对萃取效率的影响。在保持其他参数 不变的情况下,MOFs的质量在80-160mg的范围内进行了优化。当所使用的 MOFs的质量从80mg增加到120mg时,萃取效率提高,这可能是由于MOFs 上的吸附位点对PAHs的吸收具有较高的利用率(图11)。但是,当所使用的 MOFs的质量增加到140mg以上时,这种趋势几乎趋于平稳,没有观察到明显 的增加。同时,由于MOFs的掺杂量过高,膜的机械强度下降,萃取时破损率增加。因此,在随后的研究中,选择120mg MOFs作为最佳的掺杂量。
③过滤次数的影响
加压过滤是一种简单易行的分散方法,可促进吸附剂在短时间内极大程度 地与待分析物接触,这可能会提高萃取效率。SMME是基于分析物从样品基质 向吸附剂传质平衡的过程。由于传质过程是时间依赖性的,因此,优化了过滤 次数。由图12可知,当过滤次数为六次时,PAHs的萃取效果最好。随着过滤 次数的,PAHs的提取效率逐渐平稳,不再增加。因此,选择六次过滤次数用于 进一步的实验。
④溶液pH的影响
PAHs在正常条件下以中性分子形式存在于溶液中,调节溶液的pH可影响 UiO-吸附剂表面的电荷种类和密度,从而影响萃取效率。多环芳烃可以被吸附 剂表面的范德华、弱分子间和疏水相互作用力所保留。从图13可以看出,当pH 值为4时,萃取效率最高。因此,在后续的实验中,将样品溶液pH调至4以获 得最佳的萃取效果。
⑤洗脱剂酸碱度的影响
为了探究pH是否对解吸过程也有影响,我们对洗脱剂酸碱度进行了调查。 用1molL-1的盐酸和氢氧化钠来配制1.5%,3%和4.5%酸性乙腈和1.5%,3% (V/V)碱性乙腈,并用于洗脱过程。萃取效率如图14所示,3%酸性乙腈获得 最高的萃取效率。这可能与Ui0-66(Zr)-MMM和PAHs之间相互作用力减弱 有关。因此,将3%酸性乙腈作为最终的洗脱剂。
⑥盐效应
盐效应对萃取效率有着一定的影响。通常,添加盐会降低分析物在水相中 的溶解度,并基于盐析作用可有效提高萃取效率。另一方面,盐的存在会增加 溶液的粘度,使得分析物分子向吸附材料的迁移受阻,导致萃取效率的降低。 因此,研究了0、10、20和30%(w/v)的NaCl浓度对萃取效率的影响。如图 15所示,当NaCl浓度为10%时,萃取效率比不加NaCl时略增,然后随着盐浓 度的增加而降低。这可能是因为溶液粘度增加影响了萃取效率。
7.膜重复使用次数测试
将UiO-66(Zr)-MMM放入超纯水中浸泡过夜,据肉眼观察,其表面形貌没 有改变,水中也未观察到固体残渣,说明UiO-66(Zr)-MMM的膜结构较为稳定。 虽然该萃取装置里的萃取膜设计为一次性使用,但是我们还是对它进行了重复 使用性能的测试。用镊子取出萃取后的UiO-66(Zr)-MMM,分别取一定量的乙 腈和超纯水对进行漂洗。将膜放回滤头,在最优实验条件下,重复SMME的萃 取过程,并测定PAHs的回收效果,结果如图3-16所示,在四次循环使用后, 回收率仅下降了约0.4%,说明UiO-66(Zr)-MMM可重复利用。但是,第四次萃取时,膜开始出现破裂的现象,可能是由于旋开滤头时,膜与封闭圈之间的相 互摩擦导致的。
SMME方法分析性能通过一系列指标进行评估,例如标准曲线方程的相关性 系数(R2),线性范围(LRs),检测限(LOD),定量限(LOQ),以及日内和 日间精密度(RSD)。如表3-3所示,R2值在0.9982-0.9993之间,五种PAHs 的LRs为0.5-25μg L-1,在本研究中分析的肉样品基质中,在信噪比S/N=3时, LOD范围为0.02-0.08μg L-1,LOQ范围为0.07-0.27μg L-1。检测了低、中 和高三个浓度水平(低=2μg L-1,中=5μg L-1和高=10μg L-1)的日内和日间RSD 来评估实验精度。测日内回收率时同一批样品每隔2h检测一次,连续检测6 次;测定日间回收率时同一样品每天上午8:00进样检测,连续测试6天,获得 日内和日间RSD数据。日内和日间精度(以RSD表示)分别为1.2至8.4%和 0.3至6.7%。这些数据表明SMME方法具有高R2值,宽LRs和高精密度,所以 SMME/HPLC-FLD方法适用范围较广,稳定性好,有很良好的重现性和可重复性。
表3 SMME方法的分析性能
Figure BDA0002559804250000121
为了了解和评价基质效应和萃取性能,我们将优化好的SMME方法用于实际 茶汤样品的检测,然后用相对回收率(Relative recovery,RR)来评价实际检 测效果。
在最优的条件下,新开发的SMME/HPLC-FLD方法用于测定茶汤样品中的PAHs,包括绿茶1、2,红茶1、2四种样品。在多个茶汤样品中检测到的五个 PAHs范围为0.16-1.62μg L-1(表4)。同时,分别在加标浓度为2、5和10μg L-1的四种茶汤样品(绿茶1、2,红茶1、2)中测定了相对回收率。所有检测的 多环芳烃的相对回收率在91.8-102%之间。这些数据都表明我们建立的SMME /HPLC-FLD处理检测方法是高效、精确、灵敏的。
表4四种茶汤中PAHs的分析结果
Figure BDA0002559804250000131
8.与其他检测方法的对比
表5提供了SMME萃取方法与其他用于确定茶汤中PAHs的微萃取方法的性 能对比,本方法的检测,RSDs和萃取时间与已发表的文献都有可比性。如,SMME 方法的检测限(0.02-0.08μg L-1)比Agr-Ch-C18-μSPE/HPLC-UV法的检出限 低了20倍(0.67μg kg-1);SMME方法的精密度(<10.7%)比HPLC-FLD/UV-VIS 法(<118.7%)低了不少。与其他萃取方法相比,SMME方法具有多个优势。(1): 制膜后,固定了MOF晶体材料,减少吸附剂的损失,提高了萃取效果。MOFs以 膜的形式参与萃取,自然而然地解决了MOFs的萃取后回收问题,同时也扩展了 非磁性固体材料的应用。(2):MOFs和聚合物大分子可根据具体要求来替换,能够实现不同污染物的高选择性吸附,体现了该方法可变性。同时,MOF-MMM合 成方法具有制膜简单、性质稳定、自定义形状、可合成后修饰等优点,这是普 通传统填料所不能及的。(3)该方法的萃取装置简单,可摆脱实验仪器的限制 (涡漩仪,超声仪),将MOF-MMM的应用扩展到野外现场快速富集。(4):该 装置成本低廉,携带方便,获得途径广泛,规格多样,操作简单。(5):MOF-MMM 因其能自由剪裁,也可发展成自动化的核心部件参与萃取过程。MOF-MMM可与自 动化结合,大大节省人力和时间,也减少人为因素造成的误差,从而提高结果的可靠性。
表5 SMME/HPLC-FLD方法与其他检测方法的比较
Figure BDA0002559804250000141
综上所述,金属有机骨架混合基质薄膜是一种新型的混合材料,结合了 MOFs的功能性和聚合大分子的强可塑性,是还未充分开发的新型材料。本工作 旨在开发新型金属有机骨架混合基质薄膜在萃取富集方面的应用,首次提出以 非磁化金属有机骨架混合基质薄膜代替传统固相萃取小柱填料;以一次性针筒 作为简易的注射器式膜微萃取装置实现对茶汤中PAHs的高效分离、富集。该装 置组装快速,成本低廉,操作简单,且萃取膜可交于制膜工厂批量生产。同时, 本项目也是固相萃取从实验室走向野外的一次重大尝试,实验中,萃取和洗脱 过程都完全摆脱了实验器材的限制,可在野外独立完成,无需借助磁力搅拌器、 涡漩仪、超声仪等实验用仪器。该装置无疑扩展了固相膜微萃取的应用。同时, 此装置可随身携带,成本低,核心材料可重复利用。实现了高回收率、高富集 倍数、低有机溶剂消耗量、操作简便快速和低费用的固相萃取,为满足国家在 水环境监测领域的需求做出贡献。该方法具有可变性,通过合成或者修饰MOFs 可萃取富集不同的污染物,能够用于其它污染物的快速、高选择性、高灵敏检 测。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (2)

1.一种茶浸泡液中多环芳烃的检测方法,其特征在于包括以下步骤:
(1)通过注射器式固体膜微萃取装置对待测的茶浸泡液进行萃取,萃取技术后取出过滤装置内的金属有机骨架混合基质薄膜;
(2)用洗脱剂对步骤(1)萃取后得到的金属有机骨架混合基质薄膜进行洗脱,得到洗脱液;
(3)取 步骤(2)得到的洗脱液进行HPLC检测;
所述注射器式固体膜微萃取装置,包括注射器主体,所述注射器主体连接有过滤装置,所述过滤装置内设有金属有机骨架混合基质薄膜;所述过滤装置通过可拆卸接头结构固定在注射器主体的出液口处;
所述金属有机骨架为UiO-66;
所述金属有机骨架混合基质薄膜的制备过程如下:将120 mg金属有机骨架粉末均匀地分散在丙酮中制得溶液A、PVDF粉末溶于二甲基乙酰胺制得溶液B,溶液A,B以物理方式混合,除去丙酮,并将获得的混合物均匀地涂布在d= 8 cm的圆形玻璃基板上,烘干得到金属有机骨架混合基质薄膜;
步骤(1)中,将待测的茶浸泡液的PH调至4,然后进行萃取;
步骤(2)中,洗脱剂为3%的酸性乙腈;
步骤(1)中,在待测的茶浸泡液加入氯化钠至氯化钠浓度为10%;
所述多环芳烃为芴、蒽、芘、苯并[b]荧蒽和苯并[a]芘;
步骤(3)中,HPLC检测采用Eclipse XDB-C18色谱柱,使用乙腈和水的二元流动相,梯度程序如下:0-12.0 min,65-73%乙腈; 12.0-17.0分钟,73%-100%乙腈。
2.根据权利要求1所述的茶浸泡液中多环芳烃的检测方法,其特征在于:步骤(1)中,注射器式固体膜微萃取装置对待测的茶浸泡液进行反复萃取6次。
CN202010607834.4A 2020-06-29 2020-06-29 一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检测方法 Active CN111721877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010607834.4A CN111721877B (zh) 2020-06-29 2020-06-29 一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010607834.4A CN111721877B (zh) 2020-06-29 2020-06-29 一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检测方法

Publications (2)

Publication Number Publication Date
CN111721877A CN111721877A (zh) 2020-09-29
CN111721877B true CN111721877B (zh) 2021-09-14

Family

ID=72570274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010607834.4A Active CN111721877B (zh) 2020-06-29 2020-06-29 一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检测方法

Country Status (1)

Country Link
CN (1) CN111721877B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4301497A1 (en) * 2021-03-03 2024-01-10 Battelle Memorial Institute Mixed matrix membrane with pvdf and mof for co2 capture and preparation thereof
CN113083252A (zh) * 2021-04-07 2021-07-09 佛山市南海区苏科大环境研究院 一种有机金属骨架材料混合基质膜及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7637983B1 (en) * 2006-06-30 2009-12-29 Uop Llc Metal organic framework—polymer mixed matrix membranes
CN104043397A (zh) * 2014-03-31 2014-09-17 中国石油大学(华东) Mil-53针管式固相微萃取探头及制备方法
CA2929293C (en) * 2015-05-27 2023-01-24 Commonwealth Scientific And Industrial Research Organisation Production of metal-organic frameworks
CN208860639U (zh) * 2018-09-19 2019-05-14 中节能中咨环境投资管理有限公司 一种水样富集采样设备
CN109580318A (zh) * 2018-12-11 2019-04-05 江南大学 一种分散式固相萃取处理食用油样品检测苯并[a]芘的方法
CN109603762A (zh) * 2018-12-27 2019-04-12 南京大学 一种基于金属有机骨架材料的吸附膜、制备方法及应用
CN110170309B (zh) * 2019-07-01 2021-06-22 南京大学 一种二维金属有机骨架复合膜材料、制备方法及应用
CN110841612A (zh) * 2019-11-26 2020-02-28 温州医科大学 一种磁性NH2-MOFs纳米材料的制备及其应用
CN110850018B (zh) * 2019-11-28 2021-05-28 青岛理工大学 一种环境水样中四种磺胺类抗生素的分析检测方法
CN111017891A (zh) * 2019-12-31 2020-04-17 福州大学 一种UiO-66/HOCN材料的合成方法及其在茶叶残留农药检测中的应用

Also Published As

Publication number Publication date
CN111721877A (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
Lan et al. Thin metal organic frameworks coatings by cathodic electrodeposition for solid-phase microextraction and analysis of trace exogenous estrogens in milk
Xiao et al. Preparation of molecularly imprinted polymers on the surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneous extraction of four fluoroquinolones in egg samples
Zhai et al. Selective solid-phase extraction of trace cadmium (II) with an ionic imprinted polymer prepared from a dual-ligand monomer
CN111721877B (zh) 一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检测方法
Es-haghi et al. Preparation, characterization, and applications of a novel solid-phase microextraction fiber by sol-gel technology on the surface of stainless steel wire for determination of poly cyclic aromatic hydrocarbons in aquatic environmental samples
Yang et al. Evaluation of metal‐organic framework 5 as a new SPE material for the determination of polycyclic aromatic hydrocarbons in environmental waters
Huang et al. Ionic liquid-coated Fe 3 O 4/APTES/graphene oxide nanocomposites: Synthesis, characterization and evaluation in protein extraction processes
Zhang et al. A simple and fast Fe 3 O 4 magnetic nanoparticles-based dispersion solid phase extraction of Sudan dyes from food and water samples coupled with high-performance liquid chromatography
Madrakian et al. Spectrofluorometric determination of venlafaxine in biological samples after selective extraction on the superparamagnetic surface molecularly imprinted nanoparticles
Zang et al. Metal organic framework MIL-101 coated fiber for headspace solid phase microextraction of volatile aromatic compounds
Zhou et al. Development of a syringe membrane-based microextraction method based on metal–organic framework mixed-matrix membranes for preconcentration/extraction of polycyclic aromatic hydrocarbons in tea infusion
Huang et al. Determination of sialic acid in serum samples by dispersive solid-phase extraction based on boronate-affinity magnetic hollow molecularly imprinted polymer sorbent
Li et al. Synthesis of hypercrosslinked polymers for efficient solid-phase microextraction of polycyclic aromatic hydrocarbons and their derivatives followed by gas chromatography-mass spectrometry determination
Yuan et al. Flower‐like layered double hydroxide‐modified stainless‐steel fibers for online in‐tube solid‐phase microextraction of Sudan dyes
CN103418355A (zh) 一种溶胶-凝胶分子印迹固相微萃取头及其制备方法
CN104237184B (zh) 一种ZnO纳米棒分子印迹荧光传感器的制备方法
CN107661752B (zh) 一种氧化石墨烯/普鲁士蓝纳米颗粒复合材料固相微萃取探针及其制备方法和应用
CN114324639B (zh) 一种混合模式弱阳离子固相萃取材料及其制备方法与应用
Lu et al. Magnetic solid-phase extraction using polydopamine-coated magnetic multiwalled carbon nanotube composites coupled with high performance liquid chromatography for the determination of chlorophenols
Lian et al. Electrodeposition of zeolitic imidazolate framework coating on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples
CN105572268B (zh) 一种水样品中痕量苯系物的固相微萃取测定方法
Huang et al. One-pot preparation of magnetic molecularly imprinted adsorbent with dual template molecules for simultaneously specific capture of sulfonamides and quinolones in water and milk samples
CN108283918B (zh) 磁性微球及其发毛检测应用
Chen et al. Ethylenediamine-functionalized superparamagnetic carbon nanotubes for magnetic molecularly imprinted polymer matrix solid-phase dispersion extraction of 12 fluoroquinolones in river water
Wang et al. Synthesis of ractopamine molecularly imprinted membrane and its application in the rapid determination of three β‐agonists in porcine urine samples

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant