CN108283918B - 磁性微球及其发毛检测应用 - Google Patents

磁性微球及其发毛检测应用 Download PDF

Info

Publication number
CN108283918B
CN108283918B CN201810148565.2A CN201810148565A CN108283918B CN 108283918 B CN108283918 B CN 108283918B CN 201810148565 A CN201810148565 A CN 201810148565A CN 108283918 B CN108283918 B CN 108283918B
Authority
CN
China
Prior art keywords
polyethylene glycol
hair
magnetic
added
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810148565.2A
Other languages
English (en)
Other versions
CN108283918A (zh
Inventor
杨飞宇
倪春芳
汪蓉
梁晨
张玉荣
张成功
邹芸
袁晓亮
曹芳琦
刘文斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI CRIMINAL SCIENCE TECHNOLOGY RESEARCH INSTITUTE
Original Assignee
SHANGHAI CRIMINAL SCIENCE TECHNOLOGY RESEARCH INSTITUTE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI CRIMINAL SCIENCE TECHNOLOGY RESEARCH INSTITUTE filed Critical SHANGHAI CRIMINAL SCIENCE TECHNOLOGY RESEARCH INSTITUTE
Priority to CN201810148565.2A priority Critical patent/CN108283918B/zh
Publication of CN108283918A publication Critical patent/CN108283918A/zh
Application granted granted Critical
Publication of CN108283918B publication Critical patent/CN108283918B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Cosmetics (AREA)

Abstract

一种磁性微球及其发毛检测应用,通过将清洗后的待测毛发研磨后,加入磁性微球后混匀并经过磁性分离后干燥处理,然后加入洗脱液并混匀后经过二次磁性分离处理,最后取上清液进行液相色谱质谱联检测西泮类药物的含量。本发明利用磁性固相萃取技术作为前处理技术,减少了人为因素的影响,对毛发的中西泮类药物的提取步骤进行改进,有机溶剂消耗少,对环境更为友好,且灵敏度高。

Description

磁性微球及其发毛检测应用
技术领域
本发明涉及的是一种化学检测领域的技术,具体是一种基于利用磁性固相萃取技术从发毛中西泮类药物的检测方法。
背景技术
毛发中的西泮类药物主要位于毛发的角质层和髓质层内,和蛋白质结合在一起,因此在检测毛发中的西泮类药物之前需要对毛发样品进行前处理。将毛西泮类药物从毛发中释放出来,同时也要消除毛发外的油脂、汗液和其他的干扰物质。对前处理技术方法的选择需要考虑到分析物的种类及其代谢物在处理的时候是否会被破坏,后续所采用的定性定量方法,是否可以达到分析的目的等。现对毛发样本的前处理一般涉及将检测对象与各类溶剂相接触,容易导致检测对象在前处理过程中遭到破坏。
发明内容
本发明针对现有检测方法步骤繁琐耗时,试剂消耗量大,受操作人员影响大,或者可靠性不佳的缺陷,提出一种磁性微球及其发毛检测应用,通过改进共沉淀合成四氧化三铁胶体,并通过苯乙烯分散聚合制备磁性苯乙烯微球,最后经过二乙烯基苯和N-乙烯基-ε-己内酰胺共同修饰;本发明利用磁性固相萃取技术作为前处理技术,减少了人为因素的影响,对毛发的中西泮类药物的提取步骤进行改进,通量高,有机溶剂消耗少,对环境更为友好,且灵敏度高。
本发明是通过以下技术方案实现的:
本发明涉及一种磁性微球的制备方法,通过向含有亚铁离子和铁离子的混合液中加入作为稳定剂的聚乙二醇和作为分散剂的聚(4-苯乙烯磺酸-共聚-马来酸)钠盐(PSSMA)并在氮气环境下充分反应后,进一步加入氨水溶液并加热反应至得到黑色沉淀;通过将黑色沉淀清洗并分散于去离子水中得到四氧化三铁胶体分散液,再向胶体分散液中依次加入聚乙二醇、苯乙烯、过氧化苯甲酰和乙醇后在氮气环境下加热反应,最后缓慢滴加含有二乙烯基苯和N-乙烯基-ε-己内酰胺的乙醇溶液进行修饰,反应完成后清洗并磁性分离后得到磁性微球。
所述的亚铁离子和铁离子的混合液采用但不限于氯化亚铁四水合物、氯化铁六水合物分散至去氧离子水及乙二醇的混合液中得到。
所述的聚(4-苯乙烯磺酸-共聚-马来酸)钠盐中,4-苯乙烯磺酸:马来酸的摩尔比率为1:1。
所述的加热反应,优选为加热至70~90℃下反应1~5小时。
所述的聚乙二醇采用但不限于聚乙二醇200、聚乙二醇300、聚乙二醇800、聚乙二醇1000、聚乙二醇1500、聚乙二醇2000、聚乙二醇3000、聚乙二醇4000、聚乙二醇6000、聚乙二醇8000。优选为聚乙二醇300~2000。
所述的稳定剂和分散剂的质量比为10:1。
所述的二乙烯基苯与N-乙烯基-ε-己内酰胺的质量比为1:1~2,优选为1:2。
本发明涉及一种基于上述方法制备得到的磁性微球的应用,将其用于检测发毛中的西泮类药物,具体为:将清洗后的待测毛发研磨后,加入磁性微球后混匀并经过磁性分离后干燥处理,然后加入洗脱液并混匀后经过二次磁性分离处理,最后取上清液进行液相色谱质谱联检测西泮类药物的含量。
技术效果
与现有技术相比,本发明通过化学反应制备苯基和ε-己内酰胺基共修饰的磁性微球,利用磁性固相萃取选择性分离毛发中西泮类药物,并开发了定量检测毛发中西泮类药物的检测方法。改方法具有前处理耗时少、有机溶剂消耗少、高通量处理的优势。
附图说明
图1是实施例4制备的1.1μm功能化磁性微球的扫描电镜图;
图2是实施例5制备的2.7μm功能化磁性微球的扫描电镜图。
具体实施方式
实施例1
本实施例具体包括以下步骤:将1.5g氯化亚铁四水合物、3g氯化铁六水合物分散至200mL去氧离子水及20mL乙二醇的混合液中加入2g聚乙二醇300在氮气气氛下机械搅拌30分钟,再加入0.2g聚(4-苯乙烯磺酸-共聚-马来酸)钠盐(4-苯乙烯磺酸:马来酸(摩尔比率1:1)),继续机械搅拌反应30分钟,加入30mL浓氨水溶液,并将此混合溶液升温至80℃下继续反应1小时。所得黑色沉淀用去离子清洗5次,乙醇清洗两次,最后将其分散在去离子水中,配制成100mg/mL的胶体分散液,制备得12nm的聚乙二醇300及PSSMA共稳定的四氧化三铁胶体粒子。
实施例2
本实施例具体包括以下步骤:将2g氯化亚铁四水合物、3.5g氯化铁六水合物分散至200mL去氧离子水及20mL乙二醇的混合液中加入3g聚乙二醇800在氮气气氛下机械搅拌30分钟,再加入0.3g聚(4-苯乙烯磺酸-共聚-马来酸)钠盐(4-苯乙烯磺酸:马来酸(摩尔比率1:1)),继续机械搅拌反应30分钟,加入30mL浓氨水溶液,并将此混合溶液升温至80℃下继续反应1小时。所得黑色沉淀用去离子清洗5次,乙醇清洗两次,最后将其分散在去离子水中,配制成100mg/mL的胶体分散液,制备得9nm的聚乙二醇800及PSSMA共稳定的四氧化三铁胶体粒子。
实施例3
本实施例具体包括以下步骤:将2g氯化亚铁四水合物、4.5g氯化铁六水合物分散至200mL去氧离子水及20mL乙二醇的混合液中加入4.5g聚乙二醇200在氮气气氛下机械搅拌30分钟,再加入0.4g聚(4-苯乙烯磺酸-共聚-马来酸)钠盐(4-苯乙烯磺酸:马来酸(摩尔比率1:1)),继续机械搅拌反应30分钟,加入30mL浓氨水溶液,并将此混合溶液升温至80℃下继续反应1小时。所得黑色沉淀用去离子清洗5次,乙醇清洗两次,最后将其分散在去离子水中,配制成100mg/mL的胶体分散液,制备得7nm的聚乙二醇2000及PSSMA共稳定的四氧化三铁胶体粒子。
实施例4
本实施例具体包括以下步骤:取实施例2制备的9nm的聚乙二醇800稳定的四氧化三铁胶体粒子(100mg/mL)20mL、3g聚乙二醇300、16g苯乙烯、1g过氧化苯甲酰和200mL乙醇中机械搅拌30分钟,开始通入氮气,升温至70℃,反应5小时,然后将2g二乙烯基苯和4g N-乙烯基-ε-己内酰胺分散至20mL乙醇并以1滴/5秒的速度滴加至上述混合液中,滴加完毕后升温至80℃,继续反应12小时,反应完成后用去离子水和乙醇反复清洗,磁性分离后在60℃烘干备用,制备得1.1μm功能化磁性微球,扫描电镜见图1。
实施例5
本实施例具体包括以下步骤:取实施例2制备的9nm的聚乙二醇800稳定的四氧化三铁胶体粒子(100mg/mL)250mL、3g聚乙二醇300、30g苯乙烯、1.6g过氧化苯甲酰和200mL乙醇中机械搅拌30分钟,开始通入氮气,升温至70℃,反应5小时,然后将3g二乙烯基苯和5gN-乙烯基-ε-己内酰胺分散至20mL乙醇并以1滴/5秒的速度滴加至上述混合液中,滴加完毕后升温至80℃,继续反应12小时,反应完成后用去离子水和乙醇反复清洗,磁性分离后在60℃烘干备用,制备得2.7μm功能化磁性微球,扫描电镜见图2。
实施例6
本实施例具体包括以下步骤:取1mg的毛发清洗并研磨,然后加入3mg实施例4制备的功能化磁微球,将离心管在涡旋混合仪上混匀5分钟,用磁力架进行磁性分离,磁珠和离心管放入60℃的鼓风干燥箱中烘干5分钟,随后加入200μL的洗脱液,将离心管在涡旋混合仪上混匀2分钟,用磁力架进行磁性分离,移取上清液转移至进样瓶,并通过液相色谱质谱联用进行检测。
所述的清洗是指:通过水-丙酮混合液(20%水,80%乙醇)超声清洗1分钟,将洗干净的毛发置于2mL的离心管中
所述的研磨,采用但不限于不锈钢研磨子弹,加入磷酸钠水溶液和NaOH溶液后垂直振摇5分钟(1000次/分钟),离心后用镊子取出研磨子弹。
所述的液相色谱质谱联用中的色谱参数设置为:色谱柱:Xterra MS C182.1x150mm,3.5μm(Waters公司);流动相A:含5mmol/L甲酸铵,20mmol/L氯化铵和0.02%甲酸的去离子水;流动相B含5mmol/L甲酸铵,20mmol/L氯化铵,0.02%甲酸的乙腈和去离子水的混合液(乙腈96%,水4%);按表1梯度进行流动;柱温:45℃,流速0.2mL/min;进样量:5μL。
所述的液相色谱质谱联用的质谱参数设置为:
检测方式:MRM;扫描方式:正离子同时扫描;电喷雾电压:3200V;离子源稳定115℃;碰撞气:氦气。MRM参数为每个药物选择母离子和子离子对,结合保留时间定性,峰度强的离子定量,详细的参数见表2。
优选地,上述步骤中的洗脱液为丙酮、乙腈、乙酸乙酯、苯、甲苯、正己烷等,更为优选地,洗脱液为乙腈。
表1流动相的梯度
Figure BDA0001579396580000041
表2西泮类药物的质谱MRM参数
Figure BDA0001579396580000042
Figure BDA0001579396580000051
以峰强度较低的子离子峰强度信噪比(S/N)=10时确定为最低定量检测限,各西泮类药物的检测限参见表3。分别取不同量的西泮类药物标准混合液,空白毛发中配成高和低2个浓度的样品进行各浓度日内重复测定5次得日内精密度,连续测定3天得日间精密度,结果见表4。
表3毛发样本中西泮类药物的检出限和线性关系
Figure BDA0001579396580000052
表4毛发样本中西泮类药物日内及日间精密度
Figure BDA0001579396580000061
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (9)

1.一种磁性微球的制备方法,其特征在于,通过向含有亚铁离子和铁离子的混合液中加入作为稳定剂的聚乙二醇和作为分散剂的聚(4-苯乙烯磺酸-共聚-马来酸)钠盐并在氮气环境下充分反应后,进一步加入氨水溶液并加热反应至得到黑色沉淀;然后将黑色沉淀清洗并分散于去离子水中得到四氧化三铁胶体分散液,再向胶体分散液中依次加入聚乙二醇、苯乙烯、过氧化苯甲酰和乙醇后在氮气环境下加热反应,最后缓慢滴加含有二乙烯基苯和N-乙烯基-ε-己内酰胺的乙醇溶液进行修饰,反应完成后清洗并磁性分离后得到磁性微球。
2.根据权利要求1所述的方法,其特征是,所述的亚铁离子和铁离子的混合液采用氯化亚铁四水合物、氯化铁六水合物分散至去氧离子水及乙二醇的混合液中得到。
3.根据权利要求1所述的方法,其特征是,所述的聚(4-苯乙烯磺酸-共聚-马来酸)钠盐中,4-苯乙烯磺酸:马来酸的摩尔比率为1:1。
4.根据权利要求1所述的方法,其特征是,所述的聚乙二醇采用聚乙二醇200、聚乙二醇300、聚乙二醇800、聚乙二醇1000、聚乙二醇1500、聚乙二醇2000、聚乙二醇3000、聚乙二醇4000、聚乙二醇6000或聚乙二醇8000。
5.根据权利要求1所述的方法,其特征是,所述的稳定剂和分散剂的质量比为10:1。
6.根据权利要求1所述的方法,其特征是,所述的二乙烯基苯与N-乙烯基-ε-己内酰胺的质量比为1:1~2。
7.一种磁性微球,其特征在于,根据上述任一权利要求所述方法制备得到。
8.一种基于权利要求1~6中任一所述方法制备得到或权利要求7所述的磁性微球的应用,其特征在于,将其用于检测发毛中的西泮类药物。
9.根据权利要求8所述的应用,其特征是,将清洗后的待测毛发研磨后,加入磁性微球后混匀并经过磁性分离后干燥处理,然后加入洗脱液并混匀后经过二次磁性分离处理,最后取上清液进行液相色谱质谱联检测西泮类药物的含量。
CN201810148565.2A 2018-02-13 2018-02-13 磁性微球及其发毛检测应用 Active CN108283918B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810148565.2A CN108283918B (zh) 2018-02-13 2018-02-13 磁性微球及其发毛检测应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810148565.2A CN108283918B (zh) 2018-02-13 2018-02-13 磁性微球及其发毛检测应用

Publications (2)

Publication Number Publication Date
CN108283918A CN108283918A (zh) 2018-07-17
CN108283918B true CN108283918B (zh) 2020-07-31

Family

ID=62832987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810148565.2A Active CN108283918B (zh) 2018-02-13 2018-02-13 磁性微球及其发毛检测应用

Country Status (1)

Country Link
CN (1) CN108283918B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109060993B (zh) * 2018-09-03 2021-06-25 江西省农业科学院农产品质量安全与标准研究所 一种动物毛发中阿奇霉素残留量的检测方法
CN113376063A (zh) * 2021-05-24 2021-09-10 合肥国轩高科动力能源有限公司 一种磁性异物的检测方法
CN116296728B (zh) * 2023-02-03 2023-11-07 中国农业科学院农业质量标准与检测技术研究所 一种干法提取毛发中药物的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1535979A (zh) * 2003-04-04 2004-10-13 上海东晟纳米科技发展有限公司 用磁性纳米复合材料提取dna的方法及试剂盒
CN1583270A (zh) * 2004-06-14 2005-02-23 北京化工大学 磁性微球形高分散负载金属催化剂及其制备方法和用途
JP2015044956A (ja) * 2013-08-29 2015-03-12 国立大学法人 東京大学 磁性粒子
CN104892827A (zh) * 2015-05-13 2015-09-09 北京中科紫鑫科技有限责任公司 一种制备磁性复合微球的方法
CN106378112A (zh) * 2016-11-18 2017-02-08 陕西盛迈石油有限公司 含氨基磁性微球的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1535979A (zh) * 2003-04-04 2004-10-13 上海东晟纳米科技发展有限公司 用磁性纳米复合材料提取dna的方法及试剂盒
CN1583270A (zh) * 2004-06-14 2005-02-23 北京化工大学 磁性微球形高分散负载金属催化剂及其制备方法和用途
JP2015044956A (ja) * 2013-08-29 2015-03-12 国立大学法人 東京大学 磁性粒子
CN104892827A (zh) * 2015-05-13 2015-09-09 北京中科紫鑫科技有限责任公司 一种制备磁性复合微球的方法
CN106378112A (zh) * 2016-11-18 2017-02-08 陕西盛迈石油有限公司 含氨基磁性微球的制备方法

Also Published As

Publication number Publication date
CN108283918A (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
CN108283918B (zh) 磁性微球及其发毛检测应用
Wang et al. Extraction and preconcentration of trace levels of cobalt using functionalized magnetic nanoparticles in a sequential injection lab-on-valve system with detection by electrothermal atomic absorption spectrometry
Ma et al. One-step synthesis of silver/dopamine nanoparticles and visual detection of melamine in raw milk
Chen et al. Speciation of selenium in cells by HPLC-ICP-MS after (on-chip) magnetic solid phase extraction
Agoston et al. Rapid isolation and detection of erythropoietin in blood plasma by magnetic core gold nanoparticles and portable Raman spectroscopy
Yao et al. Rapid synthesis of titanium (IV)‐immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment
CN101008643B (zh) 一种金属螯合纳米磁珠,其制备方法及应用
CN106596704B (zh) 电感耦合等离子体质谱仪测定蔬菜中硒含量的方法
Chen et al. Development of oleic acid‐functionalized magnetite nanoparticles as hydrophobic probes for concentrating peptides with MALDI‐TOF‐MS analysis
Faraji et al. Preconcentration of trace amounts of lead in water samples with cetyltrimethylammonium bromide coated magnetite nanoparticles and its determination by flame atomic absorption spectrometry
Ding et al. Determination of roxithromycin from human plasma samples based on magnetic surface molecularly imprinted polymers followed by liquid chromatography-tandem mass spectromer.
Farajzadeh et al. Magnetic solid phase extraction using Fe 3 O 4@ SiO 2@ C 8 nanoparticles performed in a narrow-bore tube followed by dispersive liquid–liquid microextraction for extraction and preconcentration of nine pesticides
Yang et al. Detection of trace leucomalachite green with a nanoprobe of CdTe quantum dots coated with molecularly imprinted silica via synchronous fluorescence quenching
Wu et al. Sol‐gel zirconia coating capillary microextraction on‐line hyphenated with inductively coupled plasma mass spectrometry for the determination of Cr, Cu, Cd and Pb in biological samples
Safdarian et al. Rapid microwave-assisted distillation–precipitation polymerization for the synthesis of magnetic molecular imprinted polymers coupled to HPTLC determination of perphenazine in human urine
Zhang et al. Rapid determination of aflatoxin B1 by an automated immunomagnetic bead purification sample pretreatment method combined with high‐performance liquid chromatography
Borowska et al. Basic and advanced spectrometric methods for complete nanoparticles characterization in bio/eco systems: current status and future prospects
Yang et al. Preparation of Ti4+-immobilized modified silica capillary trapping column for on-line selective enrichment of phosphopeptides
CN114088680A (zh) 一种染发样品中痕量毒品的快速检测方法
Filik et al. Ionic liquid based dispersive liquid-liquid microextraction combined with magnetic-based dispersive micro-solid-phase extraction for determination of trace cobalt in water samples by FAAS
Zhou et al. A molecularly imprinted fiber array solid-phase microextraction strategy for simultaneous detection of multiple estrogens
De Moraes et al. Use of 1, 3-diaminepropane-3-propyl grafted onto a silica gel as a sorbent for flow-injection spectrophotometric determination of copper (II) in digests of biological materials and natural waters
CN111721877A (zh) 一种注射器式固体膜微萃取装置及茶浸泡液中多环芳烃的检测方法
Capriotti et al. Effect of shell structure of Ti-immobilized metal ion affinity chromatography core-shell magnetic particles for phosphopeptide enrichment
CN107899557B (zh) 磁性分子印迹聚合物微球及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant