CN111715294A - 一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用 - Google Patents

一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用 Download PDF

Info

Publication number
CN111715294A
CN111715294A CN202010626886.6A CN202010626886A CN111715294A CN 111715294 A CN111715294 A CN 111715294A CN 202010626886 A CN202010626886 A CN 202010626886A CN 111715294 A CN111715294 A CN 111715294A
Authority
CN
China
Prior art keywords
mofs
doped
ozone
ozone catalyst
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010626886.6A
Other languages
English (en)
Inventor
余德游
吴明华
王莉莉
吕晨程
杨涛语
洪思思
李泽雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Zhejiang Sci Tech University ZSTU
Zhejiang University of Science and Technology ZUST
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN202010626886.6A priority Critical patent/CN111715294A/zh
Publication of CN111715294A publication Critical patent/CN111715294A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种Ce掺杂Fe‑MOFs臭氧催化剂的制备方法,通过铈离子掺杂Fe‑MOFs水或溶剂热自组装形成多孔的Ce掺杂Fe‑MOFs臭氧催化剂,所述Fe‑MOFs为铁基金属有机框架材料。本发明利用杂金属Ce有效调节Fe‑MOFs臭氧催化剂表面Lewis酸位密度,从而提高Fe‑MOFs的催化臭氧活性,促进Fe‑MOFs催化材料对臭氧吸附、催化分解的速率,进一步产生更多的羟基自由基等活性氧物种,增强对水中有机污染物的氧化降解,显著提高有机污染物的矿化程度。

Description

一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用
技术领域
本发明涉及一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用,用于有机废水污染强化处理领域。
背景技术
目前,工业水污染治理要求高,大量工业废水排放难以达到国家标准。这些废水有机污染物浓度高、毒性较大、可生化性较差,难以通过单独采用传统生物法有效去除。高级氧化技术由于能破坏甚至矿化难降解有机污染物而在化工、印染、制药等行业的废水处理中引起广泛关注。高级氧化技术涉及到的氧源有双氧水,过硫酸盐和臭氧。臭氧具有以下三个特点:(1)具有较高的氧化还原电位——2.07V;(2)可原位产生,无需储存运输,避免了储存和运输过程中的潜在危险;(3)环境友好,分解为氧气,无二次污染;(4)可分解产生极强氧化性的羟基自由基,羟基自由基能有绝大多数难降解有机污染物发生一系列氧化反应,把有机物降解成小分子物质,提高废水的可生化性。因此越来越受到化工、水环境治理人员的关注。
然而,在水污染控制领域,采用单独臭氧氧化时,存在氧化不彻底导致废水矿化效率和臭氧利用率偏低等问题。因此,为了解决单独臭氧氧化降解有机污染物过程中存在的这些问题,提高臭氧氧化的经济效益,发展了2种较好的策略:(1)活化臭氧技术——将臭氧与超声、紫外、双氧水和小分子活化有机物等联用;(2)催化臭氧技术——利用过渡金属离子或者过渡金属氧化物、铁基金属有机框架材料以及一些非金属碳材料作为催化剂。催化臭氧技术中的非均相催化臭氧氧化技术因能产生更多的活性氧物种如羟基自由基,更好的提高臭氧利用率、氧化效能和经济效益,备受人们的青睐。
对于非均相催化臭氧技术而言,最为重要的是催化剂。过渡金属(氢)氧化物,如Fe2O3、Fe3O4、FeOOH、Al2O3、MnO2、Co3O4、CeO2和TiO2等常被用作催化臭氧氧化的催化剂。而这些催化剂存在金属离子析出、活性位点难以与O3有效接触、传质能力较弱等问题,导致催化效率难以有效提升。铁基金属有机框架(Fe-MOFs)材料,如MIL-53(Fe)、MIL-88A(Fe)、MIL-88B(Fe)、MIL-100(Fe)和MIL-101(Fe)是一类新型的臭氧催化剂,它们稳定性好,几乎无金属离子析出问题,活性位点均匀分布在孔道中非常容易参与催化反应,传质能力较好,被认为是一种具有良好前景的新型催化剂。但是,这类催化剂因表面Lewis酸位密度较小,仍存在有机物污染物的去除效率和矿化能力较不理想的问题。
发明内容
针对新型Fe-MOFs因表面Lewis酸位密度较小,吸附、催化臭氧分解效率较不高,对工业废水中有机污染物的去除和矿化效率不高等问题,本发明目的在于提供一种Ce掺杂Fe-MOFs臭氧催化剂的制备方法。
本发明的目的在于:提供一种上述方法制备的Ce掺杂Fe-MOFs臭氧催化剂产品;提供一种上述产品的应用。
本发明目的通过下述方案实现:
一种Ce掺杂Fe-MOFs臭氧催化剂的制备方法,通过铈离子掺杂Fe-MOFs水或溶剂热自组装形成多孔的Ce掺杂Fe-MOFs臭氧催化剂,所述Fe-MOFs为铁基金属有机框架材料。
一种Ce掺杂Fe-MOFs臭氧催化剂的制备方法,包括如下步骤:
(1)将有机配体溶解于水或N,N-二甲基甲酰胺中,得到有机配体溶液;
(2)将Ce和Fe的混合金属盐加入到有机配体溶液中,搅拌均匀得到Ce掺杂Fe-MOFs臭氧催化剂前驱体混合溶液;
(3)将混合溶液进行水或溶剂热反应,完成后,固液分离,固体真空烘干得到多孔Ce掺杂Fe-MOFs臭氧催化剂。
步骤(1)中,有机配体与水或N,N-二甲基甲酰胺的摩尔比为1:200~800;进一步优选为1:400~600,更进一步优选为1:500。步骤(1)可以在搅拌下进行,可以采用机械搅拌或者磁力搅拌等。有机配体溶解后得到所述的有机配体溶液待用。也可以采用一定的加热处理,以促进有机配体的快速溶解。
所述有机配体为反丁烯二酸、对苯二甲酸和2-甲基咪唑中的一种或多种。进一步优选为反丁烯二酸。
步骤(2)的混合溶液中以Ce(3价阳离子)和Fe(3价阳离子)的量计算,所述Ce和Fe的摩尔比为1:(2~20)。优选为n(Ce):n(Fe)摩尔比为0.05:0.95,0.10:0.90,0.15:0.85,0.20:0.80和0.30:0.70。进一步优选为,所述Ce和Fe的摩尔比为1:(2~10)。更进一步优选为:所述Ce和Fe的摩尔比为1:(2~5)。
作为优选,Ce和Fe的总量与有机配体摩尔比为1:(0.5~1);进一步优选为1:1。
作为优选,步骤(2)中,所述的混合金属盐为六水合氯化铁/六水合硝酸铈和六水合氯化铁/四水合硫酸铈中的一组。
步骤(3)可以在含有聚四氟乙烯内衬的不锈钢反应釜中进行,在一定温度下水或溶剂热反应一定时间后,离心分离,沉淀洗涤,在一定温度真空烘干10~24h得到多孔Ce掺杂Fe-MOFs臭氧催化剂产品。
步骤(3)中,水或溶剂热反应温度为60~90℃,水或溶剂热反应时间为10~24h,真空烘干温度为100~150℃。
一种Ce掺杂Fe-MOFs臭氧催化剂,由上述任一项技术方案所述的制备方法制备得到。
本发明还提供了一种上述Ce掺杂Fe-MOFs臭氧催化剂在有机废水污染强化处理中的应用。
一种上述任一技术方案所述的Ce掺杂Fe-MOFs臭氧催化剂在降解有机废水污染物中的应用。作为优选,所述污染物为水杨酸、硝基苯酚、罗丹明B、卡马西平或以上化合物的类似物等。
作为优选,向有机废水污染物中加入所述的Ce掺杂Fe-MOFs臭氧催化剂,臭氧曝气处理;其中臭氧气体浓度为15~50mg L-1,流速为20~100mL min-1,污染物浓度为50~300ppm;有机污染物和需要催化剂的重量比为1:(1~10)。
具体讲,本发明Ce掺杂Fe-MOFs臭氧催化剂催化活性的测试可以在间歇式臭氧催化反应器中进行,向500mL100ppm的水杨酸溶液中加入0.05g多孔Ce掺杂Fe-MOFs臭氧催化剂,臭氧曝气处理30min,臭氧气体浓度为30mg L-1,流速为60mL min-1。测定处理后的溶液中水杨酸浓度和总有机碳含量(TOC)值,计算催化臭氧氧化降解处理水杨酸溶液的降解速率常数和矿化率。
本发明利用铈离子掺杂Fe-MOFs水或溶剂热自组装形成多孔的Ce掺杂Fe-MOFs臭氧催化剂,可以利用杂金属Ce调节Fe-MOFs配体配位缺陷,有效调节Fe-MOFs臭氧催化剂表面Lewis酸位密度,从而提高Fe-MOFs的催化臭氧活性,促进Fe-MOFs催化材料对臭氧吸附、催化分解的速率,进一步产生更多的羟基自由基等活性氧物种,增强对水中有机污染物的氧化降解,显著提高有机污染物的矿化程度。本发明方法采用简易的水或溶剂热合成法制备出多孔Ce掺杂Fe-MOFs臭氧催化剂产品,该催化剂孔结构丰富、比表面积较大、表面Lewis酸位较多,可高效吸附、催化臭氧分解产生具有更强氧化能力的活性氧物种,使水中有机污染物的降解率和矿化率得到大幅度的提高。
采用本发明的催化剂,可以提高对臭氧传质吸附和催化分解速率以及催化臭氧氧化降解、矿化水中有机污染物的效率,可以应用于有机废水污染强化处理领域。可以有效提高Fe-MOFs的催化臭氧活性,促进Ce掺杂Fe-MOFs对臭氧的分解速率,增强水中有机污染物的深度去除,本发明具有如下优点:
(1)本发明提出的一种Ce掺杂Fe-MOFs臭氧催化剂的制备方法,通过铈离子掺杂Fe-MOFs水或溶剂热自组装形成多孔的Ce掺杂Fe-MOFs臭氧催化剂,利用杂金属Ce调节Fe-MOFs配体配位缺陷有效调变Fe-MOFs臭氧催化剂表面Lewis酸位密度,从而提高Fe-MOFs的催化臭氧活性,促进Fe-MOFs催化材料对臭氧吸附、催化分解的速率,进一步产生更多的羟基自由基等活性氧物种,增强对水中有机污染物的氧化降解,显著提高有机污染物的矿化程度。
(2)发明提出的一种Ce掺杂Fe-MOFs臭氧催化剂的制备方法,通过改变杂金属Ce掺杂比例,可精准调控Fe-MOFs表面的Lewis酸位密度大小,使得Ce掺杂Fe-MOFs臭氧催化剂暴露出更多的催化臭氧活性位点,提高其催化臭氧的能力,增强了水杨酸的去除效率。
附图说明
图1为实施例1制备得到的MIL-88A(Fe0.80Ce0.20)催化剂的SEM形貌图;
图2为MIL-88A(Fe0.80Ce0.20)催化剂的原位吡啶吸附红外光谱图;
图3为降解时间对水杨酸浓度变化的影响(a)和水杨酸氧化降解过程的假一级动力学拟合结果(b);
图4为MIL-88A(Fe0.80Ce0.20)催化剂/臭氧体系活性氧物种EPR监测图。
具体实施方式
通过实施例,对本发明做进一步的说明。
实施例1
一种Ce掺杂Fe-MOFs臭氧催化剂的制备方法,通过铈离子掺杂Fe-MOFs水热自组装形成多孔的Ce掺杂Fe-MOFs臭氧催化剂,按如下步骤:
(1)在磁力搅拌下,按照水和有机配体反丁烯二酸摩尔比为500:1,将有机配体加入水中,溶解完全后得到有机配体溶液;
(2)将n(Ce):n(Fe)摩尔比为0.20:0.80的混合金属盐(六水合硝酸铈和六水合氯化铁)加入到有机配体反丁烯二酸溶液中(其中n(Ce):n(Fe)的总摩尔量与反丁烯二酸的摩尔比为1:1),搅拌均匀得到Ce掺杂Fe-MOFs臭氧催化剂前驱体混合溶液;
(3)将混合溶液转移到含有聚四氟乙烯内衬的不锈钢反应釜中,在70℃下水热反应24h后,离心分离,沉淀洗涤,在100℃下真空烘干24h得到多孔Ce掺杂Fe-MOFs臭氧催化剂产品,记为MIL-88A(Fe0.80Ce0.20)。
所制备的Ce掺杂Fe-MOFs臭氧催化剂为长约为2μm,宽约为0.5μm的规则针状形貌(如图1所示)。采用原位吡啶吸附红外光谱探测Ce掺杂Fe-MOFs臭氧催化剂的表面酸位,结果如图2所示。根据Lewis酸位密度计算公式:
Figure BDA0002565122280000061
其中LA是Ce掺杂Fe-MOFs臭氧催化剂表面Lewis酸位密度,Mac为摩尔吸光系数(Mac=0.6),Sp为波数1069.7cm-1处特征峰积分面积,R为红外压片薄片半径,W为所用催化剂重量,计算Ce掺杂Fe-MOFs臭氧催化剂的表面酸位密度,其结果为5.27mmol g-1
以高纯氧为气源,采用同林科技的3S-A型臭氧发生器制取臭氧气体。配置500mL的100mg L-1水杨酸母液,加入臭氧反应器中。准确称取50mg催化剂加入反应液中,超声60s使其均匀分散。调节同林科技3S-A型臭氧发生器电流控制臭氧气体浓度为30mg L-1,调节转子流量计控制臭氧气体流速为60mL min-1,待臭氧发生器电流密度和转子流量计稳定后通入反应液中(臭氧用量为3.6mg min-1L-1),触发催化臭氧降解反应。每间隔5min取样5mL(0min、5min、10min、15min、20min、25min、30min),用0.45μm针式滤头过滤,滤液中残余臭氧分子和活性氧组分用0.1M亚硫酸钠猝灭。总的处理时间为30min。每组实验重复三次。
采用安捷伦1260型高效液相色谱仪测定水杨酸浓度,分析条件为:安捷伦ZORBAXEclipse XDB-C18色谱柱(3.5μm,4.6x 150mm)为固定相,柱温为30℃,流动相为0.1wt%磷酸和甲醇(40/60)混合溶液,流速和进样量分别为0.6mL min-1和20μL。水杨酸的保留时间为4.13min。
将0min、5min、10min、15min、20min、25min、30min的样品的水杨酸浓度与对应的时间点,根据假一级动力学公式
Figure BDA0002565122280000062
其中k为降解速率常数,单位为min-1,Ct为不同时间水杨酸浓度,C0为初始时间水杨酸浓度,t为对应的处理时间,单位为min;利用上述检测数据和公式,对降解过程进行动力学拟合(见图3),得到斜率k值即为水杨酸的降解速率常数,结果为0.190min-1
采用Elementar的Liquid TOC分析仪测定水样处理前后(处理30min)的总有机碳含量,根据公式
Figure BDA0002565122280000063
其中RTOC为矿化率,TOCt为处理30min后水样的TOC值,TOC0为初始样品的TOC值,计算水杨酸的矿化率,结果为66%。降解速率常数和矿化率分别约是未掺杂Fe-MOFs臭氧催化剂的3倍(未掺杂Fe-MOFs臭氧催化剂的降解速率常为0.061min-1)和2倍(未掺杂Fe-MOFs臭氧催化剂的矿化率为35%)。
本发明采用铈离子掺杂Fe-MOFs水热自组装形成多孔的Ce掺杂Fe-MOFs臭氧催化剂,该臭氧催化剂孔结构丰富(孔径分布在2~60nm)、比表面积较大(7.44m2/g)、表面Lewis酸位密度较大,可明显提高Fe-MOFs的催化臭氧活性,促进Fe-MOFs催化材料对臭氧吸附、催化分解产生更多活性氧物种(如图4所示),增强水中有机污染物的去除效率。该工艺不仅操作简便,而且所制得的Ce掺杂Fe-MOFs臭氧催化剂催化臭氧氧化降解效率显著,提出的Ce掺杂Fe-MOFs的制备方法对工业废水中有机污染物的强化处理提供了一条实用性方案。
实施例2
一种Ce掺杂Fe-MOFs臭氧催化剂的制备方法,按如下步骤:
(1)在磁力搅拌下,按照水和有机配体反丁烯二酸摩尔比为500:1,将有机配体加入水溶液中,溶解完全后得到有机配体溶液;
(2)将n(Ce):n(Fe)摩尔比为0.15:0.85的混合金属盐(六水合硝酸铈和六水合氯化铁)加入到有机配体反丁烯二酸溶液(其中n(Ce):n(Fe)的总摩尔量与反丁烯二酸的摩尔比为1:1)中,搅拌均匀得到Ce掺杂Fe-MOFs臭氧催化剂前驱体混合溶液;
(3)将混合溶液转移到含有聚四氟乙烯内衬的不锈钢反应釜中,在70℃下水热反应24h后,离心分离,沉淀洗涤,在100℃下真空烘干24h得到多孔Ce掺杂Fe-MOFs臭氧催化剂产品。
所制备的Ce掺杂Fe-MOFs臭氧催化剂Lewis酸位密度为3.82mmol g-1,对水杨酸溶液的降解速率常数为0.161min-1,矿化率为62%。
实施例3
一种Ce掺杂Fe-MOFs臭氧催化剂的制备方法,按如下步骤:
(1)在磁力搅拌下,按照水和有机配体反丁烯二酸摩尔比为500:1,将有机配体加入水溶液中,溶解完全后得到有机配体溶液;
(2)将n(Ce):n(Fe)摩尔比为0.10:0.90的混合金属盐(六水合硝酸铈和六水合氯化铁)加入到有机配体反丁烯二酸溶液(其中n(Ce):n(Fe)的总摩尔量与反丁烯二酸的摩尔比为1:1)中,搅拌均匀得到Ce掺杂Fe-MOFs臭氧催化剂前驱体混合溶液;
(3)将混合溶液转移到含有聚四氟乙烯内衬的不锈钢反应釜中,在70℃下水热反应24h后,离心分离,沉淀洗涤,在100℃下真空烘干24h得到多孔Ce掺杂Fe-MOFs臭氧催化剂产品。
所制备的Ce掺杂Fe-MOFs臭氧催化剂Lewis酸位密度为3.29mmol g-1,对水杨酸溶液的降解速率常数为0.144min-1,矿化率为59%。
实施例4
一种Ce掺杂Fe-MOFs臭氧催化剂的制备方法,按如下步骤:
(1)在磁力搅拌下,按照水和有机配体反丁烯二酸摩尔比为500:1,将有机配体加入水溶液中,溶解完全后得到有机配体溶液;
(2)将n(Ce):n(Fe)摩尔比为0.05:0.85的混合金属盐(六水合硝酸铈和六水合氯化铁)加入到有机配体反丁烯二酸溶液(其中n(Ce):n(Fe)的总摩尔量与反丁烯二酸的摩尔比为1:1)中,搅拌均匀得到Ce掺杂Fe-MOFs臭氧催化剂前驱体混合溶液;
(3)将混合溶液转移到含有聚四氟乙烯内衬的不锈钢反应釜中,在70℃下水热反应24h后,离心分离,沉淀洗涤,在100℃下真空烘干24h得到多孔Ce掺杂Fe-MOFs臭氧催化剂产品。
所制备的Ce掺杂Fe-MOFs臭氧催化剂Lewis酸位密度为3.01mmol g-1,对水杨酸溶液的降解速率常数为0.099min-1,矿化率为51%。
实施例5
一种Ce掺杂Fe-MOFs臭氧催化剂的应用,按如下步骤:
(1)配置1L浓度为100mg/L的模型有机污染物如对硝基苯酚、罗丹明B、卡马西平等溶液,待用;
(1)在磁力搅拌下,将0.1g的催化剂MIL-88A(Fe0.80Ce0.20)加入到配置好的有机污染物溶液中,超声1min中使其分散均匀,形成悬浊液;
(2)通入臭氧气体(高纯氧为氧源),曝气处理30min,臭氧气体浓度为30mg L-1,流速为60mL min-1
(3)采用总有机碳分析仪测定处理前后水样的总有机碳含量值,计算MIL-88A(Fe0.80Ce0.20)/臭氧催化氧化体系对不同种类有机污染物的矿化率。
MIL-88A(Fe0.80Ce0.20)/臭氧催化氧化体系对对硝基苯酚、罗丹明B、卡马西平的矿化率分别为65%、72%和74%。

Claims (10)

1.一种Ce掺杂Fe-MOFs臭氧催化剂的制备方法,其特征在于,通过铈离子掺杂Fe-MOFs水或溶剂热自组装形成多孔的Ce掺杂Fe-MOFs臭氧催化剂,所述Fe-MOFs为铁基金属有机框架材料。
2.根据权利要求1所述的Ce掺杂Fe-MOFs臭氧催化剂的制备方法,其特征在于,包括如下步骤:
(1)将有机配体溶解于水或N,N-二甲基甲酰胺中,得到有机配体溶液;
(2)将Ce和Fe的混合金属盐加入到有机配体溶液中,搅拌均匀得到Ce掺杂Fe-MOFs臭氧催化剂前驱体混合溶液;
(3)将混合溶液进行水或溶剂热反应,完成后,固液分离,固体真空烘干得到多孔Ce掺杂Fe-MOFs臭氧催化剂。
3.根据权利要求1所述的Ce掺杂Fe-MOFs臭氧催化剂的制备方法,其特征在于,所述有机配体为反丁烯二酸、对苯二甲酸和2-甲基咪唑中的一种或多种。
4.根据权利要求1所述的Ce掺杂Fe-MOFs臭氧催化剂的制备方法,其特征在于,步骤(2)的混合溶液中Ce和Fe的摩尔比为1:(2~20)。
5.根据权利要求1所述的Ce掺杂Fe-MOFs臭氧催化剂的制备方法,其特征在于,Ce和Fe的总量与有机配体摩尔比为1:(0.5~1)。
6.根据权利要求1所述的Ce掺杂Fe-MOFs臭氧催化剂的制备方法,其特征在于,步骤(2)中,所述的混合金属盐为六水合氯化铁/六水合硝酸铈和六水合氯化铁/四水合硫酸铈中的一组。
7.根据权利要求1所述的Ce掺杂Fe-MOFs臭氧催化剂的制备方法,其特征在于,步骤(3)中,水或溶剂热反应温度为60~90℃,水或溶剂热反应时间为10~24h,真空烘干温度为100~150℃。
8.一种Ce掺杂Fe-MOFs臭氧催化剂,其特征在于,由权利要求1~7任一项所述的制备方法制备得到。
9.一种权利要求8所述Ce掺杂Fe-MOFs臭氧催化剂在降解有机废水中污染物中的应用。
10.根据权利要求9所述的应用,其特征在于,向有机废水污染物中加入所述的Ce掺杂Fe-MOFs臭氧催化剂,臭氧曝气处理;其中臭氧气体浓度为15~50mg L-1,流速为20~100mLmin-1,污染物浓度为50~300ppm;有机污染物和需要催化剂的重量比为1:(1~10)。
CN202010626886.6A 2020-07-01 2020-07-01 一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用 Pending CN111715294A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010626886.6A CN111715294A (zh) 2020-07-01 2020-07-01 一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010626886.6A CN111715294A (zh) 2020-07-01 2020-07-01 一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用

Publications (1)

Publication Number Publication Date
CN111715294A true CN111715294A (zh) 2020-09-29

Family

ID=72571192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010626886.6A Pending CN111715294A (zh) 2020-07-01 2020-07-01 一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用

Country Status (1)

Country Link
CN (1) CN111715294A (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112206828A (zh) * 2020-09-30 2021-01-12 浙江理工大学 一种亚铁掺杂Fe-MOFs类芬顿催化剂的制备方法、产品及应用
CN112295603A (zh) * 2020-09-30 2021-02-02 浙江理工大学 一种超稳定MOFs基多孔海绵的制备方法、产品及应用
CN112604660A (zh) * 2020-11-27 2021-04-06 华侨大学 一种Ce-MOFs除磷吸附剂的制备方法及其应用
CN112724417A (zh) * 2020-12-29 2021-04-30 华南理工大学 一种超薄二维金属有机框架材料及其制备方法与应用
CN112958157A (zh) * 2021-02-08 2021-06-15 华侨大学 一种双金属有机骨架材料催化剂、制备方法及应用
CN113019457A (zh) * 2021-03-12 2021-06-25 郑州大学 全湿度范围高效降解臭氧的Mn-MOF催化剂及其膜材料的制备
CN113275040A (zh) * 2021-06-11 2021-08-20 南开大学 一种Fe3O4@C限域界面负载Ce-MOFs催化剂的制备及其在电芬顿中的应用
CN114409917A (zh) * 2022-01-26 2022-04-29 华中师范大学 一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用
CN114632506A (zh) * 2022-04-07 2022-06-17 山东建筑大学 一种基于Ce原位掺杂碱土金属有机骨架的衍生固体碱及催化酯交换的应用
CN114669329A (zh) * 2022-03-10 2022-06-28 南京工业大学 一种过渡金属掺杂mil-88气凝胶材料及其制备方法和应用
CN114768854A (zh) * 2022-05-10 2022-07-22 江苏治水有数环保科技有限公司 负载于多孔碳基材料的化合物及其应用于水处理的方法
CN114887662A (zh) * 2022-04-12 2022-08-12 南京工业大学 一种金属有机骨架材料-分子筛复合材料及其制备方法和应用
CN115845921A (zh) * 2022-12-01 2023-03-28 华北电力大学(保定) 一种双金属有机骨架材料Ce-MIL-88B(Fe)光催化剂的制备及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180185828A1 (en) * 2016-03-31 2018-07-05 South China University Of Technology Copper-doped iron metal-organic framework, preparation method thereof, and application method for activation of persulfate to treat organic wastewater
US20190232265A1 (en) * 2017-04-12 2019-08-01 South China University Of Technology Catalytic material for catalytic activation of persulfate and targeted degradation of typical pollutant in papermaking wastewater and synthesis method and use thereof
CN110128671A (zh) * 2019-05-27 2019-08-16 湘潭大学 一种棒状的铈掺杂MIL-53(Fe)材料的制备方法
CN111185233A (zh) * 2019-12-03 2020-05-22 青岛大学 一种用于在水环境中降解抗生素的非均相类芬顿催化剂的制备方法及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180185828A1 (en) * 2016-03-31 2018-07-05 South China University Of Technology Copper-doped iron metal-organic framework, preparation method thereof, and application method for activation of persulfate to treat organic wastewater
US20190232265A1 (en) * 2017-04-12 2019-08-01 South China University Of Technology Catalytic material for catalytic activation of persulfate and targeted degradation of typical pollutant in papermaking wastewater and synthesis method and use thereof
CN110128671A (zh) * 2019-05-27 2019-08-16 湘潭大学 一种棒状的铈掺杂MIL-53(Fe)材料的制备方法
CN111185233A (zh) * 2019-12-03 2020-05-22 青岛大学 一种用于在水环境中降解抗生素的非均相类芬顿催化剂的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEYOU YU ET AL.: ""Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant: Efficiency and mechanism"", 《JOURNAL OF HAZARDOUS MATERIALS》 *
XIAOYUAN LIAO ET AL.: ""Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced fenton-like performance for phenol removal"", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
李娟等: ""MIL-88(Fe)金属有机骨架高效催化降解废水中RhB"", 《工业水处理》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112206828A (zh) * 2020-09-30 2021-01-12 浙江理工大学 一种亚铁掺杂Fe-MOFs类芬顿催化剂的制备方法、产品及应用
CN112295603A (zh) * 2020-09-30 2021-02-02 浙江理工大学 一种超稳定MOFs基多孔海绵的制备方法、产品及应用
CN112604660A (zh) * 2020-11-27 2021-04-06 华侨大学 一种Ce-MOFs除磷吸附剂的制备方法及其应用
CN112724417A (zh) * 2020-12-29 2021-04-30 华南理工大学 一种超薄二维金属有机框架材料及其制备方法与应用
CN112958157A (zh) * 2021-02-08 2021-06-15 华侨大学 一种双金属有机骨架材料催化剂、制备方法及应用
CN113019457A (zh) * 2021-03-12 2021-06-25 郑州大学 全湿度范围高效降解臭氧的Mn-MOF催化剂及其膜材料的制备
CN113019457B (zh) * 2021-03-12 2023-04-25 郑州大学 全湿度范围高效降解臭氧的Mn-MOF催化剂及其膜材料的制备
CN113275040B (zh) * 2021-06-11 2022-05-10 南开大学 一种Fe3O4@C限域界面负载Ce-MOFs催化剂的制备及其在电芬顿中的应用
CN113275040A (zh) * 2021-06-11 2021-08-20 南开大学 一种Fe3O4@C限域界面负载Ce-MOFs催化剂的制备及其在电芬顿中的应用
CN114409917A (zh) * 2022-01-26 2022-04-29 华中师范大学 一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用
CN114409917B (zh) * 2022-01-26 2023-05-23 华中师范大学 一种具有催化臭氧分解能力的抗湿性铁基金属有机框架材料及其制备方法和应用
CN114669329A (zh) * 2022-03-10 2022-06-28 南京工业大学 一种过渡金属掺杂mil-88气凝胶材料及其制备方法和应用
CN114632506A (zh) * 2022-04-07 2022-06-17 山东建筑大学 一种基于Ce原位掺杂碱土金属有机骨架的衍生固体碱及催化酯交换的应用
CN114887662A (zh) * 2022-04-12 2022-08-12 南京工业大学 一种金属有机骨架材料-分子筛复合材料及其制备方法和应用
CN114887662B (zh) * 2022-04-12 2023-10-20 南京工业大学 一种金属有机骨架材料-分子筛复合材料及其制备方法和应用
CN114768854A (zh) * 2022-05-10 2022-07-22 江苏治水有数环保科技有限公司 负载于多孔碳基材料的化合物及其应用于水处理的方法
CN115845921A (zh) * 2022-12-01 2023-03-28 华北电力大学(保定) 一种双金属有机骨架材料Ce-MIL-88B(Fe)光催化剂的制备及其应用
CN115845921B (zh) * 2022-12-01 2023-09-22 华北电力大学(保定) 一种双金属有机骨架材料Ce-MIL-88B(Fe)光催化剂的制备及其应用

Similar Documents

Publication Publication Date Title
CN111715294A (zh) 一种Ce掺杂Fe-MOFs臭氧催化剂及制备和应用
Yang et al. Bicarbonate-enhanced iron-based Prussian blue analogs catalyze the Fenton-like degradation of p-nitrophenol
Hassani et al. Acetaminophen removal from aqueous solutions through peroxymonosulfate activation by CoFe2O4/mpg-C3N4 nanocomposite: insight into the performance and degradation kinetics
Sui et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity
CN112675851B (zh) 一种Fe-MOFs过氧乙酸催化剂及其制备方法与应用
Zhou et al. Enhanced degradation of 2, 4-dichlorophenol by ultrasound in a new Fenton like system (Fe/EDTA) at ambient circumstance
Huang et al. Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides
CN112206828A (zh) 一种亚铁掺杂Fe-MOFs类芬顿催化剂的制备方法、产品及应用
Zhang et al. Synchronously degradation benzotriazole and elimination bromate by perovskite oxides catalytic ozonation: Performance and reaction mechanism
Chong et al. Sonocatalytic degradation of diclofenac with FeCeOx particles in water
Wang et al. Fabrication of Co3O4-Bi2O3-Ti catalytic membrane for efficient degradation of organic pollutants in water by peroxymonosulfate activation
Ma et al. Improved degradation of tetracycline by Cu-doped MIL-101 (Fe) in a coupled photocatalytic and persulfate oxidation system: Efficiency, mechanism, and degradation pathway
CN111115745B (zh) 一种电离辐照降解水中有机污染物的方法
Ren et al. Effective mineralization of p-nitrophenol by catalytic ozonation using Ce-substituted La1‒xCexFeO3 catalyst
Zhang et al. Oxygen vacancies enhancing performance of Mg-Co-Ce oxide composite for the selective catalytic ozonation of ammonia in water
Zhu et al. Orientated construction of visible-light-assisted peroxymonosulfate activation system for antibiotic removal: Significant enhancing effect of Cl
CN113198517B (zh) 一种高分散钴铁双金属催化剂及其制备方法和应用
Jiang et al. Catalytic wet peroxide oxidation of phenolic wastewater on novel Cu/Mn-UiO-66@ Al2O3 ceramic tube membrane catalysts
Qu et al. Effective mineralization of p-nitrophenol in water by heterogeneous catalytic ozonation using Ce-loaded sepiolite catalyst
Xie et al. A highly dispersed Co–Fe bimetallic catalyst to activate peroxymonosulfate for VOC degradation in a wet scrubber
Li et al. Photodegradation of chloroform in aqueous solution: impact of montmorillonite KSF particles
Zhou et al. Photoinduced Fenton-simulated reduction system based on iron cycle and carbon dioxide radicals production for rapid removal of Cr (VI) from wastewater
Zhang et al. g–C3N4 induced acceleration of Fe3+/Fe2+ cycles for enhancing metronidazole degradation in Fe3+/peroxymonosulfate process under visible light
Marchesini et al. Pd and Pd, In nanoparticles supported on polymer fibres as catalysts for the nitrate and nitrite reduction in aqueous media
Wang et al. Sulfite activation for ciprofloxacin rapid degradation using an iron-based metal organic framework derivative in heterogeneous processes: Performance and mechanisms investigation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200929