CN111711373A - 一种变压器辅助型pwm三电平零电压软开关逆变器 - Google Patents

一种变压器辅助型pwm三电平零电压软开关逆变器 Download PDF

Info

Publication number
CN111711373A
CN111711373A CN202010302133.XA CN202010302133A CN111711373A CN 111711373 A CN111711373 A CN 111711373A CN 202010302133 A CN202010302133 A CN 202010302133A CN 111711373 A CN111711373 A CN 111711373A
Authority
CN
China
Prior art keywords
current
mode
turn
time
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010302133.XA
Other languages
English (en)
Other versions
CN111711373B (zh
Inventor
禹健
安永泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202010302133.XA priority Critical patent/CN111711373B/zh
Publication of CN111711373A publication Critical patent/CN111711373A/zh
Application granted granted Critical
Publication of CN111711373B publication Critical patent/CN111711373B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种变压器辅助型PWM三电平零电压软开关逆变器,在正半周期和负半周期逆变过程中,开关管S1,S2,S3和开关管S4,S5,S6互为辅助开关;本发明并未增加额外的辅助开关因此结构以及控制简单,实现了所有开关管的零电压开通,有效降低了开关管的开通损耗。

Description

一种变压器辅助型PWM三电平零电压软开关逆变器
技术领域
本发明涉及电力电子变流技术领域,尤其涉及一种变压器辅助型PWM三电平零电压软开关逆变器。
背景技术
目前普遍使用的硬开关技术虽然拓扑电路和控制原理简单但是会产生巨大的开关损耗,而且会使高功率 IGBT的硬开关频率严重受限于几kHz,此外,硬开关会产生高频的电磁干扰,影响周围电子设备的正常运行。软开关技术可以有效缓和以上提到的技术问题,其基本思想是通过谐振回路的辅助,使功率器件在其电压或电流值较低甚至为零时进行开关动作,减弱甚至完全消除功率器件电压和电流的交叠。
多电平整流器与其两级整流器相比具有许多优势,每个功率开关管所承受的电压峰值只有两电平整流器的 1/N,降低了功率开关管的电压应力,较好的解决了开关管器件耐压不够高的问题。此外多电平整流器有更好的电源质量,更高的电压和功率容量以及更低的电磁干扰。因此,多电平整流器非常适合于高功率应用。
两电平的ZVT技术可以扩展到三电平。然而,相应的软开关三电平拓扑结构面临着辅助开关管过多和控制复杂的问题。已有技术,见Evaluation ofSoft SwitchingTechniques for the Neutral-Point-Clamped(NPC)Inverter 总结了四种软开关三电平电路,其中四种电路都有四个辅助开关管,虽然实现了主开关管的软开关并且在一定程度上减少了开关管的损耗,但其电路结构和控制复杂且造价昂贵,体积较大导致其不适用于实际场合。已有技术在原有技术的基础上减少两个开关管,提出了新的三电平零电压开关和零电流开关变换器电路。技术与技术相比在电路结构和控制方面明显简化,但应用在实际中仍然比较复杂。
发明内容
为解决现有技术的缺点和不足,提供一种变压器辅助型PWM三电平零电压软开关逆变器,该三电平零电压软开关电路具有结构和控制简单,实现所有开关管的零电压导通,有效降低开关管的导通损耗,更易于实用化的优点。
为实现本发明目的而提供的一种变压器辅助型PWM三电平零电压软开关逆变器,包括有第一主开关管 (S1)、第二主开关管(S2)、第三主开关管(S3)、第四主开关管(S4)、第五主开关管(S5)、第六主开关管(S6)、第一分压电容(Cd1)、第二分压电容(Cd2)、隔离变压器(T)、初级绕组(T1)、次级绕组(T2)、钳位二极管(D7)、谐振电感(Lr)、飞跨电容(Cs),第一主开关管(S1)的源极、第二主开关管(S2)的漏极相连于a点,这两个开关管构成高速开关上桥臂;所述第四主开关管(S4)的源极、第五主开关管(S5) 的漏极相连于b点,这两个开关管构成高速开关下桥臂;第三主开关管(S3)的源极、第六主开关管(S6)的漏极相连于c点,这两个开关管构成低速开关桥臂;第二主开关管(S2)的源极、第四主开关管(S4)的漏极、第一分压电容(Cd1)的负极和第二分压电容(Cd2)的正极连于o点;第一分压电容(Cd1)和第二分压电容(Cd2) 两端的电压分别为VDC/2;第一分压电容(Cd1)的正极与隔离变压器(T)的次级绕组(T2)的异名端、第一开关管(S1)的漏极相连;第二分压电容(Cd2)的负极与钳位二极管(D7)的正极、第五开关管(S5)的源极相连;钳位二极管(D7)的负极与变压器次级绕组(T2)的同名端相连;谐振电感(Lr)的一端与a点相连,另一端与隔离变压器(T)初级绕组(T1)的同名端相连;隔离变压器(T)的初级绕组(T1)的异名端与飞跨电容(Cs) 的阳极相连;飞跨电容(Cs)的阴极与b点相连;隔离变压器(T)初级绕组(T1)的匝数与T2的匝数比为1/k;负载的一端与c点相连,另一端与o点相连。
作为上述方案的进一步改进,当负载电流为正时工作模式及切换时间间隔为:
当电路处于稳定状态,S2、S3、S5处于导通状态,S1、S2、S4处于关断状态;钳位二极管D7、D8、D9和开关管的反并联二极管处于关断状态;
t0时刻,关断S5
S5关断后延迟DP1,导通S4
Figure RE-GDA0002637312240000011
S4导通后延迟DP2,关断S2
Figure RE-GDA0002637312240000021
S2关断后延迟DP3,导通S1
Figure RE-GDA0002637312240000022
S1导通后延迟DP4,关断S4
Figure RE-GDA0002637312240000023
S4关断后延迟DP5,导通S5
Figure RE-GDA0002637312240000024
S5导通后延迟DP6,关断S1
Figure RE-GDA0002637312240000025
S1关断后延迟DP7,导通S2
Figure RE-GDA0002637312240000026
当负载电流为负时工作模式及切换时间间隔为:
电路处于稳定状态,S1、S4、S6处于导通状态,S2、S3、S5处于关断状态;钳位二极管D7、D8、D9和开关管的反并联二极管处于关断状态;
t0时刻,关断S1
S1关断后延迟DN1,导通S2
Figure RE-GDA0002637312240000027
S2导通后延迟DN2,关断S4
Figure RE-GDA0002637312240000028
S4关断后延迟DN3,导通S5
Figure RE-GDA0002637312240000031
S5导通后延迟DN4,关断S2
Figure RE-GDA0002637312240000032
S2关断后延迟DN5,导通S1
Figure RE-GDA0002637312240000033
S1导通后延迟DN6,关断S5
Figure RE-GDA0002637312240000034
S5关断后延迟DN7,导通S4
Figure RE-GDA0002637312240000035
以下参数均为输入量:VDC为直流母线电压;T3B为S1(S5)最短开通时间;Iboost为换流电流峰值中超过负载电流的部分;Coss为主开关管S1-S6并联吸收电容:Coss=C1=C2=C3=C4=C5=C6;以下参数均可根据输入量约束表达;k为变压器匝比;Lr为换流电感;Lm为激磁电感;
Figure RE-GDA00026373122400000310
为S5(S1)换流前的激磁电流值,与每个开关周期中的负载电流值成正相关;
Figure RE-GDA0002637312240000036
Figure RE-GDA0002637312240000037
Figure RE-GDA0002637312240000038
Figure RE-GDA0002637312240000039
其中TA4为负载电流不同时,,之和所得的tA-t4的时间间隔;TA4_min为负载电流为0时,之和所得的tA-t4的时间间隔。
作为上述方案的进一步改进,当输出电流为正时各模式具体描述和间隔时间的计算过程为:
模式1(t<t0):电路处于稳定状态,S2,S3,S5处于导通状态;负载电流ILoad通过S2,S3续流,激磁电流iLm通过S2,S5续流,其值为
Figure RE-GDA0002637312240000041
模式2(t0-t1):t0时刻,关断S5;图4为本模式等效电路;激磁电感Lm和换流电感Lr串联与电容C5, C4发生谐振;
S5两端电压
Figure RE-GDA0002637312240000042
和电流
Figure RE-GDA0002637312240000043
表达式为:
Figure RE-GDA0002637312240000044
Figure RE-GDA0002637312240000045
其中:
Figure RE-GDA0002637312240000046
在t1时刻,b点电位谐振至VDC/2,本模式持续时间为:
Figure RE-GDA0002637312240000047
模式3(t1-t2):t1时刻,S5两端电压充电至VDC/2,D4零电压导通;激磁电感Lm和换流电感Lr串联两端电压为
Figure RE-GDA0002637312240000048
换流电流iLr和激磁电流iLm以相同的斜率减少;tA时刻,换流电流和激磁电流反向减少至零,变压器原边被钳位为kVDC,S4可在时间段t1-tA之间控制导通为ZVS导通;tA之后,换流电感两端的电压为
Figure RE-GDA0002637312240000049
激磁电感两端电压为kVDC;换流电流iLr和激磁电流iLm以不同的斜率正向增加;图5、图6 分别为本模式t1-tA和tA-t2段等效电路;
t1-tA换流电流为:
Figure RE-GDA00026373122400000410
S4的软开通时间为:
Figure RE-GDA00026373122400000411
S5关断到S4导通时间间隔DP1为:
Figure RE-GDA00026373122400000412
tA-t2谐振电流即换流电流中不包括激磁电流的部分(即参与S1换流的电流)增量为:
Figure RE-GDA0002637312240000051
t2时刻,谐振电流的值增至最大值:
iR(t2)=Iboost+iLoad \*公式(27)
其中:Iboost为谐振电流中超过负载电流的部分
联立,充电模式(TA2)的持续时间为:
Figure RE-GDA0002637312240000052
S4导通到S2关断时间间隔DP2为:
Figure RE-GDA0002637312240000053
模式4(t2-t3):t2时刻,主开关S2关断,谐振电流iR中超过负载电流的部分Iboost对电容C1放电C2充电,a 点的电位开始谐振上升;图7为本模式等效电路;
S2两端电压
Figure RE-GDA0002637312240000054
和谐振电流iR表达式为:
Figure RE-GDA0002637312240000055
Figure RE-GDA0002637312240000056
其中:
Figure RE-GDA0002637312240000057
t3时刻,a点电位上升至VDC;本模式持续时间为:
Figure RE-GDA0002637312240000058
其中:
Figure RE-GDA0002637312240000059
模式5(t3-t4):t3时刻,a点电位升至VDC,D1自然导通,S1符合ZVS换流条件;谐振电感电流iR线性下降, tB时刻,谐振电感电流iR降至负载电流iLoad;主开关管S1可在时间段t3-tB之间控制导通实现ZVS导通;图8 为本模式等效电路;
由,得:主开关ZVS开通模式持续时间为:
Figure RE-GDA00026373122400000510
S2关断到S1导通时间间隔DP3为:
Figure RE-GDA0002637312240000061
本模式持续时间为:
Figure RE-GDA0002637312240000062
S1导通到S4关断时间间隔DP4为:
Figure RE-GDA0002637312240000063
模式6(t4-t6):在t4时刻,谐振电流iR降至0;激磁电流
Figure RE-GDA0002637312240000064
增至
Figure RE-GDA0002637312240000065
t5时刻,关断S4;激磁电流
Figure RE-GDA0002637312240000066
对C4充电C5放电,b点电位开始谐振下降;图4为本模式等效电路;
S4两端电压
Figure RE-GDA0002637312240000067
和电流
Figure RE-GDA0002637312240000068
表达式为:
Figure RE-GDA0002637312240000069
Figure RE-GDA00026373122400000610
其中:
Figure RE-GDA00026373122400000611
在t6时刻,b点电位谐振至0,本模式持续时间为:
Figure RE-GDA00026373122400000612
模式7(t6-t7):t6时刻,b点电位降到0,D5自然导通;t6-t7,激磁电流反向增大,图9为本模式等效电路;
本模式激磁电流为:
Figure RE-GDA00026373122400000613
S5的软开通时间为:
Figure RE-GDA00026373122400000614
S4关断到S5导通时间间隔DP5为:
Figure RE-GDA00026373122400000615
t7时刻,激磁电流
Figure RE-GDA00026373122400000616
增至
Figure RE-GDA00026373122400000617
本模式持续时间为:
Figure RE-GDA00026373122400000618
S5导通到S1关断时间间隔DP6为:
Figure RE-GDA0002637312240000071
模式8(t7-t8):t7时刻,关断S1,负载电流iLoad对C1充电,C2放电,a点电位线性下降;t8时刻,a点电位降至VDC/2,二极管D2自然导通;S2可在t8之后控制导通;
本模式持续时间为:
Figure RE-GDA0002637312240000072
S1关断到S2导通时间间隔DP7为:
DP7=T7-8 \*公式(49)
当输出电流为负时各模式具体描述和间隔时间的计算过程为:
模式1(t<t0):电路处于稳定状态,S1,S4,S6处于导通状态;负载电流ILoad通过S4,S6续流,激磁电流iLm通过S1,S4续流,其值为
Figure RE-GDA0002637312240000073
模式2(t0-t1):t0时刻,关断S1;图4为本模式等效电路;激磁电感Lm和换流电感Lr串联与电容C1, C2发生谐振;
S1两端电压
Figure RE-GDA0002637312240000074
和电流
Figure RE-GDA0002637312240000075
表达式为:
Figure RE-GDA0002637312240000076
Figure RE-GDA0002637312240000077
其中:
Figure RE-GDA0002637312240000078
在t1时刻,a点电位谐振至VDC/2,本模式持续时间为:
Figure RE-GDA0002637312240000079
模式3(t1-t2):t1时刻,电容C1充电至VDC/2,D2零电压导通;激磁电感Lr和换流电感Lr两端电压为
Figure RE-GDA00026373122400000710
换流电流iLr和激磁电流iLm以相同的斜率反向减少;tA时刻,换流电流和激磁电流反向减少至零,变压器原边被钳位为kVDC,S2可在时间段t1-tA之间控制导通为ZVS导通;tA之后,换流电感两端的电压为
Figure RE-GDA00026373122400000711
激磁电感两端电压为kVDC;换流电流和激磁电流以不同的斜率正向增加;图5、图6分别为本模式t1-tA和tA-t2段等效电路;
t1-tA换流电流为:
Figure RE-GDA0002637312240000081
S2的软开通时间为:
Figure RE-GDA0002637312240000082
S1关断到S2导通时间间隔DN1为:
Figure RE-GDA0002637312240000083
tA-t2谐振电流即换流电流中不包括激磁电流的部分(即参与S1换流的电流)增量为:
Figure RE-GDA0002637312240000084
t2时刻,谐振电流的值增至最大值:
iR(t2)=Iboost+iLoad \*公式(58)
其中:Iboost为谐振电流中超过负载电流的部分
联立,充电模式(TA2)的持续时间为:
Figure RE-GDA0002637312240000085
S2导通到S4关断时间间隔DN2为:
Figure RE-GDA0002637312240000086
模式4(t2-t3):t2时刻,主开关S4关断,谐振电流iR中超过负载电流的部分Iboost对电容C5放电C4充电,b 点的电位开始谐振下降;图7为本模式等效电路;
S4两端电压
Figure RE-GDA0002637312240000087
和谐振电流iR表达式为:
Figure RE-GDA0002637312240000088
Figure RE-GDA0002637312240000089
其中:
Figure RE-GDA00026373122400000810
t3时刻,b点电位下降至0;本模式持续时间为:
Figure RE-GDA0002637312240000091
其中:
Figure RE-GDA0002637312240000092
模式5(t3-t4):t3时刻,a点电位降至0,D5自然导通,S5符合ZVS换流条件;谐振电流iR线性下降,tB时刻,谐振电流iR降至负载电流iLoad;主开关管S5可在时间段t3-tB之间控制导通实现ZVS导通;图8为本模式等效电路;
由,得:主开关ZVS开通模式持续时间为:
Figure RE-GDA0002637312240000093
S4关断到S5导通时间间隔DN3为:
Figure RE-GDA0002637312240000094
本模式持续时间为:
Figure RE-GDA0002637312240000095
S5导通到S2关断时间间隔DN4为:
Figure RE-GDA0002637312240000096
模式6(t4-t6):在t4时刻,谐振电流iLr降至0,激磁电流iLm升至
Figure RE-GDA00026373122400000914
;t5时刻,关断S2;激磁电流
Figure RE-GDA0002637312240000097
对C2充电C1放电,a点电位开始谐振上升;图4为本模式等效电路;
S2两端电压
Figure RE-GDA0002637312240000098
和电流
Figure RE-GDA0002637312240000099
表达式为:
Figure RE-GDA00026373122400000910
Figure RE-GDA00026373122400000911
其中:
Figure RE-GDA00026373122400000912
在t6时刻,a点电位谐振至VDC,本模式持续时间为:
Figure RE-GDA00026373122400000913
模式7(t6-t7):t6时刻,a点电位升到VDC,D1自然导通;t6-t7,换流电流反向增大,图9为本模式等效电路;
本模式激磁电流为:
Figure RE-GDA0002637312240000101
S1的软开通时间为:
Figure RE-GDA0002637312240000102
S2关断到S1导通时间间隔DN5为:
Figure RE-GDA0002637312240000103
t7时刻,激磁电流
Figure RE-GDA0002637312240000104
增至
Figure RE-GDA0002637312240000105
本模式持续时间为:
Figure RE-GDA0002637312240000106
S1导通到S5关断时间间隔DN6为:
Figure RE-GDA0002637312240000107
模式8(t7-t8):t7时刻,关断S5,负载电流iLoad对C6充电,C5放电,b点电位线性上升;t8时刻,b点电位升至VDC/2,二极管D4自然导通;S4可在t8之后控制导通;
本模式持续时间为:
Figure RE-GDA0002637312240000108
S1关断到S2导通时间间隔DN7为:
DN7=T7-8 \*公式(80)
由以上电路结构和工作原理的分析可知,开关完成零电压换流需要设计换流电感、激磁电感、变压器匝比、开关并联吸收电容;以上各元件参数的设计将在以下完成(以输出电流为正时分析);
当(1/2-k)VDC小于VDC/2时,在换流电流大于负载电流一定值的条件下关断S2保证开关管可靠完成换流;且主开关的关断损耗与关断时刻的沟道电流的平方成正比[8,13],因此S2的关断电流在满足式时,主开关的关断损耗可近似忽略(关断损耗小于1/10):
Figure RE-GDA0002637312240000109
其中ILoad_rms为负载电流有效值;
在实际的电路运行过程中,负载电流检测存在误差,导致Iboost的误差,影响换流时间T2-3和ZVT开通时间 T3B,式和求和之后对Ir求导,当Ir满足公式的时主开关的死区时间可以为一固定值;
Figure RE-GDA00026373122400001010
联立:
Figure RE-GDA0002637312240000111
由,得:
Figure RE-GDA0002637312240000112
其中由和有解可得β的取值范围为:
Figure RE-GDA0002637312240000113
为保证S5可靠换流且S4有足够得ZVS开通时间,假设Lm>>Lr,由得:
Figure RE-GDA0002637312240000114
为保证磁化电流在换流电感Lr线性放电阶段后(t=t4)与S5换流之前(t=t0)大小相等,方向相反(忽略下桥臂谐振换流阶段磁化电流的变化):
Figure RE-GDA0002637312240000115
上述T1A,TA4都与负载电流有关,当负载电流为0时,T1A和TA4值最小为T1A_min TA4_min,在此条件下计算出的Lm符合任何负载电流大于0时S4有足够得ZVS开通时间的要求;因此:
Figure RE-GDA0002637312240000116
激磁电流可由下式表示:
Figure RE-GDA0002637312240000117
其中TA4为负载电流不同时,之和所得的tA-t4的时间间隔;因此每个开关周期的
Figure RE-GDA0002637312240000118
不同。
本发明的有益效果是:
与现有技术相比,本发明的一种变压器辅助型PWM三电平零电压软开关逆变器,在正半周期和负半周期逆变过程中,开关管S1,S2,S3和开关管S4,S5,S6互为辅助开关;本发明并未增加额外的辅助开关因此结构以及控制简单,实现了所有开关管的零电压开通,有效降低了开关管的开通损耗。
附图说明
以下结合附图对本发明的具体实施方式作进一步的详细说明,其中:
图1是本发明的变压器辅助型PWM三电平零电压软开关逆变器电路;
图2为本发明电路在输出电流为正时,一个PWM开关周期内各模式电路状态图;
图3为本发明电路在输出电流为负时,一个PWM开关周期内各模式电路状态图;
图4是本发明中,一个PWM开关周期内模式2、模式6等效电路图;
图5、图6是本发明中,一个PWM开关周期内模式3t1-tA段和t1-tA段等效电路图;
图7是本发明中,一个PWM开关周期内模式4等效电路图;
图8是本发明中,一个PWM开关周期内模式5等效电路图;
图9是本发明中,一个PWM开关周期内模式7等效电路图;
图10为本发明电路在输出电流为正时,一个PWM开关周期内各个开关管的驱动脉冲信号和主要结点电压和支路电流的波形图;
图11本发明电路在输出电流为负时,一个PWM开关周期内各个开关管的驱动脉冲信号和主要结点电压和电流的波形图。
具体实施方式
如图1-图11所示,本发明的一种变压器辅助型PWM三电平零电压软开关逆变器包括有第一主开关管S1、第二主开关管S2、第三主开关管S3、第四主开关管S4、第五主开关管S5、第六主开关管S6、第一分压电容 Cd1、第二分压电容Cd2、隔离变压器T、初级绕组T1、次级绕组T2、钳位二极管D7、谐振电感Lr、飞跨电容Cs,第一主开关管S1的源极、第二主开关管S2的漏极相连于a点,这两个开关管构成高速开关上桥臂;所述第四主开关管S4的源极、第五主开关管S5的漏极相连于b点,这两个开关管构成高速开关下桥臂;第三主开关管S3的源极、第六主开关管S6的漏极相连于c点,这两个开关管构成低速开关桥臂;第二主开关管S2的源极、第四主开关管S4的漏极、第一分压电容Cd1的负极和第二分压电容Cd2的正极连于o点;第一分压电容Cd1和第二分压电容Cd2两端的电压分别为VDC/2;第一分压电容Cd1的正极与隔离变压器T的次级绕组 T2的异名端、第一开关管S1的漏极相连;第二分压电容Cd2的负极与钳位二极管D7的正极、第五开关管S5 的源极相连;钳位二极管D7的负极与变压器次级绕组T2的同名端相连;谐振电感Lr的一端与a点相连,另一端与隔离变压器T初级绕组T1的同名端相连;隔离变压器T的初级绕组T1的异名端与飞跨电容Cs的阳极相连;飞跨电容Cs的阴极与b点相连;隔离变压器T初级绕组T1的匝数与T2的匝数比为1/k;负载的一端与 c点相连,另一端与o点相连。
进一步改进,当负载电流为正时工作模式及切换时间间隔为:
当电路处于稳定状态,S2、S3、S5处于导通状态,S1、S2、S4处于关断状态;钳位二极管D7、D8、D9和开关管的反并联二极管处于关断状态;
t0时刻,关断S5
S5关断后延迟DP1,导通S4
Figure RE-GDA0002637312240000121
S4导通后延迟DP2,关断S2
Figure RE-GDA0002637312240000122
S2关断后延迟DP3,导通S1
Figure RE-GDA0002637312240000123
S1导通后延迟DP4,关断S4
Figure RE-GDA0002637312240000124
S4关断后延迟DP5,导通S5
Figure RE-GDA0002637312240000131
S5导通后延迟DP6,关断S1
Figure RE-GDA0002637312240000132
S1关断后延迟DP7,导通S2
Figure RE-GDA0002637312240000133
当负载电流为负时工作模式及切换时间间隔为:
电路处于稳定状态,S1、S4、S6处于导通状态,S2、S3、S5处于关断状态;钳位二极管D7、D8、D9和开关管的反并联二极管处于关断状态;
t0时刻,关断S1
S1关断后延迟DN1,导通S2
Figure RE-GDA0002637312240000134
S2导通后延迟DN2,关断S4
Figure RE-GDA0002637312240000135
S4关断后延迟DN3,导通S5
Figure RE-GDA0002637312240000136
S5导通后延迟DN4,关断S2
Figure RE-GDA0002637312240000137
S2关断后延迟DN5,导通S1
Figure RE-GDA0002637312240000138
S1导通后延迟DN6,关断S5
Figure RE-GDA0002637312240000141
S5关断后延迟DN7,导通S4
Figure RE-GDA0002637312240000142
以下参数均为输入量:VDC为直流母线电压;T3B为S1(S5)最短开通时间;Iboost为换流电流峰值中超过负载电流的部分;Coss为主开关管S1-S6并联吸收电容:Coss=C1=C2=C3=C4=C5=C6;以下参数均可根据输入量约束表达;k为变压器匝比;Lr为换流电感;Lm为激磁电感;
Figure RE-GDA0002637312240000143
为S5(S1)换流前的激磁电流值,与每个开关周期中的负载电流值成正相关;
Figure RE-GDA0002637312240000144
Figure RE-GDA0002637312240000145
Figure RE-GDA0002637312240000146
Figure RE-GDA0002637312240000147
其中TA4为负载电流不同时,,之和所得的tA-t4的时间间隔;TA4_min为负载电流为0时,之和所得的tA-t4的时间间隔。
进一步改进,当输出电流为正时各模式具体描述和间隔时间的计算过程为:
模式1(t<t0):电路处于稳定状态,S2,S3,S5处于导通状态;负载电流ILoad通过S2,S3续流,激磁电流iLm通过S2,S5续流,其值为
Figure RE-GDA0002637312240000148
模式2(t0-t1):t0时刻,关断S5;图4为本模式等效电路;激磁电感Lm和换流电感Lr串联与电容C5, C4发生谐振;
S5两端电压
Figure RE-GDA0002637312240000149
和电流
Figure RE-GDA00026373122400001410
表达式为:
Figure RE-GDA00026373122400001411
Figure RE-GDA00026373122400001412
其中:
Figure RE-GDA0002637312240000151
在t1时刻,b点电位谐振至VDC/2,本模式持续时间为:
Figure RE-GDA0002637312240000152
模式3(t1-t2):t1时刻,S5两端电压充电至VDC/2,D4零电压导通;激磁电感Lm和换流电感Lr串联两端电压为
Figure RE-GDA0002637312240000153
换流电流iLr和激磁电流iLm以相同的斜率减少;tA时刻,换流电流和激磁电流反向减少至零,变压器原边被钳位为kVDC,S4可在时间段t1-tA之间控制导通为ZVS导通;tA之后,换流电感两端的电压为
Figure RE-GDA0002637312240000154
激磁电感两端电压为kVDC;换流电流iLr和激磁电流iLm以不同的斜率正向增加;图5、图6 分别为本模式t1-tA和tA-t2段等效电路;
t1-tA换流电流为:
Figure RE-GDA0002637312240000155
S4的软开通时间为:
Figure RE-GDA0002637312240000156
S5关断到S4导通时间间隔DP1为:
Figure RE-GDA0002637312240000157
tA-t2谐振电流即换流电流中不包括激磁电流的部分(即参与S1换流的电流)增量为:
Figure RE-GDA0002637312240000158
t2时刻,谐振电流的值增至最大值:
iR(t2)=Iboost+iLoad \*公式(27)
其中:Iboost为谐振电流中超过负载电流的部分
联立,充电模式(TA2)的持续时间为:
Figure RE-GDA0002637312240000159
S4导通到S2关断时间间隔DP2为:
Figure RE-GDA00026373122400001510
模式4(t2-t3):t2时刻,主开关S2关断,谐振电流iR中超过负载电流的部分Iboost对电容C1放电C2充电,a 点的电位开始谐振上升;图7为本模式等效电路;
S2两端电压
Figure RE-GDA0002637312240000161
和谐振电流iR表达式为:
Figure RE-GDA0002637312240000162
Figure RE-GDA0002637312240000163
其中:
Figure RE-GDA0002637312240000164
t3时刻,a点电位上升至VDC;本模式持续时间为:
Figure RE-GDA0002637312240000165
其中:
Figure RE-GDA0002637312240000166
模式5(t3-t4):t3时刻,a点电位升至VDC,D1自然导通,S1符合ZVS换流条件;谐振电感电流iR线性下降, tB时刻,谐振电感电流iR降至负载电流iLoad;主开关管S1可在时间段t3-tB之间控制导通实现ZVS导通;图8 为本模式等效电路;
由,得:主开关ZVS开通模式持续时间为:
Figure RE-GDA0002637312240000167
S2关断到S1导通时间间隔DP3为:
Figure RE-GDA0002637312240000168
本模式持续时间为:
Figure RE-GDA0002637312240000169
S1导通到S4关断时间间隔DP4为:
Figure RE-GDA00026373122400001610
模式6(t4-t6):在t4时刻,谐振电流iR降至0;激磁电流
Figure RE-GDA00026373122400001611
增至
Figure RE-GDA00026373122400001612
t5时刻,关断S4;激磁电流
Figure RE-GDA00026373122400001613
对C4充电C5放电,b点电位开始谐振下降;图4为本模式等效电路;
S4两端电压
Figure RE-GDA00026373122400001614
和电流
Figure RE-GDA00026373122400001615
表达式为:
Figure RE-GDA0002637312240000171
Figure RE-GDA0002637312240000172
其中:
Figure RE-GDA0002637312240000173
在t6时刻,b点电位谐振至0,本模式持续时间为:
Figure RE-GDA0002637312240000174
模式7(t6-t7):t6时刻,b点电位降到0,D5自然导通;t6-t7,激磁电流反向增大,图9为本模式等效电路;
本模式激磁电流为:
Figure RE-GDA0002637312240000175
S5的软开通时间为:
Figure RE-GDA0002637312240000176
S4关断到S5导通时间间隔DP5为:
Figure RE-GDA0002637312240000177
t7时刻,激磁电流
Figure RE-GDA0002637312240000178
增至
Figure RE-GDA0002637312240000179
本模式持续时间为:
Figure RE-GDA00026373122400001710
S5导通到S1关断时间间隔DP6为:
Figure RE-GDA00026373122400001711
模式8(t7-t8):t7时刻,关断S1,负载电流iLoad对C1充电,C2放电,a点电位线性下降;t8时刻,a点电位降至VDC/2,二极管D2自然导通;S2可在t8之后控制导通;
本模式持续时间为:
Figure RE-GDA00026373122400001712
S1关断到S2导通时间间隔DP7为:
DP7=T7-8 \*公式(49)
当输出电流为负时各模式具体描述和间隔时间的计算过程为:
模式1(t<t0):电路处于稳定状态,S1,S4,S6处于导通状态;负载电流ILoad通过S4,S6续流,激磁电流iLm通过S1,S4续流,其值为
Figure RE-GDA00026373122400001713
模式2(t0-t1):t0时刻,关断S1;图4为本模式等效电路;激磁电感Lm和换流电感Lr串联与电容C1, C2发生谐振;
S1两端电压
Figure RE-GDA0002637312240000181
和电流
Figure RE-GDA0002637312240000182
表达式为:
Figure RE-GDA0002637312240000183
Figure RE-GDA0002637312240000184
其中:
Figure RE-GDA0002637312240000185
在t1时刻,a点电位谐振至VDC/2,本模式持续时间为:
Figure RE-GDA0002637312240000186
模式3(t1-t2):t1时刻,电容C1充电至VDC/2,D2零电压导通;激磁电感Lr和换流电感Lr两端电压为
Figure RE-GDA0002637312240000187
换流电流iLr和激磁电流iLm以相同的斜率反向减少;tA时刻,换流电流和激磁电流反向减少至零,变压器原边被钳位为kVDC,S2可在时间段t1-tA之间控制导通为ZVS导通;tA之后,换流电感两端的电压为
Figure RE-GDA0002637312240000188
激磁电感两端电压为kVDC;换流电流和激磁电流以不同的斜率正向增加;图5、图6分别为本模式t1-tA和tA-t2段等效电路;
t1-tA换流电流为:
Figure RE-GDA0002637312240000189
S2的软开通时间为:
Figure RE-GDA00026373122400001810
S1关断到S2导通时间间隔DN1为:
Figure RE-GDA00026373122400001811
tA-t2谐振电流即换流电流中不包括激磁电流的部分(即参与S1换流的电流)增量为:
Figure RE-GDA00026373122400001812
t2时刻,谐振电流的值增至最大值:
iR(t2)=Iboost+iLoad \*公式(58)
其中:Iboost为谐振电流中超过负载电流的部分
联立,充电模式(TA2)的持续时间为:
Figure RE-GDA0002637312240000191
S2导通到S4关断时间间隔DN2为:
Figure RE-GDA0002637312240000192
模式4(t2-t3):t2时刻,主开关S4关断,谐振电流iR中超过负载电流的部分Iboost对电容C5放电C4充电,b 点的电位开始谐振下降;图7为本模式等效电路;
S4两端电压
Figure RE-GDA0002637312240000193
和谐振电流iR表达式为:
Figure RE-GDA0002637312240000194
Figure RE-GDA0002637312240000195
其中:
Figure RE-GDA0002637312240000196
t3时刻,b点电位下降至0;本模式持续时间为:
Figure RE-GDA0002637312240000197
其中:
Figure RE-GDA0002637312240000198
模式5(t3-t4):t3时刻,a点电位降至0,D5自然导通,S5符合ZVS换流条件;谐振电流iR线性下降,tB时刻,谐振电流iR降至负载电流iLoad;主开关管S5可在时间段t3-tB之间控制导通实现ZVS导通;图8为本模式等效电路;
由,得:主开关ZVS开通模式持续时间为:
Figure RE-GDA0002637312240000199
S4关断到S5导通时间间隔DN3为:
Figure RE-GDA00026373122400001910
本模式持续时间为:
Figure RE-GDA0002637312240000201
S5导通到S2关断时间间隔DN4为:
Figure RE-GDA0002637312240000202
模式6(t4-t6):在t4时刻,谐振电流iLr降至0,激磁电流iLm升至
Figure RE-GDA0002637312240000203
;t5时刻,关断S2;激磁电流
Figure RE-GDA0002637312240000204
对C2充电C1放电,a点电位开始谐振上升;图4为本模式等效电路;
S2两端电压
Figure RE-GDA0002637312240000205
和电流
Figure RE-GDA0002637312240000206
表达式为:
Figure RE-GDA0002637312240000207
Figure RE-GDA0002637312240000208
其中:
Figure RE-GDA0002637312240000209
在t6时刻,a点电位谐振至VDC,本模式持续时间为:
Figure RE-GDA00026373122400002010
模式7(t6-t7):t6时刻,a点电位升到VDC,D1自然导通;t6-t7,换流电流反向增大,图9为本模式等效电路;
本模式激磁电流为:
Figure RE-GDA00026373122400002011
S1的软开通时间为:
Figure RE-GDA00026373122400002012
S2关断到S1导通时间间隔DN5为:
Figure RE-GDA00026373122400002013
t7时刻,激磁电流
Figure RE-GDA00026373122400002014
增至
Figure RE-GDA00026373122400002015
本模式持续时间为:
Figure RE-GDA00026373122400002016
S1导通到S5关断时间间隔DN6为:
Figure RE-GDA00026373122400002017
模式8(t7-t8):t7时刻,关断S5,负载电流iLoad对C6充电,C5放电,b点电位线性上升;t8时刻,b点电位升至VDC/2,二极管D4自然导通;S4可在t8之后控制导通;
本模式持续时间为:
Figure RE-GDA0002637312240000211
S1关断到S2导通时间间隔DN7为:
DN7=T7-8 \*公式(80)
由以上电路结构和工作原理的分析可知,开关完成零电压换流需要设计换流电感、激磁电感、变压器匝比、开关并联吸收电容;以上各元件参数的设计将在以下完成(以输出电流为正时分析);
当(1/2-k)VDC小于VDC/2时,在换流电流大于负载电流一定值的条件下关断S2保证开关管可靠完成换流;且主开关的关断损耗与关断时刻的沟道电流的平方成正比[8,13],因此S2的关断电流在满足式时,主开关的关断损耗可近似忽略(关断损耗小于1/10):
Figure RE-GDA0002637312240000212
其中ILoad_rms为负载电流有效值;
在实际的电路运行过程中,负载电流检测存在误差,导致Iboost的误差,影响换流时间T2-3和ZVT开通时间 T3B,式和求和之后对Ir求导,当Ir满足公式的时主开关的死区时间可以为一固定值;
Figure RE-GDA0002637312240000213
联立:
Figure RE-GDA0002637312240000214
由,得:
Figure RE-GDA0002637312240000215
其中由和有解可得β的取值范围为:
Figure RE-GDA0002637312240000216
为保证S5可靠换流且S4有足够得ZVS开通时间,假设Lm>>Lr,由得:
Figure RE-GDA0002637312240000217
为保证磁化电流在换流电感Lr线性放电阶段后(t=t4)与S5换流之前(t=t0)大小相等,方向相反(忽略下桥臂谐振换流阶段磁化电流的变化):
Figure RE-GDA0002637312240000218
上述T1A,TA4都与负载电流有关,当负载电流为0时,T1A和TA4值最小为T1A_min TA4_min,在此条件下计算出的Lm符合任何负载电流大于0时S4有足够得ZVS开通时间的要求;因此:
Figure RE-GDA0002637312240000221
激磁电流可由下式表示:
Figure RE-GDA0002637312240000222
其中TA4为负载电流不同时,之和所得的tA-t4的时间间隔;因此每个开关周期的
Figure RE-GDA0002637312240000223
不同。
回路中各电气变量参考正方向与图1中箭头方向一致。
输入参数如表1所示:
输入DC电压(V<sub>DC</sub>) 400V
开关频率(f<sub>sw</sub>) 20KHz
C<sub>oss</sub> 100pF
I<sub>boost</sub> 2A
T<sub>1A_min</sub> 10ns
T<sub>3B</sub> 10ns
表1输入参数
根据输入参数的约束计算出的电感和变压器具体值如表2
换流电感(L<sub>r</sub>) 1.6uH
激磁电感(L<sub>m</sub>) 40.3uH
变压器匝比k 0.4
表2
根据具体元件参数表计算出各持续时间和
Figure RE-GDA0002637312240000224
与负载电流的关系:
Figure RE-GDA0002637312240000225
Figure RE-GDA0002637312240000226
Figure RE-GDA0002637312240000227
DP3=DN3=(22.9+5)×10-9 \*公式(93)
Figure RE-GDA0002637312240000228
Figure RE-GDA0002637312240000229
Figure RE-GDA0002637312240000231
Figure RE-GDA0002637312240000232
Figure RE-GDA0002637312240000233
以上实施例不局限于该实施例自身的技术方案,实施例之间可以相互结合成新的实施例。以上实施例仅用以说明本发明的技术方案而并非对其进行限制,凡未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明技术方案的范围内。

Claims (3)

1.一种变压器辅助型PWM三电平零电压软开关逆变器,其特征在于:包括有第一主开关管(S1)、第二主开关管(S2)、第三主开关管(S3)、第四主开关管(S4)、第五主开关管(S5)、第六主开关管(S6)、第一分压电容(Cd1)、第二分压电容(Cd2)、隔离变压器(T)、初级绕组(T1)、次级绕组(T2)、钳位二极管(D7)、谐振电感(Lr)、飞跨电容(Cs),第一主开关管(S1)的源极、第二主开关管(S2)的漏极相连于a点,这两个开关管构成高速开关上桥臂;所述第四主开关管(S4)的源极、第五主开关管(S5)的漏极相连于b点,这两个开关管构成高速开关下桥臂;第三主开关管(S3)的源极、第六主开关管(S6)的漏极相连于c点,这两个开关管构成低速开关桥臂;第二主开关管(S2)的源极、第四主开关管(S4)的漏极、第一分压电容(Cd1)的负极和第二分压电容(Cd2)的正极连于o点;第一分压电容(Cd1)和第二分压电容(Cd2)两端的电压分别为VDC/2;第一分压电容(Cd1)的正极与隔离变压器(T)的次级绕组(T2)的异名端、第一开关管(S1)的漏极相连;第二分压电容(Cd2)的负极与钳位二极管(D7)的正极、第五开关管(S5)的源极相连;钳位二极管(D7)的负极与变压器次级绕组(T2)的同名端相连;谐振电感(Lr)的一端与a点相连,另一端与隔离变压器(T)初级绕组(T1)的同名端相连;隔离变压器(T)的初级绕组(T1)的异名端与飞跨电容(Cs)的阳极相连;飞跨电容(Cs)的阴极与b点相连;隔离变压器(T)初级绕组(T1)的匝数与T2的匝数比为1/k;负载的一端与c点相连,另一端与o点相连。
2.根据权利要求1所述的一种变压器辅助型PWM三电平零电压软开关逆变器,其特征在于:
当负载电流为正时工作模式及切换时间间隔为:
当电路处于稳定状态,S2、S3、S5处于导通状态,S1、S2、S4处于关断状态;钳位二极管D7、D8、D9和开关管的反并联二极管处于关断状态;
t0时刻,关断S5
S5关断后延迟DP1,导通S4
Figure RE-FDA0002637312230000011
S4导通后延迟DP2,关断S2
Figure RE-FDA0002637312230000012
S2关断后延迟DP3,导通S1
Figure RE-FDA0002637312230000013
S1导通后延迟DP4,关断S4
Figure RE-FDA0002637312230000014
S4关断后延迟DP5,导通S5
Figure RE-FDA0002637312230000015
Figure RE-FDA0002637312230000021
S5导通后延迟DP6,关断S1
Figure RE-FDA0002637312230000022
S1关断后延迟DP7,导通S2
Figure RE-FDA0002637312230000023
当负载电流为负时工作模式及切换时间间隔为:
电路处于稳定状态,S1、S4、S6处于导通状态,S2、S3、S5处于关断状态;钳位二极管D7、D8、D9和开关管的反并联二极管处于关断状态;
t0时刻,关断S1
S1关断后延迟DN1,导通S2
Figure RE-FDA0002637312230000024
S2导通后延迟DN2,关断S4
Figure RE-FDA0002637312230000025
S4关断后延迟DN3,导通S5
Figure RE-FDA0002637312230000026
S5导通后延迟DN4,关断S2
Figure RE-FDA0002637312230000027
S2关断后延迟DN5,导通S1
Figure RE-FDA0002637312230000028
S1导通后延迟DN6,关断S5
Figure RE-FDA0002637312230000029
S5关断后延迟DN7,导通S4
Figure RE-FDA0002637312230000031
以下参数均为输入量:VDC为直流母线电压;T3B为S1(S5)最短开通时间;Iboost为换流电流峰值中超过负载电流的部分;Coss为主开关管S1-S6并联吸收电容:Coss=C1=C2=C3=C4=C5=C6;以下参数均可根据输入量约束表达;k为变压器匝比;Lr为换流电感;Lm为激磁电感;ILm_0为S5(S1)换流前的激磁电流值,与每个开关周期中的负载电流值成正相关;
Figure RE-FDA0002637312230000032
Figure RE-FDA0002637312230000033
Figure RE-FDA0002637312230000034
Figure RE-FDA0002637312230000035
其中TA4为负载电流不同时,,之和所得的tA-t4的时间间隔;TA4_min为负载电流为0时,之和所得的tA-t4的时间间隔。
3.根据权利要求2所述的一种变压器辅助型PWM三电平零电压软开关逆变器,其特征在于:
当输出电流为正时各模式具体描述和间隔时间的计算过程为:
模式1(t<t0):电路处于稳定状态,S2,S3,S5处于导通状态;负载电流ILoad通过S2,S3续流,激磁电流iLm通过S2,S5续流,其值为
Figure RE-FDA0002637312230000036
模式2(t0-t1):t0时刻,关断S5;图4为本模式等效电路;激磁电感Lm和换流电感Lr串联与电容C5,C4发生谐振;
S5两端电压
Figure RE-FDA0002637312230000037
和电流
Figure RE-FDA0002637312230000038
表达式为:
Figure RE-FDA0002637312230000039
Figure RE-FDA00026373122300000310
其中:
Figure RE-FDA00026373122300000311
在t1时刻,b点电位谐振至VDC/2,本模式持续时间为:
Figure RE-FDA0002637312230000041
模式3(t1-t2):t1时刻,S5两端电压充电至VDC/2,D4零电压导通;激磁电感Lm和换流电感Lr串联两端电压为
Figure RE-FDA0002637312230000042
换流电流iLr和激磁电流iLm以相同的斜率减少;tA时刻,换流电流和激磁电流反向减少至零,变压器原边被钳位为kVDC,S4可在时间段t1-tA之间控制导通为ZVS导通;tA之后,换流电感两端的电压为
Figure RE-FDA0002637312230000043
激磁电感两端电压为kVDC;换流电流iLr和激磁电流iLm以不同的斜率正向增加;图5、图6分别为本模式t1-tA和tA-t2段等效电路;
t1-tA换流电流为:
Figure RE-FDA0002637312230000044
S4的软开通时间为:
Figure RE-FDA0002637312230000045
S5关断到S4导通时间间隔DP1为:
Figure RE-FDA0002637312230000046
tA-t2谐振电流即换流电流中不包括激磁电流的部分(即参与S1换流的电流)增量为:
Figure RE-FDA0002637312230000047
t2时刻,谐振电流的值增至最大值:
iR(t2)=Iboost+iLoad\*公式(27)
其中:Iboost为谐振电流中超过负载电流的部分
联立,充电模式(TA2)的持续时间为:
Figure RE-FDA0002637312230000048
S4导通到S2关断时间间隔DP2为:
Figure RE-FDA0002637312230000049
模式4(t2-t3):t2时刻,主开关S2关断,谐振电流iR中超过负载电流的部分Iboost对电容C1放电C2充电,a点的电位开始谐振上升;图7为本模式等效电路;
S2两端电压
Figure RE-FDA0002637312230000051
和谐振电流iR表达式为:
Figure RE-FDA0002637312230000052
Figure RE-FDA0002637312230000053
其中:
Figure RE-FDA0002637312230000054
t3时刻,a点电位上升至VDC;本模式持续时间为:
Figure RE-FDA0002637312230000055
其中:
Figure RE-FDA0002637312230000056
模式5(t3-t4):t3时刻,a点电位升至VDC,D1自然导通,S1符合ZVS换流条件;谐振电感电流iR线性下降,tB时刻,谐振电感电流iR降至负载电流iLoad;主开关管S1可在时间段t3-tB之间控制导通实现ZVS导通;图8为本模式等效电路;
由,得:主开关ZVS开通模式持续时间为:
Figure RE-FDA0002637312230000057
S2关断到S1导通时间间隔DP3为:
Figure RE-FDA0002637312230000058
本模式持续时间为:
Figure RE-FDA0002637312230000059
S1导通到S4关断时间间隔DP4为:
Figure RE-FDA00026373122300000510
模式6(t4-t6):在t4时刻,谐振电流iR降至0;激磁电流
Figure RE-FDA00026373122300000511
增至
Figure RE-FDA00026373122300000512
t5时刻,关断S4;激磁电流
Figure RE-FDA00026373122300000513
对C4充电C5放电,b点电位开始谐振下降;图4为本模式等效电路;
S4两端电压
Figure RE-FDA00026373122300000514
和电流
Figure RE-FDA00026373122300000515
表达式为:
Figure RE-FDA00026373122300000516
Figure RE-FDA0002637312230000061
其中:
Figure RE-FDA0002637312230000062
在t6时刻,b点电位谐振至0,本模式持续时间为:
Figure RE-FDA0002637312230000063
模式7(t6-t7):t6时刻,b点电位降到0,D5自然导通;t6-t7,激磁电流反向增大,图9为本模式等效电路;
本模式激磁电流为:
Figure RE-FDA0002637312230000064
S5的软开通时间为:
Figure RE-FDA0002637312230000065
S4关断到S5导通时间间隔DP5为:
Figure RE-FDA0002637312230000066
t7时刻,激磁电流
Figure RE-FDA0002637312230000067
增至
Figure RE-FDA0002637312230000068
本模式持续时间为:
Figure RE-FDA0002637312230000069
S5导通到S1关断时间间隔DP6为:
Figure RE-FDA00026373122300000610
模式8(t7-t8):t7时刻,关断S1,负载电流iLoad对C1充电,C2放电,a点电位线性下降;t8时刻,a点电位降至VDC/2,二极管D2自然导通;S2可在t8之后控制导通;
本模式持续时间为:
Figure RE-FDA00026373122300000611
S1关断到S2导通时间间隔DP7为:
DP7=T7-8\*公式(49)
当输出电流为负时各模式具体描述和间隔时间的计算过程为:
模式1(t<t0):电路处于稳定状态,S1,S4,S6处于导通状态;负载电流ILoad通过S4,S6续流,激磁电流iLm通过S1,S4续流,其值为
Figure RE-FDA00026373122300000612
模式2(t0-t1):t0时刻,关断S1;图4为本模式等效电路;激磁电感Lm和换流电感Lr串联与电容C1,C2 发生谐振;
S1两端电压
Figure RE-FDA0002637312230000071
和电流
Figure RE-FDA0002637312230000072
表达式为:
Figure RE-FDA0002637312230000073
Figure RE-FDA0002637312230000074
其中:
Figure RE-FDA0002637312230000075
在t1时刻,a点电位谐振至VDC/2,本模式持续时间为:
Figure RE-FDA0002637312230000076
模式3(t1-t2):t1时刻,电容C1充电至VDC/2,D2零电压导通;激磁电感Lr和换流电感Lr两端电压为
Figure RE-FDA0002637312230000077
换流电流iLr和激磁电流iLm以相同的斜率反向减少;tA时刻,换流电流和激磁电流反向减少至零,变压器原边被钳位为kVDC,S2可在时间段t1-tA之间控制导通为ZVS导通;tA之后,换流电感两端的电压为
Figure RE-FDA0002637312230000078
激磁电感两端电压为kVDC;换流电流和激磁电流以不同的斜率正向增加;图5、图6分别为本模式t1-tA和tA-t2段等效电路;
t1-tA换流电流为:
Figure RE-FDA0002637312230000079
S2的软开通时间为:
Figure RE-FDA00026373122300000710
S1关断到S2导通时间间隔DN1为:
Figure RE-FDA00026373122300000711
tA-t2谐振电流即换流电流中不包括激磁电流的部分(即参与S1换流的电流)增量为:
Figure RE-FDA00026373122300000712
t2时刻,谐振电流的值增至最大值:
iR(t2)=Iboost+iLoad\*公式(58)
其中:Iboost为谐振电流中超过负载电流的部分
联立,充电模式(TA2)的持续时间为:
Figure RE-FDA0002637312230000081
S2导通到S4关断时间间隔DN2为:
Figure RE-FDA0002637312230000082
模式4(t2-t3):t2时刻,主开关S4关断,谐振电流iR中超过负载电流的部分Iboost对电容C5放电C4充电,b点的电位开始谐振下降;图7为本模式等效电路;
S4两端电压
Figure RE-FDA0002637312230000083
和谐振电流iR表达式为:
Figure RE-FDA0002637312230000084
Figure RE-FDA0002637312230000085
其中:
Figure RE-FDA0002637312230000086
t3时刻,b点电位下降至0;本模式持续时间为:
Figure RE-FDA0002637312230000087
其中:
Figure RE-FDA0002637312230000088
模式5(t3-t4):t3时刻,a点电位降至0,D5自然导通,S5符合ZVS换流条件;谐振电流iR线性下降,tB时刻,谐振电流iR降至负载电流iLoad;主开关管S5可在时间段t3-tB之间控制导通实现ZVS导通;图8为本模式等效电路;
由,得:主开关ZVS开通模式持续时间为:
Figure RE-FDA0002637312230000089
S4关断到S5导通时间间隔DN3为:
Figure RE-FDA00026373122300000810
本模式持续时间为:
Figure RE-FDA0002637312230000091
S5导通到S2关断时间间隔DN4为:
Figure RE-FDA0002637312230000092
模式6(t4-t6):在t4时刻,谐振电流iLr降至0,激磁电流iLm升至
Figure RE-FDA0002637312230000093
t5时刻,关断S2;激磁电流
Figure RE-FDA0002637312230000094
对C2充电C1放电,a点电位开始谐振上升;图4为本模式等效电路;
S2两端电压
Figure RE-FDA0002637312230000095
和电流
Figure RE-FDA0002637312230000096
表达式为:
Figure RE-FDA0002637312230000097
Figure RE-FDA0002637312230000098
其中:
Figure RE-FDA0002637312230000099
在t6时刻,a点电位谐振至VDC,本模式持续时间为:
Figure RE-FDA00026373122300000910
模式7(t6-t7):t6时刻,a点电位升到VDC,D1自然导通;t6-t7,换流电流反向增大,图9为本模式等效电路;
本模式激磁电流为:
Figure RE-FDA00026373122300000911
S1的软开通时间为:
Figure RE-FDA00026373122300000912
S2关断到S1导通时间间隔DN5为:
Figure RE-FDA00026373122300000913
t7时刻,激磁电流
Figure RE-FDA00026373122300000914
增至
Figure RE-FDA00026373122300000915
本模式持续时间为:
Figure RE-FDA00026373122300000916
S1导通到S5关断时间间隔DN6为:
Figure RE-FDA00026373122300000917
模式8(t7-t8):t7时刻,关断S5,负载电流iLoad对C6充电,C5放电,b点电位线性上升;t8时刻,b点电位升至VDC/2,二极管D4自然导通;S4可在t8之后控制导通;
本模式持续时间为:
Figure RE-FDA0002637312230000101
S1关断到S2导通时间间隔DN7为:
DN7=T7-8\*公式(80)
由以上电路结构和工作原理的分析可知,开关完成零电压换流需要设计换流电感、激磁电感、变压器匝比、开关并联吸收电容;以上各元件参数的设计将在以下完成(以输出电流为正时分析);
当(1/2-k)VDC小于VDC/2时,在换流电流大于负载电流一定值的条件下关断S2保证开关管可靠完成换流;且主开关的关断损耗与关断时刻的沟道电流的平方成正比[8,13],因此S2的关断电流在满足式时,主开关的关断损耗可近似忽略(关断损耗小于1/10):
Figure RE-FDA0002637312230000102
其中ILoad_rms为负载电流有效值;
在实际的电路运行过程中,负载电流检测存在误差,导致Iboost的误差,影响换流时间T2-3和ZVT开通时间T3B,式和求和之后对Ir求导,当Ir满足公式的时主开关的死区时间可以为一固定值;
Figure RE-FDA0002637312230000103
联立:
Figure RE-FDA0002637312230000104
由,得:
Figure RE-FDA0002637312230000105
其中由和有解可得β的取值范围为:
Figure RE-FDA0002637312230000106
为保证S5可靠换流且S4有足够得ZVS开通时间,假设Lm>>Lr,由得:
Figure RE-FDA0002637312230000107
为保证磁化电流在换流电感Lr线性放电阶段后(t=t4)与S5换流之前(t=t0)大小相等,方向相反(忽略下桥臂谐振换流阶段磁化电流的变化):
Figure RE-FDA0002637312230000111
上述T1A,TA4都与负载电流有关,当负载电流为0时,T1A和TA4值最小为T1A_minTA4_min,在此条件下计算出的Lm符合任何负载电流大于0时S4有足够得ZVS开通时间的要求;因此:
Figure RE-FDA0002637312230000112
激磁电流可由下式表示:
Figure RE-FDA0002637312230000113
其中TA4为负载电流不同时,之和所得的tA-t4的时间间隔;因此每个开关周期的
Figure RE-FDA0002637312230000114
不同。
CN202010302133.XA 2020-04-16 2020-04-16 一种变压器辅助型pwm三电平零电压软开关逆变器 Active CN111711373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010302133.XA CN111711373B (zh) 2020-04-16 2020-04-16 一种变压器辅助型pwm三电平零电压软开关逆变器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010302133.XA CN111711373B (zh) 2020-04-16 2020-04-16 一种变压器辅助型pwm三电平零电压软开关逆变器

Publications (2)

Publication Number Publication Date
CN111711373A true CN111711373A (zh) 2020-09-25
CN111711373B CN111711373B (zh) 2022-03-18

Family

ID=72536577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010302133.XA Active CN111711373B (zh) 2020-04-16 2020-04-16 一种变压器辅助型pwm三电平零电压软开关逆变器

Country Status (1)

Country Link
CN (1) CN111711373B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523746A (zh) * 2003-09-03 2004-08-25 浙江大学 三电平llc串联谐振dc/dc变换器
CN1773826A (zh) * 2005-11-01 2006-05-17 南京航空航天大学 零电压开关推挽正激三电平直流变换器主电路及其控制方法
CN102025280A (zh) * 2010-12-22 2011-04-20 南京航空航天大学 对称控制型三相三电平直流变换器及其对称控制方法
CN102594191A (zh) * 2012-02-24 2012-07-18 西安交通大学 使用耦合电感的有源钳位三电平零电压软开关变流器
US20130235626A1 (en) * 2012-01-31 2013-09-12 Delta Electronics, Inc. Three-phase three-level soft-switched pfc rectifiers
CN106487232A (zh) * 2016-11-14 2017-03-08 河海大学常州校区 一种ZVS隔离的三电平Buck变换器
CN109639170A (zh) * 2018-12-19 2019-04-16 合肥工业大学 辅助谐振极有源钳位三电平软开关逆变电路及调制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523746A (zh) * 2003-09-03 2004-08-25 浙江大学 三电平llc串联谐振dc/dc变换器
CN1773826A (zh) * 2005-11-01 2006-05-17 南京航空航天大学 零电压开关推挽正激三电平直流变换器主电路及其控制方法
CN102025280A (zh) * 2010-12-22 2011-04-20 南京航空航天大学 对称控制型三相三电平直流变换器及其对称控制方法
US20130235626A1 (en) * 2012-01-31 2013-09-12 Delta Electronics, Inc. Three-phase three-level soft-switched pfc rectifiers
CN102594191A (zh) * 2012-02-24 2012-07-18 西安交通大学 使用耦合电感的有源钳位三电平零电压软开关变流器
CN106487232A (zh) * 2016-11-14 2017-03-08 河海大学常州校区 一种ZVS隔离的三电平Buck变换器
CN109639170A (zh) * 2018-12-19 2019-04-16 合肥工业大学 辅助谐振极有源钳位三电平软开关逆变电路及调制方法

Also Published As

Publication number Publication date
CN111711373B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
CN109217681B (zh) 一种双向谐振变换器
CN110768549B (zh) 一种单相零电压软开关充电器拓扑及其调制方法
CN111490698B (zh) 一种相位关联zvt磁化电流最小化的辅助谐振换流极逆变器
CN111478611A (zh) 一种相位关联磁化电流双向复位的辅助谐振换流极逆变器
CN108631604B (zh) 一种环保用双变压器型零电流谐振三电平直流变换器
CN112928919A (zh) 宽输出电压范围的隔离型高频谐振式直流-直流变换器及方法
CN104113208B (zh) 一种包括无损缓冲电路的交错并联Boost变换器
CN111934576A (zh) 一种相位关联磁化电流对称复位的辅助谐振换流极逆变器
CN112260571A (zh) 一种具有软开关特性的高频电源逆变系统
CN109149954B (zh) 一种宽负载范围软开关电流型推挽直流变换器
CN105429452A (zh) 一种共模抑制双Boost无桥PFC变换器
CN214799290U (zh) 反激式变换器的吸收电路
CN112865562B (zh) 一种单相三开关管伪图腾柱式三电平整流器
CN111711373B (zh) 一种变压器辅助型pwm三电平零电压软开关逆变器
CN110061523B (zh) 一种新型拓扑结构的多功能单相并网逆变系统及方法
CN113437884A (zh) 基于并联式二极管钳位双向开关的三电平整流器
CN208316575U (zh) 一种反激式开关电源无损箝位电路
CN112701905A (zh) 基于伪图腾柱结构的单相三电平功率因数校正电路
CN109149953B (zh) 一种宽负载范围软开关倍流整流型推挽直流变换器
CN113206600B (zh) 基于单相三电平伪图腾柱式的直流充电器
CN114070039B (zh) 等效电容分压辅助换流的无反向恢复二极管升压变换器
CN112910243B (zh) 一种单相三电平伪图腾柱功率因数校正电路
CN113346751B (zh) 一种双输入电感的软开关高增益变换器及其控制方法
CN113206601B (zh) 基于单相ii型三电平伪图腾柱的直流充电器
CN109361323B (zh) I型三电平软开关电路及相应的三相变换电路和变流装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant