CN111490698B - 一种相位关联zvt磁化电流最小化的辅助谐振换流极逆变器 - Google Patents

一种相位关联zvt磁化电流最小化的辅助谐振换流极逆变器 Download PDF

Info

Publication number
CN111490698B
CN111490698B CN202010301494.2A CN202010301494A CN111490698B CN 111490698 B CN111490698 B CN 111490698B CN 202010301494 A CN202010301494 A CN 202010301494A CN 111490698 B CN111490698 B CN 111490698B
Authority
CN
China
Prior art keywords
current
point
auxiliary
potential
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010301494.2A
Other languages
English (en)
Other versions
CN111490698A (zh
Inventor
禹健
安永泉
张海燕
王�琦
高红斌
王美刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202010301494.2A priority Critical patent/CN111490698B/zh
Publication of CN111490698A publication Critical patent/CN111490698A/zh
Application granted granted Critical
Publication of CN111490698B publication Critical patent/CN111490698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明公开了一种相位关联ZVT磁化电流最小化的辅助谐振换流极逆变器,包括主电路和辅助电路;移相全桥网络经隔离变压器为辅助谐振极电感充能,实现主开关的ZVS;激磁电感中的储能实现辅助开关的ZVS。换流充能相位与复位相位锁定反相关联,实现磁化电流双向复位并减少了磁芯体积。改进的时序调制有效减少了磁化电流的续流损耗和辅助开关的关断损耗。利用相位关联法保持了已有技术,实现了主开关管的零电压开通的优点,减少了主开关的开关损耗,此外辅助回路中的辅助开关也通过激磁电感中的储能实现了零电压开通且其耐压值远小于主开关;并在每个开关周期都可靠地实现了磁化电流复位,变压器副边绕组耦合解决了辅助换流二极管Dc1和Dc2的过压问题。

Description

一种相位关联ZVT磁化电流最小化的辅助谐振换流极逆变器
技术领域
本发明涉及电力电子变流技术领域,尤其涉及一种相位关联ZVT磁化电流最小化的辅助谐振换流极逆变器。
背景技术
电压源型逆变器VSI,本质上是一个全控型开关半桥构成的同步整流型升降压变换器,广泛应用于各种功率等级的应用中,例如:电机驱动器,有源电力滤波器,不间断电源UPS,光伏电源系统,燃料电池电源系统和分布式电网等。其研究核心是提高效率和功率密度。
在硬开关条件下,通常通过增加开关频率减小无源元件的尺寸和重量来提高功率密度,但增加开关频率会导致开关损耗和高频电磁干扰EMI的增加,进而降低逆变器的效率。在VSI中,电路为一个逆变半桥和连在半桥中点的电感;硬开关时,续流模式之后,将要开通的开关管在开通瞬间反并联二极管和输出电容中储存的能量释放到开关管的沟道中从而产生尖峰电流,开通损耗和高频电磁干扰EMI。克服上述问题一种方法是开关器件技术进步,另一种方法是软开关拓扑技术。
宽禁带半导体例如SiC和GaN相对于传统的Si功率半导体有更快的开通和关断时间,更低的关断损耗和更低的寄生电容;但更快的开关时间会造成更大的高频电磁干扰。另外SiC存在栅极开通和关断条件苛刻,成本高等问题。
软开关拓扑技术可以在高开关频率下降低开关损耗和EMI。软开关拓扑是通过增加辅助电路将开关管的电流和电压的过渡沿去耦的方法来降低开关损耗。在众多软开关逆变器拓扑中,辅助谐振极软开关逆变器由于没有额外增加主回路中开关管的电压和电流应力且辅助回路仅在开关管换流时工作不影响主电路的正常运行而受到普遍认可。
已有技术,见IEEE Transactions on Power Electronics杂志2010年第25卷第4期刊登的“An Improved Zero-Voltage Switching Inverter Using Two CoupledMagnetics in One Resonant Pole”一文,该双耦合电感电路可以实现主开关零电压开通和辅助开关零电流开关并解决了激磁电流不能复位的问题。换流二极管无钳位措施,在谐振电流降至0后会造成换流二极管两端承受电压约为2倍的直流母线电压,且会引起二极管未钳位端电位振荡;已有技术,见IEEE 2013 15th European Conference on PowerElectronics and Applications的New topology of three phase soft switchinginverter using a dual auxiliary circuit一文,可以实现主开关零电压开通和辅助开关零电流开关通过断开激磁电流的续流路径从而复位磁化电流。但二极管串联在大电流回路上会增加额外的损耗。上述两种方法一个耦合电感只能实现一个主开关管的零电压开通,因此需要在一个辅助电路中使用两个耦合电感,因此增加了变压器的体积、成本和漏感损耗。
发明内容
为解决现有技术的缺点和不足,提供一种相位关联ZVT磁化电流最小化的辅助谐振换流极逆变器,实现了主开关和辅助开关的零电压开通;有效提高效率和功率密度,降低成本和EMI。
为实现本发明目的而提供的一种相位关联ZVT磁化电流最小化的辅助谐振换流极逆变器,包括有第一主开关管S1、第二主开关管S2、第一换流二极管Dc1、第二换流二极管Dc2、直流电源VDC、辅助电源VAUX、负载Load、激磁电感Lm、第一分压电容Cd1、第二分压电容Cd2、谐振电感Lr、辅助换流变压器副边第一绕组T2、辅助换流变压器副边第二绕组T3、第一辅助开关管Sa1、第二辅助开关管Sa2、第三辅助开关管Sa3、第四辅助开关管Sa4、超前桥臂AC-Lead、滞后桥臂AC-Lag;所述第一主开关管S1的源极、第二主开关管S2的漏极相连于O点,这两个开关管构成主开关桥臂;第一主开关管S1的漏极、第一换流二极管Dc1的负极,与直流电源VDC正极相连;直流电源VDC的负极与第二主开关管S2的源极、第二换流二极管Dc2的正极相连;负载Load的一端与主开关桥臂中点O点相连,另一端与第一分压电容Cd1、第二分压电容Cd2的中点相连;谐振电感Lr的一端和主开关桥臂的中点O点相连,另一端和辅助换流变压器副边第一绕组T2的异名端、辅助换流变压器副边第二绕组T3的同名端相连于P点;辅助换流变压器副边第一绕组T2的同名端和第一换流二极管Dc1的正极相连;辅助换流变压器副边第二绕组T3的异名端和第二换流二极管Dc2的负极相连;第一辅助开关管Sa1的源极和第二辅助开关管Sa2的漏极相连于Q点,这两个开关管构成换流辅助电路的超前桥臂AC-Lead;第三辅助开关管Sa3的源极和第四辅助开关管Sa4的漏极相连于R点,这两个开关管构成换流辅助电路的滞后桥臂AC-Lag;第一辅助开关管Sa1的漏极、第三辅助开关管Sa3的漏极与辅助电源VAUX的正极相连,辅助电源VAUX的负极与第二辅助开关管Sa2的源极、第四辅助开关管Sa4的源极相连;辅助换流变压器原边绕组T1的同名端与换流辅助电路的超前桥臂AC-Lead的中点Q点相连,异名端与换流辅助电路的滞后桥臂AC-Lag的中点R点相连;激磁电感Lm并联于辅助换流变压器原边绕组T1两端;辅助换流变压器副边第一绕组T2和第二绕组T3的匝数相同,辅助换流变压器原边绕组Tl的匝数与第一绕组T2或第二绕组T3的匝数比为1/n。
换流电感流出的电流,即换流电流iLr,其峰值中超过负载电流的部分为Ir;β为自定义约束
Figure GDA0003366217490000021
Cm_oss为主开关管S1、S2的体寄生电容值;ti时刻到tj时刻的时段为Ti-j
负载电流为正时,工作模式及切换时间间隔为:
t0时刻之前,电路处于稳定状态,S2、Sa2、Sa4处于导通状态,S1、Sa1、Sa3处于关断状态;换流二极管Dc1、Dc2和开关管的反并联二极管处于关断状态;
从t0时刻开始工作。t0时刻,关断Sa4
Sa4关断后延迟DP1,导通Sa3
Figure GDA0003366217490000022
Sa3导通后延迟DP2,关断Sa2,Sa3
Figure GDA0003366217490000023
关断Sa2,Sa3延迟DP3,导通Sa1,Sa4
Figure GDA0003366217490000024
Sa1,Sa4导通后延迟DP4,关断S2
Figure GDA0003366217490000025
S2关断后延迟DP5,导通S1
Figure GDA0003366217490000026
S1导通后延迟DP6,关断Sa1
Figure GDA0003366217490000027
Sa1关断后延迟DP7,导通Sa2
Figure GDA0003366217490000028
S1导通后延迟Ton,关断S1
S1关断后延迟DP8,导通S2
Figure GDA0003366217490000029
负载电流为负时,工作模式及切换时间间隔为:
t0时刻之前,电路处于稳定状态,S1、Sa2、Sa4处于导通状态,S2、Sa1、Sa3处于关断状态;换流二极管Dc1、Dc2和开关管的反并联二极管处于关断状态;
从t0时刻开始工作。t0时刻,关断Sa4
Sa4关断后延迟DN1,导通Sa3
Figure GDA0003366217490000031
Sa3导通后延迟DN2,关断Sa2,Sa3
Figure GDA0003366217490000032
关断Sa2,Sa3延迟DN3,导通Sa1,Sa4
Figure GDA0003366217490000033
Sa1,Sa4导通后延迟DN4,关断S1
Figure GDA0003366217490000034
S1关断后延迟DN5,导通S2
Figure GDA0003366217490000035
S2导通后延迟DN6,关断Sa1
Figure GDA0003366217490000036
Sa1关断后延迟DN7,导通Sa2
Figure GDA0003366217490000037
S2导通后延迟Ton,关断S2
S2关断后延迟DN8,导通S1
Figure GDA0003366217490000038
以上各个公式中,输入量的相关参数如下:VDC为直流母线电压;VAUX为辅助电源电压;T1-A为Sa3可ZVS开通的最短时间;即负载电流为零时的情况;T5-D为S1、S2最短ZVS开通时间,即负载电流为零时的情况;换流电感流出的电流,即换流电流iLr,其峰值中超过负载电流的部分为Ir;辅助开关管Sa1-Sa4的体寄生电容与外部并联吸收电容Ca1-Ca4取值相同,之后公式中使用Ca_oss表示;主开关管S1-S2的体寄生电容与外部并联吸收电容C1-C2取值相同,之后公式中使用Cm_oss表示:Cm_oss=C1=C2,Ca_oss=Ca1=Ca2=Ca3=Ca4;V′AUX为变压器副边电压;Lr为换流电感;Lm为激磁电感;
Figure GDA0003366217490000039
为保证Sa1-Sa4完成ZVS换流的最小电流;
Figure GDA0003366217490000041
为换流电感开始充电时的激磁电流值,与每个开关周期中的负载电流值成正相关;
Figure GDA0003366217490000042
为激磁电流由
Figure GDA0003366217490000043
复位后的激磁电流值,与每个开关周期中的负载电流值成正相关;
Figure GDA0003366217490000044
Figure GDA0003366217490000045
Figure GDA0003366217490000046
Figure GDA0003366217490000047
Figure GDA0003366217490000048
Figure GDA0003366217490000049
负载电流为正时,工作模式及切换时间间隔的计算过程为:
模式1,t<t0:电路处于稳定状态,S2处于导通状态;负载电流ILoad通过S2续流,Sa2、Sa4导通,激磁电流iLm通过Sa2、Sa4续流,其值为
Figure GDA00033662174900000410
模式2,t0-t1:t0时刻,关断Sa4,激磁电流iLm对Ca4充电Ca3放电,R点电位开始上升;
R点电位vR和电流iLm表达式为:
Figure GDA00033662174900000411
Figure GDA0003366217490000051
其中:
Figure GDA0003366217490000052
在t1时刻,R点电位谐振至VAUX,本模式持续时间为:
Figure GDA0003366217490000053
模式3,t1-t2:t1时刻,R点电位升至VAUX,辅助开关Sa3的反并联二极管Da3自然导通,Sa3达到ZVS换流条件,tA时刻,激磁电流减少至零;Sa3可在时间段T1-A之间控制导通;
本模式激磁电流为:
Figure GDA0003366217490000054
Sa3的零电压开通时间为:
Figure GDA0003366217490000055
Sa4关断到Sa3导通时间间隔DP1为:
Figure GDA0003366217490000056
t2时刻,激磁电流iLm增至
Figure GDA0003366217490000057
本模式持续时间为:
Figure GDA0003366217490000058
Sa3导通到Sa2关断时间间隔DP2为:
Figure GDA0003366217490000059
模式4,t2-t3:t2时刻,关断Sa2,Sa3;R点电位下降,Q点电位上升变化分为两步;第一步,R点电位降至VAUX/2,即Q点电位升至VAUX/2前,激磁电感Lm与辅助电容Ca1--Ca4发生谐振;R点和Q点电位近似线性下降和上升;第二步:R点电位由VAUX/2降至0,即Q点电位由VAUX/2升至VAUX前,换流电感Lr通过变压器和激磁电感Lm并联后与辅助电容Ca1--Ca4发生谐振;换流电流iLr从零开始增加;激磁电流iLm向正方向变化;
第一步:Q,R点电位vR和电流
Figure GDA00033662174900000510
表达式为:
Figure GDA00033662174900000511
Figure GDA00033662174900000512
Figure GDA00033662174900000513
其中:
Figure GDA0003366217490000061
在tB时刻,Q、R点电位谐振至VAUX/2,本模式持续时间为:
Figure GDA0003366217490000062
Figure GDA0003366217490000063
第二步:Q,R点电位vR和电流
Figure GDA0003366217490000064
表达式为:
Figure GDA0003366217490000065
Figure GDA0003366217490000066
Figure GDA0003366217490000067
其中:
Figure GDA0003366217490000068
在t3时刻,Q点电位谐振至VAUX,即R点电位谐振至零,本模式持续时间为:
Figure GDA0003366217490000069
模式5,t3-t4:t3时刻,R点电位降至0,Q点电位升至VAUX,激磁电流为
Figure GDA00033662174900000610
辅助开关Sa1的反并联二极管Da1,辅助开关Sa4的反并联二极管Da4自然导通;Sa1,Sa4达到ZVS换流条件;激磁电感两端电压与电流方向反向,激磁电流大小线性减少;换流电流线性增加;tC时刻,原边绕组电流减少至零,Sa4可在时间段t3-tC之间控制导通为ZVS导通;
本模式原边绕组电流为:
Figure GDA00033662174900000611
第一、四辅助开关管Sa1、Sa4的零电压开通时间为:
Figure GDA0003366217490000071
Sa2,Sa3关断到Sa1,Sa4导通时间间隔DP3为:
Figure GDA0003366217490000072
t3-t4的换流电流为:
Figure GDA0003366217490000073
其中:V′AUX为变压器副边电压;
t3时刻,激磁电流为
Figure GDA0003366217490000074
得:
Figure GDA0003366217490000075
t4时刻,换流电流iLr的值增至最大值:
iLr(t4)=Ir+iLoad (48)
其中:Ir为换流电流iLr中超过负载电流的部分
t3-t4时段T3-4的持续时间为:
Figure GDA0003366217490000076
Sa1,Sa4导通到S2关断时间间隔DP4为:
Figure GDA0003366217490000077
模式6,t4-t5:t4时刻,主开关S2关断,换流电流iLr中超过负载电流的部分Ir对电容C1放电C2充电,O点的电位开始谐振上升;
O点电位vO和换流电流iLr表达式为:
Figure GDA0003366217490000078
Figure GDA0003366217490000079
其中:
Figure GDA00033662174900000710
t5时刻,O点电位上升至VDC;本模式持续时间为:
Figure GDA00033662174900000711
其中:
Figure GDA0003366217490000081
模式7,t5-t6:t5时刻,O点电位升至VDC,主开关S1的反并联二极管D1自然导通,S1符合ZVS换流条件;换流电流iLr线性下降,tD时刻,换流电流iLr降至负载电流iLoad;主开关管S1可在时间段t5-tD之间控制导通实现ZVS导通;
主开关ZVS开通模式持续时间,t5时刻到tD时刻的时间段T5-D为:
Figure GDA0003366217490000082
S2关断到S1导通时间间隔DP5为:
Figure GDA0003366217490000083
本模式持续时间为:
Figure GDA0003366217490000084
S1导通到Sa1关断时间间隔DP6为:
Figure GDA0003366217490000085
模式8,t6-t8:在t6时刻,换流电流iLr降至0A,关断Sa1,激磁电流iLm增至
Figure GDA0003366217490000086
激磁电流iLm对Ca1充电Ca2放电,Q点电位开始近似线性下降;t7时刻,Q点电位降到0,辅助开关Sa2的反并联二极管Da2自然导通;
t7-t8由PWM控制需要确定,Sa2可在T7-8之间控制导通;
t6-t7持续时间为:
Figure GDA0003366217490000087
Sa1关断到Sa2导通时间间隔DP7为:
DP7=T6-7 (61)
模式9,t8-t9:t8时刻,关断S1,负载电流iLoad对C1充电,C2放电,O点电位线性下降;t9时刻,O点电位降至0,主开关S2的反并联二极管D2自然导通;在下一个开关周期之前控制导通S2
t8-t9持续时间为:
Figure GDA0003366217490000088
S1关断到S2导通时间间隔DP8为:
DP8=T8-9 (63)
负载电流为负时,工作模式及切换时间间隔的计算过程为:
模式1,t<t0:电路处于稳定状态,S1处于导通状态;负载电流ILoad通过S1续流,Sa2、Sa4导通,激磁电流iLm通过Sa2、Sa4续流,其值为
Figure GDA0003366217490000089
模式2,t0-t1:t0时刻,关断Sa4,,激磁电流iLm对Ca4充电Ca3放电,R点电位开始上升;
R点电位vR和电流
Figure GDA00033662174900000810
表达式为:
Figure GDA0003366217490000091
Figure GDA0003366217490000092
其中:
Figure GDA0003366217490000093
在t1时刻,R点电位谐振至VAUX,本模式持续时间为:
Figure GDA0003366217490000094
模式3,t1-t2:t1时刻,R点电位升至VAUX,辅助开关Sa3的反并联二极管Da3自然导通,Sa3达到ZVS换流条件,tA时刻,激磁电流减少至零;Sa3可在时间段T1A之间控制导通;
本模式激磁电流为:
Figure GDA0003366217490000095
Sa3的零电压开通时间为:
Figure GDA0003366217490000096
Sa4关断到Sa3导通时间间隔DN1为:
Figure GDA0003366217490000097
t2时刻,激磁电流iLm增至
Figure GDA0003366217490000098
本模式持续时间为:
Figure GDA0003366217490000099
Sa3导通到Sa2关断时间间隔DN2为:
Figure GDA00033662174900000910
模式4,t2-t3:t2时刻,关断Sa2,Sa3;R点电位下降,Q点电位上升变化分为两步;第一步:R点电位降至VAUX/2,即Q点电位升至VAUX/2前,激磁电感Lm与辅助电容Ca1--Ca4发生谐振;R点和Q点电位近似线性下降和上升;第二步:R点电位由VAUX/2降至0,即Q点电位由VAUX/2升至VAUX前,换流电感Lr通过变压器和激磁电感Lm并联后与辅助电容Ca1--Ca4发生谐振;换流电流iLr从零开始增加;激磁电流iLm向正方向变化;
第一步:Q,R点电位vR和电流
Figure GDA00033662174900000911
表达式为:
Figure GDA00033662174900000912
Figure GDA00033662174900000913
Figure GDA0003366217490000101
其中:
Figure GDA0003366217490000102
在tB时刻,Q,R点电位谐振至VAUX/2,本模式持续时间为:
Figure GDA0003366217490000103
Figure GDA0003366217490000104
第二步:Q,R点电位vR和电流
Figure GDA0003366217490000105
表达式为:
Figure GDA0003366217490000106
Figure GDA0003366217490000107
Figure GDA0003366217490000108
其中:
Figure GDA0003366217490000109
在t3时刻,Q点电位谐振至VAUX,即R点电位谐振至零,本模式持续时间为:
Figure GDA00033662174900001010
模式5,t3-t4:t3时刻,R点电位降至0,Q点电位升至VAUX,激磁电流为
Figure GDA00033662174900001011
辅助开关Sa1的反并联二极管Da1,辅助开关Sa4的反并联二极管Da4自然导通;Sa1,Sa4达到ZVS换流条件,激磁电感两端电压与电流方向反向,激磁电流大小线性减少;换流电流线性增加;tC时刻,原边绕组电流减少至零,Sa4可在时间段t3-tC之间控制导通为ZVS导通;
本模式原边绕组电流为:
Figure GDA00033662174900001012
第一、四辅助开关管Sa1、Sa4的零电压开通时间为:
Figure GDA0003366217490000111
Sa2,Sa3关断到Sa1,Sa4导通时间间隔DN3为:
Figure GDA0003366217490000112
t3-t4的换流电流为:
Figure GDA0003366217490000113
其中:V′AUX为变压器副边电压;
t3时刻,激磁电流为
Figure GDA0003366217490000114
得:
Figure GDA0003366217490000115
t4时刻,换流电流iLr的值增至最大值:
iLr(t4)=Ir+iLoad (89)
其中:Ir为换流电流iLr中超过负载电流的部分
t3-t4时段T3-4的持续时间为:
Figure GDA0003366217490000116
Sa1,Sa4导通到S1关断时间间隔DN4为:
Figure GDA0003366217490000117
模式6,t4-t5:t4时刻,主开关S1关断,换流电流iLr中超过负载电流的部分Ir对电容C1充电C2放电,O点的电位开始谐振下降;
O点电位vO和换流电流iLr表达式为:
Figure GDA0003366217490000118
Figure GDA0003366217490000119
其中:
Figure GDA00033662174900001110
t5时刻,O点电位下降至0;本模式持续时间为:
Figure GDA00033662174900001111
其中:
Figure GDA0003366217490000121
模式7,t5-t6:t5时刻,O点电位降至0,主开关S2的反并联二极管D2自然导通,S2符合ZVS换流条件;换流电流iLr线性下降,tD时刻,换流电流iLr降至负载电流iLoad;主开关管S2可在时间段t5-tD之间控制导通实现ZVS导通;
主开关ZVS开通模式持续时间,t5时刻到tD时刻的时间段T5-D为:
Figure GDA0003366217490000122
S1关断到S2导通时间间隔DN5为:
Figure GDA0003366217490000123
本模式持续时间为:
Figure GDA0003366217490000124
S2导通到Sa1关断时间间隔DN6为:
Figure GDA0003366217490000125
模式8,t6-t8:在t6时刻,换流电流iLr降至0A,关断Sa1,激磁电流iLm增至
Figure GDA0003366217490000126
激磁电流iLm对Ca1充电Ca2放电,Q点电位开始近似线性下降;t7时刻,Q点电位降到0,辅助开关Sa2的反并联二极管Da2自然导通;
t7-t8由PWM控制需要确定,Sa2可在T7-8之间控制导通;
t6-t7持续时间为:
Figure GDA0003366217490000127
Sa1关断到Sa2导通时间间隔DN7为:
DN7=T6-7 (102)
模式9,t8-t9:t8时刻,关断S2,负载电流iLoad对C1放电,C2充电,O点电位线性上升;t9时刻,O点电位升至VDC,主开关S1的反并联二极管D1自然导通;在下一个开关周期之前控制导通S1
t8-t9持续时间为:
Figure GDA0003366217490000128
S2关断到S1导通时间间隔DN8为:
DN8=T8-9 (104)
当V′AUX小于VDC/2时,在换流电流大于负载电流一定值的条件下关断S2保证开关管可靠完成换流;且主开关的关断损耗与关断时刻的沟道电流的平方成正比,因此S2的关断电流在满足式(105)时,主开关的关断损耗可近似忽略(关断损耗小于1/10):
Figure GDA0003366217490000129
其中ILoad_rms为负载电流有效值;
在实际的电路运行过程中,负载电流检测存在误差,导致Ir的误差,影响换流时间T4-5和ZVS开通时间T5-D,式(54)和(56)求和之后对Ir求导,当Ir满足公式(105)的时主开关的死区时间可以为一固定值;
Figure GDA0003366217490000131
Figure GDA0003366217490000132
Figure GDA0003366217490000133
β的取值范围为:
Figure GDA0003366217490000134
为保证滞后臂能可靠换流且Sa3有足够的ZVS开通时间,得:
Figure GDA0003366217490000135
当负载电流为0时,为保证磁化电流在换流电感Lr线性放电阶段后(t=t6)与谐振电感Lr线性充电阶段前(t=t3)大小相等,方向相反(忽略原边滞后臂谐振换流阶段磁化电流的变化):
Figure GDA0003366217490000136
Figure GDA0003366217490000137
其中T36_min为iLoad=0时的t3-t6的时间间隔;
Figure GDA0003366217490000138
其中T3-6为负载不同时t3-t6的时间间隔,因此
Figure GDA0003366217490000139
与每个开关周期中的负载电流值成正比;
激磁电流
Figure GDA00033662174900001310
在T2-3经过两步谐振变为
Figure GDA00033662174900001311
Figure GDA00033662174900001312
Figure GDA00033662174900001313
其中
Figure GDA00033662174900001314
与每个开关周期中的负载电流值成正相关,因此可得
Figure GDA00033662174900001315
也与每个开关周期中的负载电流值成正相关。
本发明的有益效果是:
与现有技术相比,本发明包括主电路和辅助电路;移相全桥网络经隔离变压器为辅助谐振极电感充能,实现主开关的ZVS;激磁电感中的储能实现辅助开关的ZVS。换流充能相位与复位相位锁定反相关联,实现磁化电流双向复位并减少了磁芯体积。改进的时序调制有效减少了磁化电流的续流损耗和辅助开关的关断损耗。本发明的电路利用相位关联法保持了已有技术,实现了主开关管的零电压开通的优点,减少了主开关的开关损耗,此外辅助回路中的辅助开关也通过激磁电感中的储能实现了零电压开通且其耐压值远小于主开关;并在每个开关周期都可靠地实现了磁化电流复位,有效的减小了变压器的体积;变压器副边绕组耦合解决了辅助换流二极管Dc1和Dc2的过压问题。
附图说明
以下结合附图对本发明的具体实施方式作进一步的详细说明,其中:
图1是已有技术的辅助回路使用两个变压器的软开关逆变器电路;
图2是已有技术的辅助回路使用两个变压器的软开关逆变器电路;
图3是本发明的相位关联磁化电流双向复位的辅助谐振换流极逆变器电路;
图4为本发明电路在输出电流为正时,一个PWM开关周期内各模式电路状态图;
图5为本发明电路在输出电流为负时,一个PWM开关周期内各模式电路状态图;
图6是本发明中,一个PWM开关周期内模式1等效电路图;
图7是本发明中,一个PWM开关周期内模式4第一步等效电路图;
图8是本发明中,一个PWM开关周期内模式4第二步等效电路图;
图9是本发明中,一个PWM开关周期内模式5等效电路图;
图10是本发明中,一个PWM开关周期内模式6等效电路图;
图11为本发明电路在输出电流为正时,一个PWM开关周期内各个开关管的驱动脉冲信号和主要结点电压和支路电流的波形图;
图12本发明电路在输出电流为负时,一个PWM开关周期内各个开关管的驱动脉冲信号和主要结点电压和电流的波形图。
具体实施方式
如图1-图12所示,本发明提供的一种相位关联ZVT磁化电流最小化的辅助谐振换流极逆变器,包括有第一主开关管S1、第二主开关管S2、第一换流二极管Dc1、第二换流二极管Dc2、直流电源VDC、辅助电源VAUX、负载Load、激磁电感Lm、第一分压电容Cd1、第二分压电容Cd2、谐振电感Lr、辅助换流变压器副边第一绕组T2、辅助换流变压器副边第二绕组T3、第一辅助开关管Sa1、第二辅助开关管Sa2、第三辅助开关管Sa3、第四辅助开关管Sa4、超前桥臂AC-Lead、滞后桥臂AC-Lag;所述第一主开关管S1的源极、第二主开关管S2的漏极相连于O点,这两个开关管构成主开关桥臂;第一主开关管S1的漏极、第一换流二极管Dc1的负极,与直流电源VDC正极相连;直流电源VDC的负极与第二主开关管S2的源极、第二换流二极管Dc2的正极相连;负载Load的一端与主开关桥臂中点O点相连,另一端与第一分压电容Cd1、第二分压电容Cd2的中点相连;谐振电感Lr的一端和主开关桥臂的中点O点相连,另一端和辅助换流变压器副边第一绕组T2的异名端、辅助换流变压器副边第二绕组T3的同名端相连于P点;辅助换流变压器副边第一绕组T2的同名端和第一换流二极管Dc1的正极相连;辅助换流变压器副边第二绕组T3的异名端和第二换流二极管Dc2的负极相连;第一辅助开关管Sa1的源极和第二辅助开关管Sa2的漏极相连于Q点,这两个开关管构成换流辅助电路的超前桥臂AC-Lead;第三辅助开关管Sa3的源极和第四辅助开关管Sa4的漏极相连于R点,这两个开关管构成换流辅助电路的滞后桥臂AC-Lag;第一辅助开关管Sa1的漏极、第三辅助开关管Sa3的漏极与辅助电源VAUX的正极相连,辅助电源VAUX的负极与第二辅助开关管Sa2的源极、第四辅助开关管Sa4的源极相连;辅助换流变压器原边绕组T1的同名端与换流辅助电路的超前桥臂AC-Lead的中点Q点相连,异名端与换流辅助电路的滞后桥臂AC-Lag的中点R点相连;激磁电感Lm并联于辅助换流变压器原边绕组T1两端;辅助换流变压器副边第一绕组T2和第二绕组T3的匝数相同,辅助换流变压器原边绕组Tl的匝数与第一绕组T2或第二绕组T3的匝数比为1/n。
换流电感流出的电流,即换流电流iLr,其峰值中超过负载电流的部分为Ir;β为自定义约束
Figure GDA0003366217490000151
Cm_oss为主开关管S1、S2的体寄生电容值;ti时刻到tj时刻的时段为Ti-j
负载电流为正时,工作模式及切换时间间隔为:
t0时刻之前,电路处于稳定状态,S2、Sa2、Sa4处于导通状态,S1、Sa1、Sa3处于关断状态;换流二极管Dc1、Dc2和开关管的反并联二极管处于关断状态;
从t0时刻开始工作。t0时刻,关断Sa4
Sa4关断后延迟DP1,导通Sa3
Figure GDA0003366217490000152
Sa3导通后延迟DP2,关断Sa2,Sa3
Figure GDA0003366217490000153
关断Sa2,Sa3延迟DP3,导通Sa1,Sa4
Figure GDA0003366217490000154
Sa1,Sa4导通后延迟DP4,关断S2
Figure GDA0003366217490000155
S2关断后延迟DP5,导通S1
Figure GDA0003366217490000156
S1导通后延迟DP6,关断Sa1
Figure GDA0003366217490000157
Sa1关断后延迟DP7,导通Sa2
Figure GDA0003366217490000158
S1导通后延迟Ton,关断S1
S1关断后延迟DP8,导通S2
Figure GDA0003366217490000159
负载电流为负时,工作模式及切换时间间隔为:
t0时刻之前,电路处于稳定状态,S1、Sa2、Sa4处于导通状态,S2、Sa1、Sa3处于关断状态;换流二极管Dc1、Dc2和开关管的反并联二极管处于关断状态;
从t0时刻开始工作。t0时刻,关断Sa4
Sa4关断后延迟DN1,导通Sa3
Figure GDA0003366217490000161
Sa3导通后延迟DN2,关断Sa2,Sa3
Figure GDA0003366217490000162
关断Sa2,Sa3延迟DN3,导通Sa1,Sa4
Figure GDA0003366217490000163
Sa1,Sa4导通后延迟DN4,关断S1
Figure GDA0003366217490000164
S1关断后延迟DN5,导通S2
Figure GDA0003366217490000165
S2导通后延迟DN6,关断Sa1
Figure GDA0003366217490000166
Sa1关断后延迟DN7,导通Sa2
Figure GDA0003366217490000167
S2导通后延迟Ton,关断S2
S2关断后延迟DN8,导通S1
Figure GDA0003366217490000168
以上各个公式中,输入量的相关参数如下:VDC为直流母线电压;VAUX为辅助电源电压;T1-A为Sa3可ZVS开通的最短时间;即负载电流为零时的情况;T5-D为S1、S2最短ZVS开通时间,即负载电流为零时的情况;换流电感流出的电流,即换流电流iLr,其峰值中超过负载电流的部分为Ir;辅助开关管Sa1-Sa4的体寄生电容与外部并联吸收电容Ca1-Ca4取值相同,之后公式中使用Ca_oss表示;主开关管S1-S2的体寄生电容与外部并联吸收电容C1-C2取值相同,之后公式中使用Cm_oss表示:Cm_oss=C1=C2,Ca_oss=Ca1=Ca2=Ca3=Ca4;V′AUX为变压器副边电压;Lr为换流电感;Lm为激磁电感;
Figure GDA0003366217490000169
为保证Sa1-Sa4完成ZVS换流的最小电流;
Figure GDA00033662174900001610
为换流电感开始充电时的激磁电流值,与每个开关周期中的负载电流值成正相关;
Figure GDA00033662174900001611
为激磁电流由
Figure GDA00033662174900001612
复位后的激磁电流值,与每个开关周期中的负载电流值成正相关;
Figure GDA0003366217490000171
Figure GDA0003366217490000172
Figure GDA0003366217490000173
Figure GDA0003366217490000174
Figure GDA0003366217490000175
Figure GDA0003366217490000176
负载电流为正时,工作模式及切换时间间隔的计算过程为:
模式1,t<t0:电路处于稳定状态,S2处于导通状态;负载电流ILoad通过S2续流,Sa2、Sa4导通,激磁电流iLm通过Sa2、Sa4续流,其值为
Figure GDA0003366217490000177
模式2,t0-t1:t0时刻,关断Sa4,激磁电流iLm对Ca4充电Ca3放电,R点电位开始上升;
R点电位vR和电流iLm表达式为:
Figure GDA0003366217490000178
Figure GDA0003366217490000179
其中:
Figure GDA0003366217490000181
在t1时刻,R点电位谐振至VAUX,本模式持续时间为:
Figure GDA0003366217490000182
模式3,t1-t2:t1时刻,R点电位升至VAUX,辅助开关Sa3的反并联二极管Da3自然导通,Sa3达到ZVS换流条件,tA时刻,激磁电流减少至零;Sa3可在时间段T1-A之间控制导通;
本模式激磁电流为:
Figure GDA0003366217490000183
Sa3的零电压开通时间为:
Figure GDA0003366217490000184
Sa4关断到Sa3导通时间间隔DP1为:
Figure GDA0003366217490000185
t2时刻,激磁电流iLm增至
Figure GDA0003366217490000186
本模式持续时间为:
Figure GDA0003366217490000187
Sa3导通到Sa2关断时间间隔DP2为:
Figure GDA0003366217490000188
模式4,t2-t3:t2时刻,关断Sa2,Sa3;R点电位下降,Q点电位上升变化分为两步;第一步,R点电位降至VAUX/2,即Q点电位升至VAUX/2前,激磁电感Lm与辅助电容Ca1--Ca4发生谐振;R点和Q点电位近似线性下降和上升;第二步:R点电位由VAUX/2降至0,即Q点电位由VAUX/2升至VAUX前,换流电感Lr通过变压器和激磁电感Lm并联后与辅助电容Ca1--Ca4发生谐振;换流电流iLr从零开始增加;激磁电流iLm向正方向变化;
第一步:Q,R点电位vR和电流
Figure GDA0003366217490000189
表达式为:
Figure GDA00033662174900001810
Figure GDA00033662174900001811
Figure GDA00033662174900001812
其中:
Figure GDA00033662174900001813
在tB时刻,Q、R点电位谐振至VAUX/2,本模式持续时间为:
Figure GDA0003366217490000191
Figure GDA0003366217490000192
第二步:Q,R点电位vR和电流
Figure GDA0003366217490000193
表达式为:
Figure GDA0003366217490000194
Figure GDA0003366217490000195
Figure GDA0003366217490000196
其中:
Figure GDA0003366217490000197
在t3时刻,Q点电位谐振至VAUX,即R点电位谐振至零,本模式持续时间为:
Figure GDA0003366217490000198
模式5,t3-t4:t3时刻,R点电位降至0,Q点电位升至VAUX,激磁电流为
Figure GDA0003366217490000199
辅助开关Sa1的反并联二极管Da1,辅助开关Sa4的反并联二极管Da4自然导通;Sa1,Sa4达到ZVS换流条件;激磁电感两端电压与电流方向反向,激磁电流大小线性减少;换流电流线性增加;tC时刻,原边绕组电流减少至零,Sa4可在时间段t3-tC之间控制导通为ZVS导通;
本模式原边绕组电流为:
Figure GDA00033662174900001910
第一、四辅助开关管Sa1、Sa4的零电压开通时间为:
Figure GDA00033662174900001911
Sa2,Sa3关断到Sa1,Sa4导通时间间隔DP3为:
Figure GDA00033662174900001912
t3-t4的换流电流为:
Figure GDA0003366217490000201
其中:V′AUX为变压器副边电压;
t3时刻,激磁电流为
Figure GDA0003366217490000202
得:
Figure GDA0003366217490000203
t4时刻,换流电流iLr的值增至最大值:
iLr(t4)=Ir+iLoad (162)
其中:Ir为换流电流iLr中超过负载电流的部分
t3-t4时段T3-4的持续时间为:
Figure GDA0003366217490000204
Sa1,Sa4导通到S2关断时间间隔DP4为:
Figure GDA0003366217490000205
模式6,t4-t5:t4时刻,主开关S2关断,换流电流iLr中超过负载电流的部分Ir对电容C1放电C2充电,O点的电位开始谐振上升;
O点电位vO和换流电流iLr表达式为:
Figure GDA0003366217490000206
Figure GDA0003366217490000207
其中:
Figure GDA0003366217490000208
t5时刻,O点电位上升至VDC;本模式持续时间为:
Figure GDA0003366217490000209
其中:
Figure GDA00033662174900002010
模式7,t5-t6:t5时刻,O点电位升至VDC,主开关S1的反并联二极管D1自然导通,S1符合ZVS换流条件;换流电流iLr线性下降,tD时刻,换流电流iLr降至负载电流iLoad;主开关管S1可在时间段t5-tD之间控制导通实现ZVS导通;
主开关ZVS开通模式持续时间,t5时刻到tD时刻的时间段T5-D为:
Figure GDA0003366217490000211
S2关断到S1导通时间间隔DP5为:
Figure GDA0003366217490000212
本模式持续时间为:
Figure GDA0003366217490000213
S1导通到Sa1关断时间间隔DP6为:
Figure GDA0003366217490000214
模式8,t6-t8:在t6时刻,换流电流iLr降至0A,关断Sa1,激磁电流iLm增至
Figure GDA0003366217490000215
激磁电流iLm对Ca1充电Ca2放电,Q点电位开始近似线性下降;t7时刻,Q点电位降到0,辅助开关Sa2的反并联二极管Da2自然导通;
t7-t8由PWM控制需要确定,Sa2可在T7-8之间控制导通;
t6-t7持续时间为:
Figure GDA0003366217490000216
Sa1关断到Sa2导通时间间隔DP7为:
DP7=T6-7 (175)
模式9,t8-t9:t8时刻,关断S1,负载电流iLoad对C1充电,C2放电,O点电位线性下降;t9时刻,O点电位降至0,主开关S2的反并联二极管D2自然导通;在下一个开关周期之前控制导通S2
t8-t9持续时间为:
Figure GDA0003366217490000217
S1关断到S2导通时间间隔DP8为:
DP8=T8-9 (177)
负载电流为负时,工作模式及切换时间间隔的计算过程为:
模式1,t<t0:电路处于稳定状态,S1处于导通状态;负载电流ILoad通过S1续流,Sa2、Sa4导通,激磁电流iLm通过Sa2、Sa4续流,其值为
Figure GDA0003366217490000218
模式2,t0-t1:t0时刻,关断Sa4,,激磁电流iLm对Ca4充电Ca3放电,R点电位开始上升;
R点电位vR和电流
Figure GDA0003366217490000219
表达式为:
Figure GDA00033662174900002110
Figure GDA00033662174900002111
其中:
Figure GDA0003366217490000221
在t1时刻,R点电位谐振至VAUX,本模式持续时间为:
Figure GDA0003366217490000222
模式3,t1-t2:t1时刻,R点电位升至VAUX,辅助开关Sa3的反并联二极管Da3自然导通,Sa3达到ZVS换流条件,tA时刻,激磁电流减少至零;Sa3可在时间段T1A之间控制导通;
本模式激磁电流为:
Figure GDA0003366217490000223
Sa3的零电压开通时间为:
Figure GDA0003366217490000224
Sa4关断到Sa3导通时间间隔DN1为:
Figure GDA0003366217490000225
t2时刻,激磁电流iLm增至
Figure GDA0003366217490000226
本模式持续时间为:
Figure GDA0003366217490000227
Sa3导通到Sa2关断时间间隔DN2为:
Figure GDA0003366217490000228
模式4,t2-t3:t2时刻,关断Sa2,Sa3;R点电位下降,Q点电位上升变化分为两步;第一步:R点电位降至VAUX/2,即Q点电位升至VAUX/2前,激磁电感Lm与辅助电容Ca1--Ca4发生谐振;R点和Q点电位近似线性下降和上升;第二步:R点电位由VAUX/2降至0,即Q点电位由VAUX/2升至VAUX前,换流电感Lr通过变压器和激磁电感Lm并联后与辅助电容Ca1--Ca4发生谐振;换流电流iLr从零开始增加;激磁电流iLm向正方向变化;
第一步:Q,R点电位vR和电流
Figure GDA0003366217490000229
表达式为:
Figure GDA00033662174900002210
Figure GDA00033662174900002211
Figure GDA00033662174900002212
其中:
Figure GDA0003366217490000231
在tB时刻,Q,R点电位谐振至VAUX/2,本模式持续时间为:
Figure GDA0003366217490000232
Figure GDA0003366217490000233
第二步:Q,R点电位vR和电流
Figure GDA0003366217490000234
表达式为:
Figure GDA0003366217490000235
Figure GDA0003366217490000236
Figure GDA0003366217490000237
其中:
Figure GDA0003366217490000238
在t3时刻,Q点电位谐振至VAUX,即R点电位谐振至零,本模式持续时间为:
Figure GDA0003366217490000239
模式5,t3-t4:t3时刻,R点电位降至0,Q点电位升至VAUX,激磁电流为
Figure GDA00033662174900002310
辅助开关Sa1的反并联二极管Da1,辅助开关Sa4的反并联二极管Da4自然导通;Sa1,Sa4达到ZVS换流条件,激磁电感两端电压与电流方向反向,激磁电流大小线性减少;换流电流线性增加;tC时刻,原边绕组电流减少至零,Sa4可在时间段t3-tC之间控制导通为ZVS导通;
本模式原边绕组电流为:
Figure GDA00033662174900002311
第一、四辅助开关管Sa1、Sa4的零电压开通时间为:
Figure GDA00033662174900002312
Sa2,Sa3关断到Sa1,Sa4导通时间间隔DN3为:
Figure GDA0003366217490000241
t3-t4的换流电流为:
Figure GDA0003366217490000242
其中:V′AUX为变压器副边电压;
t3时刻,激磁电流为
Figure GDA0003366217490000243
得:
Figure GDA0003366217490000244
t4时刻,换流电流iLr的值增至最大值:
iLr(t4)=Ir+iLoad (203)
其中:Ir为换流电流iLr中超过负载电流的部分
t3-t4时段T3-4的持续时间为:
Figure GDA0003366217490000245
Sa1,Sa4导通到S1关断时间间隔DN4为:
Figure GDA0003366217490000246
模式6,t4-t5:t4时刻,主开关S1关断,换流电流iLr中超过负载电流的部分Ir对电容C1充电C2放电,O点的电位开始谐振下降;
O点电位vO和换流电流iLr表达式为:
Figure GDA0003366217490000247
Figure GDA0003366217490000248
其中:
Figure GDA0003366217490000249
t5时刻,O点电位下降至0;本模式持续时间为:
Figure GDA00033662174900002410
其中:
Figure GDA00033662174900002411
模式7,t5-t6:t5时刻,O点电位降至0,主开关S2的反并联二极管D2自然导通,S2符合ZVS换流条件;换流电流iLr线性下降,tD时刻,换流电流iLr降至负载电流iLoad;主开关管S2可在时间段t5-tD之间控制导通实现ZVS导通;
主开关ZVS开通模式持续时间,t5时刻到tD时刻的时间段T5-D为:
Figure GDA0003366217490000251
S1关断到S2导通时间间隔DN5为:
Figure GDA0003366217490000252
本模式持续时间为:
Figure GDA0003366217490000253
S2导通到Sa1关断时间间隔DN6为:
Figure GDA0003366217490000254
模式8,t6-t8:在t6时刻,换流电流iLr降至0A,关断Sa1,激磁电流iLm增至
Figure GDA0003366217490000255
激磁电流iLm对Ca1充电Ca2放电,Q点电位开始近似线性下降;t7时刻,Q点电位降到0,辅助开关Sa2的反并联二极管Da2自然导通;
t7-t8由PWM控制需要确定,Sa2可在T7-8之间控制导通;
t6-t7持续时间为:
Figure GDA0003366217490000256
Sa1关断到Sa2导通时间间隔DN7为:
DN7=T6-7 (216)
模式9,t8-t9:t8时刻,关断S2,负载电流iLoad对C1放电,C2充电,O点电位线性上升;t9时刻,O点电位升至VDC,主开关S1的反并联二极管D1自然导通;在下一个开关周期之前控制导通S1
t8-t9持续时间为:
Figure GDA0003366217490000257
S2关断到S1导通时间间隔DN8为:
DN8=T8-9 (218)
当V′AUX小于VDC/2时,在换流电流大于负载电流一定值的条件下关断S2保证开关管可靠完成换流;且主开关的关断损耗与关断时刻的沟道电流的平方成正比,因此S2的关断电流在满足式(105)时,主开关的关断损耗可近似忽略(关断损耗小于1/10):
Figure GDA0003366217490000258
其中ILoad_rms为负载电流有效值;
在实际的电路运行过程中,负载电流检测存在误差,导致Ir的误差,影响换流时间T4-5和ZVS开通时间T5-D,式(54)和(56)求和之后对Ir求导,当Ir满足公式(105)的时主开关的死区时间可以为一固定值;
Figure GDA0003366217490000259
Figure GDA0003366217490000261
Figure GDA0003366217490000262
β的取值范围为:
Figure GDA0003366217490000263
为保证滞后臂能可靠换流且Sa3有足够的ZVS开通时间,得:
Figure GDA0003366217490000264
当负载电流为0时,为保证磁化电流在换流电感Lr线性放电阶段后(t=t6)与谐振电感Lr线性充电阶段前(t=t3)大小相等,方向相反(忽略原边滞后臂谐振换流阶段磁化电流的变化):
Figure GDA0003366217490000265
Figure GDA0003366217490000266
其中T36_min为iLoad=0时的t3-t6的时间间隔;
Figure GDA0003366217490000267
其中T3-6为负载不同时的t3-t6的时间间隔,因此
Figure GDA0003366217490000268
与每个开关周期中的负载电流值成正比;
激磁电流
Figure GDA0003366217490000269
在T2-3经过两步谐振变为
Figure GDA00033662174900002610
Figure GDA00033662174900002611
Figure GDA00033662174900002612
其中
Figure GDA00033662174900002613
与每个开关周期中的负载电流值成正相关,因此可得
Figure GDA00033662174900002614
也与每个开关周期中的负载电流值成正相关。
以下分别对电流由O点流出,和电流流入O点,通过负载Load两种情况进行分析。由于负载电感足够大,所以认为在一个PWM开关周期内负载电流恒定不变。
输入参数如表1所示:
Figure GDA00033662174900002615
Figure GDA0003366217490000271
表1输入参数
根据输入参数的约束计算出的电感和变压器具体值如表2
换流电感(L<sub>r</sub>) 4.21uH
激磁电感(L<sub>m</sub>) 4.04uH
变压器副边电压(V′<sub>AUX</sub>) 60V
表2
根据具体元件参数表计算出各持续时间和
Figure GDA0003366217490000275
与负载电流的关系:
DP1=DN1=141.323×10-9 (229)
Figure GDA0003366217490000272
Figure GDA0003366217490000273
Figure GDA0003366217490000274
DP5=DN5=35.5×10-9 (233)
DP6=DN6=5×10-9+1.238×10-8iLoad (234)
DP7=DN7=89.392×10-9 (235)
Figure GDA0003366217490000281
Figure GDA0003366217490000282
Figure GDA0003366217490000283
以上实施例不局限于该实施例自身的技术方案,实施例之间可以相互结合成新的实施例。以上实施例仅用以说明本发明的技术方案而并非对其进行限制,凡未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明技术方案的范围内。

Claims (1)

1.一种相位关联ZVT磁化电流最小化的辅助谐振换流极逆变器,其特征在于:包括有第一主开关管S1、第二主开关管S2、第一换流二极管Dc1、第二换流二极管Dc2、直流电源VDC、辅助电源VAUX、负载Load、激磁电感Lm、第一分压电容Cd1、第二分压电容Cd2、谐振电感Lr、辅助换流变压器副边第一绕组T2、辅助换流变压器副边第二绕组T3、第一辅助开关管Sa1、第二辅助开关管Sa2、第三辅助开关管Sa3、第四辅助开关管Sa4、超前桥臂AC-Lead、滞后桥臂AC-Lag;所述第一主开关管S1的源极、第二主开关管S2的漏极相连于O点,这两个开关管构成主开关桥臂;第一主开关管S1的漏极、第一换流二极管Dc1的负极,与直流电源VDC正极相连;直流电源VDC的负极与第二主开关管S2的源极、第二换流二极管Dc2的正极相连;负载Load的一端与主开关桥臂中点O点相连,另一端与第一分压电容Cd1、第二分压电容Cd2的中点相连;谐振电感Lr的一端和主开关桥臂的中点O点相连,另一端和辅助换流变压器副边第一绕组T2的异名端、辅助换流变压器副边第二绕组T3的同名端相连于P点;辅助换流变压器副边第一绕组T2的同名端和第一换流二极管Dc1的正极相连;辅助换流变压器副边第二绕组T3的异名端和第二换流二极管Dc2的负极相连;第一辅助开关管Sa1的源极和第二辅助开关管Sa2的漏极相连于Q点,这两个开关管构成换流辅助电路的超前桥臂AC-Lead;第三辅助开关管Sa3的源极和第四辅助开关管Sa4的漏极相连于R点,这两个开关管构成换流辅助电路的滞后桥臂AC-Lag;第一辅助开关管Sa1的漏极、第三辅助开关管Sa3的漏极与辅助电源VAUX的正极相连,辅助电源VAUX的负极与第二辅助开关管Sa2的源极、第四辅助开关管Sa4的源极相连;辅助换流变压器原边绕组T1的同名端与换流辅助电路的超前桥臂AC-Lead的中点Q点相连,异名端与换流辅助电路的滞后桥臂AC-Lag的中点R点相连;激磁电感Lm并联于辅助换流变压器原边绕组T1两端;辅助换流变压器副边第一绕组T2和第二绕组T3的匝数相同,辅助换流变压器原边绕组Tl的匝数与第一绕组T2或第二绕组T3的匝数比为1/n,
换流电感流出的电流,即换流电流iLr,其峰值中超过负载电流的部分为Ir;β为自定义约束
Figure FDA0003366217480000011
Cm_oss为主开关管S1、S2的体寄生电容值;ti时刻到tj时刻的时段为Ti-j
负载电流为正时,工作模式及切换时间间隔为:
t0时刻之前,电路处于稳定状态,S2、Sa2、Sa4处于导通状态,S1、Sa1、Sa3处于关断状态;换流二极管Dc1、Dc2和开关管的反并联二极管处于关断状态;
从t0时刻开始工作,t0时刻,关断Sa4
Sa4关断后延迟DP1,导通Sa3
Figure FDA0003366217480000012
Sa3导通后延迟DP2,关断Sa2,Sa3
Figure FDA0003366217480000013
关断Sa2,Sa3延迟DP3,导通Sa1,Sa4
Figure FDA0003366217480000014
Sa1,Sa4导通后延迟DP4,关断S2
Figure FDA0003366217480000015
S2关断后延迟DP5,导通S1
Figure FDA0003366217480000021
S1导通后延迟DP6,关断Sa1
Figure FDA0003366217480000022
Sa1关断后延迟DP7,导通Sa2
Figure FDA0003366217480000023
S1导通后延迟Ton,关断S1
S1关断后延迟DP8,导通S2
Figure FDA0003366217480000024
负载电流为负时,工作模式及切换时间间隔为:
t0时刻之前,电路处于稳定状态,S1、Sa2、Sa4处于导通状态,S2、Sa1、Sa3处于关断状态;换流二极管Dc1、Dc2和开关管的反并联二极管处于关断状态;
从t0时刻开始工作,t0时刻,关断Sa4
Sa4关断后延迟DN1,导通Sa3
Figure FDA0003366217480000025
Sa3导通后延迟DN2,关断Sa2,Sa3
Figure FDA0003366217480000026
关断Sa2,Sa3延迟DN3,导通Sa1,Sa4
Figure FDA0003366217480000027
Sa1,Sa4导通后延迟DN4,关断S1
Figure FDA0003366217480000028
S1关断后延迟DN5,导通S2
Figure FDA0003366217480000029
S2导通后延迟DN6,关断Sa1
Figure FDA00033662174800000210
Sa1关断后延迟DN7,导通Sa2
Figure FDA0003366217480000031
S2导通后延迟Ton,关断S2
S2关断后延迟DN8,导通S1
Figure FDA0003366217480000032
以上各个公式中,输入量的相关参数如下:VDC为直流母线电压;VAUX为辅助电源电压;T1-A为Sa3可ZVS开通的最短时间;即负载电流为零时的情况;T5-D为S1、S2最短ZVS开通时间,即负载电流为零时的情况;换流电感流出的电流,即换流电流iLr,其峰值中超过负载电流的部分为Ir;辅助开关管Sa1-Sa4的体寄生电容与外部并联吸收电容Ca1-Ca4取值相同,之后公式中使用Ca_oss表示;主开关管S1-S2的体寄生电容与外部并联吸收电容C1-C2取值相同,之后公式中使用Cm_oss表示:Cm_oss=C1=C2,Ca_oss=Ca1=Ca2=Ca3=Ca4;VA'UX为变压器副边电压;Lr为换流电感;Lm为激磁电感;
Figure FDA0003366217480000033
为保证Sa1-Sa4完成ZVS换流的最小电流;
Figure FDA0003366217480000034
为换流电感开始充电时的激磁电流值,与每个开关周期中的负载电流值成正相关;
Figure FDA0003366217480000035
为激磁电流由
Figure FDA0003366217480000036
复位后的激磁电流值,与每个开关周期中的负载电流值成正相关;
Figure FDA0003366217480000037
Figure FDA0003366217480000038
Figure FDA0003366217480000039
Figure FDA00033662174800000310
Figure FDA00033662174800000311
Figure FDA0003366217480000041
负载电流为正时,工作模式及切换时间间隔的计算过程为:
模式1,t<t0:电路处于稳定状态,S2处于导通状态;负载电流ILoad通过S2续流,Sa2、Sa4导通,激磁电流iLm通过Sa2、Sa4续流,其值为
Figure FDA0003366217480000042
模式2,t0-t1:t0时刻,关断Sa4,激磁电流iLm对Ca4充电Ca3放电,R点电位开始上升;
R点电位vR和电流iLm表达式为:
Figure FDA0003366217480000043
Figure FDA0003366217480000044
其中:
Figure FDA0003366217480000045
在t1时刻,R点电位谐振至VAUX,本模式持续时间为:
Figure FDA0003366217480000046
模式3,t1-t2:t1时刻,R点电位升至VAUX,辅助开关Sa3的反并联二极管Da3自然导通,Sa3达到ZVS换流条件,tA时刻,激磁电流减少至零;Sa3可在时间段T1-A之间控制导通;
本模式激磁电流为:
Figure FDA0003366217480000047
Sa3的零电压开通时间为:
Figure FDA0003366217480000048
Sa4关断到Sa3导通时间间隔DP1为:
Figure FDA0003366217480000049
t2时刻,激磁电流iLm增至
Figure FDA00033662174800000410
本模式持续时间为:
Figure FDA00033662174800000411
Sa3导通到Sa2关断时间间隔DP2为:
Figure FDA0003366217480000051
模式4,t2-t3:t2时刻,关断Sa2,Sa3;R点电位下降,Q点电位上升变化分为两步;第一步,R点电位降至VAUX/2,即Q点电位升至VAUX/2前,激磁电感Lm与辅助电容Ca1--Ca4发生谐振;R点和Q点电位近似线性下降和上升;第二步:R点电位由VAUX/2降至0,即Q点电位由VAUX/2升至VAUX前,换流电感Lr通过变压器和激磁电感Lm并联后与辅助电容Ca1--Ca4发生谐振;换流电流
Figure FDA0003366217480000052
从零开始增加;激磁电流iLm向正方向变化;
第一步:Q,R点电位vR和电流
Figure FDA0003366217480000053
表达式为:
Figure FDA0003366217480000054
Figure FDA0003366217480000055
Figure FDA0003366217480000056
其中:
Figure FDA0003366217480000057
在tB时刻,Q、R点电位谐振至VAUX/2,本模式持续时间为:
Figure FDA0003366217480000058
Figure FDA0003366217480000059
第二步:Q,R点电位vR和电流
Figure FDA00033662174800000510
表达式为:
Figure FDA00033662174800000511
Figure FDA00033662174800000512
Figure FDA00033662174800000513
其中:
Figure FDA0003366217480000061
在t3时刻,Q点电位谐振至VAUX,即R点电位谐振至零,本模式持续时间为:
Figure FDA0003366217480000062
模式5,t3-t4:t3时刻,R点电位降至0,Q点电位升至VAUX,激磁电流为
Figure FDA0003366217480000063
辅助开关Sa1的反并联二极管Da1,辅助开关Sa4的反并联二极管Da4自然导通;Sa1,Sa4达到ZVS换流条件;激磁电感两端电压与电流方向反向,激磁电流大小线性减少;换流电流线性增加;tC时刻,原边绕组电流减少至零,Sa4可在时间段t3-tC之间控制导通为ZVS导通;
本模式原边绕组电流为:
Figure FDA0003366217480000064
第一、四辅助开关管Sa1、Sa4的零电压开通时间为:
Figure FDA0003366217480000065
Sa2,Sa3关断到Sa1,Sa4导通时间间隔DP3为:
Figure FDA0003366217480000066
t3-t4的换流电流为:
Figure FDA0003366217480000067
其中:V′AUX为变压器副边电压;
t3时刻,激磁电流为
Figure FDA0003366217480000068
Figure FDA0003366217480000069
t4时刻,换流电流iLr的值增至最大值:
iLr(t4)=Ir+iLoad (48)
其中:Ir为换流电流iLr中超过负载电流的部分
t3-t4的持续时间T3-4为:
Figure FDA00033662174800000610
Sa1,Sa4导通到S2关断时间间隔DP4为:
Figure FDA0003366217480000071
模式6,t4-t5:t4时刻,主开关S2关断,换流电流iLr中超过负载电流的部分Ir对电容C1放电C2充电,O点的电位开始谐振上升;
O点电位vO和换流电流iLr表达式为:
Figure FDA0003366217480000072
Figure FDA0003366217480000073
其中:
Figure FDA0003366217480000074
t5时刻,O点电位上升至VDC;本模式持续时间为:
Figure FDA0003366217480000075
其中:
Figure FDA0003366217480000076
模式7,t5-t6:t5时刻,O点电位升至VDC,主开关S1的反并联二极管D1自然导通,S1符合ZVS换流条件;换流电流iLr线性下降,tD时刻,换流电流iLr降至负载电流iLoad;主开关管S1可在时间段t5-tD之间控制导通实现ZVS导通;
主开关ZVS开通模式持续时间,t5时刻到tD时刻的时间段T5-D为:
Figure FDA0003366217480000077
S2关断到S1导通时间间隔DP5为:
Figure FDA0003366217480000078
本模式持续时间为:
Figure FDA0003366217480000079
S1导通到Sa1关断时间间隔DP6为:
Figure FDA00033662174800000710
模式8,t6-t8:在t6时刻,换流电流iLr降至0A,关断Sa1,激磁电流iLm增至
Figure FDA00033662174800000711
激磁电流iLm对Ca1充电Ca2放电,Q点电位开始近似线性下降;t7时刻,Q点电位降到0,辅助开关Sa2的反并联二极管Da2自然导通;
t7-t8由PWM控制需要确定,Sa2可在T7-8之间控制导通;
t6-t7持续时间为:
Figure FDA0003366217480000081
Sa1关断到Sa2导通时间间隔DP7为:
DP7=T6-7 (61)
模式9,t8-t9:t8时刻,关断S1,负载电流iLoad对C1充电,C2放电,O点电位线性下降;t9时刻,O点电位降至0,主开关S2的反并联二极管D2自然导通;在下一个开关周期之前控制导通S2
t8-t9持续时间为:
Figure FDA0003366217480000082
S1关断到S2导通时间间隔DP8为:
DP8=T8-9 (63)
负载电流为负时,工作模式及切换时间间隔的计算过程为:
模式1,t<t0:电路处于稳定状态,S1处于导通状态;负载电流ILoad通过S1续流,Sa2、Sa4导通,激磁电流iLm通过Sa2、Sa4续流,其值为
Figure FDA0003366217480000083
模式2,t0-t1:t0时刻,关断Sa4,激磁电流iLm对Ca4充电Ca3放电,R点电位开始上升;
R点电位vR和电流
Figure FDA0003366217480000084
表达式为:
Figure FDA0003366217480000085
Figure FDA0003366217480000086
其中:
Figure FDA0003366217480000087
在t1时刻,R点电位谐振至VAUX,本模式持续时间为:
Figure FDA0003366217480000088
模式3,t1-t2:t1时刻,R点电位升至VAUX,辅助开关Sa3的反并联二极管Da3自然导通,Sa3达到ZVS换流条件,tA时刻,激磁电流减少至零;Sa3可在时间段T1A之间控制导通;
本模式激磁电流为:
Figure FDA0003366217480000089
Sa3的零电压开通时间为:
Figure FDA00033662174800000810
Sa4关断到Sa3导通时间间隔DN1为:
Figure FDA00033662174800000811
t2时刻,激磁电流iLm增至
Figure FDA00033662174800000812
本模式持续时间为:
Figure FDA0003366217480000091
Sa3导通到Sa2关断时间间隔DN2为:
Figure FDA0003366217480000092
模式4,t2-t3:t2时刻,关断Sa2,Sa3;R点电位下降,Q点电位上升变化分为两步;第一步:R点电位降至VAUX/2,即Q点电位升至VAUX/2前,激磁电感Lm与辅助电容Ca1--Ca4发生谐振;R点和Q点电位近似线性下降和上升;第二步:R点电位由VAUX/2降至0,即Q点电位由VAUX/2升至VAUX前,换流电感Lr通过变压器和激磁电感Lm并联后与辅助电容Ca1--Ca4发生谐振;换流电流iLr从零开始增加;激磁电流iLm向正方向变化;
第一步:Q,R点电位vR和电流
Figure FDA0003366217480000093
表达式为:
Figure FDA0003366217480000094
Figure FDA0003366217480000095
Figure FDA0003366217480000096
其中:
Figure FDA0003366217480000097
在tB时刻,Q,R点电位谐振至VAUX/2,本模式持续时间为:
Figure FDA0003366217480000098
Figure FDA0003366217480000099
第二步:Q,R点电位vR和电流
Figure FDA00033662174800000910
表达式为:
Figure FDA00033662174800000911
Figure FDA00033662174800000912
Figure FDA0003366217480000101
其中:
Figure FDA0003366217480000102
在t3时刻,Q点电位谐振至VAUX,即R点电位谐振至零,本模式持续时间为:
Figure FDA0003366217480000103
模式5,t3-t4:t3时刻,R点电位降至0,Q点电位升至VAUX,激磁电流为
Figure FDA0003366217480000104
辅助开关Sa1的反并联二极管Da1,辅助开关Sa4的反并联二极管Da4自然导通;Sa1,Sa4达到ZVS换流条件,激磁电感两端电压与电流方向反向,激磁电流大小线性减少;换流电流线性增加;tC时刻,原边绕组电流减少至零,Sa4可在时间段t3-tC之间控制导通为ZVS导通;
本模式原边绕组电流为:
Figure FDA0003366217480000105
第一、四辅助开关管Sa1、Sa4的零电压开通时间为:
Figure FDA0003366217480000106
Sa2,Sa3关断到Sa1,Sa4导通时间间隔DN3为:
Figure FDA0003366217480000107
t3-t4的换流电流为:
Figure FDA0003366217480000108
其中:V′AUX为变压器副边电压;
t3时刻,激磁电流为
Figure FDA0003366217480000109
Figure FDA00033662174800001010
t4时刻,换流电流iLr的值增至最大值:
iLr(t4)=Ir+iLoad (89)
其中:Ir为换流电流iLr中超过负载电流的部分
t3-t4时段持续时间T3-4为:
Figure FDA0003366217480000111
Sa1,Sa4导通到S1关断时间间隔DN4为:
Figure FDA0003366217480000112
模式6,t4-t5:t4时刻,主开关S1关断,换流电流iLr中超过负载电流的部分Ir对电容C1充电C2放电,O点的电位开始谐振下降;
O点电位vO和换流电流iLr表达式为:
Figure FDA0003366217480000113
Figure FDA0003366217480000114
其中:
Figure FDA0003366217480000115
t5时刻,O点电位下降至0;本模式持续时间为:
Figure FDA0003366217480000116
其中:
Figure FDA0003366217480000117
模式7,t5-t6:t5时刻,O点电位降至0,主开关S2的反并联二极管D2自然导通,S2符合ZVS换流条件;换流电流iLr线性下降,tD时刻,换流电流iLr降至负载电流iLoad;主开关管S2可在时间段t5-tD之间控制导通实现ZVS导通;
主开关ZVS开通模式持续时间,t5时刻到tD时刻的时间段T5-D为:
Figure FDA0003366217480000118
S1关断到S2导通时间间隔DN5为:
Figure FDA0003366217480000119
本模式持续时间为:
Figure FDA00033662174800001110
S2导通到Sa1关断时间间隔DN6为:
Figure FDA00033662174800001111
模式8,t6-t8:在t6时刻,换流电流iLr降至0A,关断Sa1,激磁电流iLm增至
Figure FDA0003366217480000121
激磁电流iLm对Ca1充电Ca2放电,Q点电位开始近似线性下降;t7时刻,Q点电位降到0,辅助开关Sa2的反并联二极管Da2自然导通;
t7-t8由PWM控制需要确定,Sa2可在T7-8之间控制导通;
t6-t7持续时间为:
Figure FDA0003366217480000122
Sa1关断到Sa2导通时间间隔DN7为:
DN7=T6-7 (102)
模式9,t8-t9:t8时刻,关断S2,负载电流iLoad对C1放电,C2充电,O点电位线性上升;t9时刻,O点电位升至VDC,主开关S1的反并联二极管D1自然导通;在下一个开关周期之前控制导通S1
t8-t9持续时间为:
Figure FDA0003366217480000123
S2关断到S1导通时间间隔DN8为:
DN8=T8-9 (104)。
CN202010301494.2A 2020-04-16 2020-04-16 一种相位关联zvt磁化电流最小化的辅助谐振换流极逆变器 Active CN111490698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010301494.2A CN111490698B (zh) 2020-04-16 2020-04-16 一种相位关联zvt磁化电流最小化的辅助谐振换流极逆变器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010301494.2A CN111490698B (zh) 2020-04-16 2020-04-16 一种相位关联zvt磁化电流最小化的辅助谐振换流极逆变器

Publications (2)

Publication Number Publication Date
CN111490698A CN111490698A (zh) 2020-08-04
CN111490698B true CN111490698B (zh) 2022-03-18

Family

ID=71795377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010301494.2A Active CN111490698B (zh) 2020-04-16 2020-04-16 一种相位关联zvt磁化电流最小化的辅助谐振换流极逆变器

Country Status (1)

Country Link
CN (1) CN111490698B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111478611B (zh) * 2020-04-16 2022-03-18 山西大学 一种相位关联磁化电流双向复位的辅助谐振换流极逆变器
CN113630032B (zh) * 2021-08-11 2023-06-23 燕山大学 一种软开关三相电流型高频链矩阵逆变器拓扑及调制方法
CN113972835B (zh) * 2021-10-07 2023-07-18 山西大学 一种电容分压辅助换流的软开关anpc三电平逆变器
CN114024439B (zh) * 2021-10-23 2023-07-18 山西大学 一种对称激励耦合电感分压辅助换流逆变器
CN116169796B (zh) * 2023-03-09 2023-09-29 哈尔滨工业大学 软开关电池无线充电器、充电方法及软开关充电控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892673A (en) * 1996-03-25 1999-04-06 General Electric Company Robust, high-density, high-efficiency state sequence controller for an auxiliary resonant commutation pole power converter
CN101369771A (zh) * 2007-08-17 2009-02-18 力博特公司 一种arcp软开关电路
CN104377982A (zh) * 2014-11-25 2015-02-25 东南大学 一种零电压开关Heric型非隔离光伏并网逆变器
CN106533224A (zh) * 2016-12-08 2017-03-22 东北大学 一种新型谐振直流环节软开关逆变器及其调制方法
CN106787904A (zh) * 2016-11-30 2017-05-31 辽宁石油化工大学 变压器辅助换流的谐振极型软开关逆变电路
CN109639170A (zh) * 2018-12-19 2019-04-16 合肥工业大学 辅助谐振极有源钳位三电平软开关逆变电路及调制方法
CN110890842A (zh) * 2019-10-21 2020-03-17 南京理工大学 宽电压增益低电流纹波双向谐振变换器及控制方法
CN111478611A (zh) * 2020-04-16 2020-07-31 山西大学 一种相位关联磁化电流双向复位的辅助谐振换流极逆变器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388762B2 (ja) * 2009-08-31 2014-01-15 サンケン電気株式会社 共振型電力変換装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892673A (en) * 1996-03-25 1999-04-06 General Electric Company Robust, high-density, high-efficiency state sequence controller for an auxiliary resonant commutation pole power converter
CN101369771A (zh) * 2007-08-17 2009-02-18 力博特公司 一种arcp软开关电路
CN104377982A (zh) * 2014-11-25 2015-02-25 东南大学 一种零电压开关Heric型非隔离光伏并网逆变器
CN106787904A (zh) * 2016-11-30 2017-05-31 辽宁石油化工大学 变压器辅助换流的谐振极型软开关逆变电路
CN106533224A (zh) * 2016-12-08 2017-03-22 东北大学 一种新型谐振直流环节软开关逆变器及其调制方法
CN109639170A (zh) * 2018-12-19 2019-04-16 合肥工业大学 辅助谐振极有源钳位三电平软开关逆变电路及调制方法
CN110890842A (zh) * 2019-10-21 2020-03-17 南京理工大学 宽电压增益低电流纹波双向谐振变换器及控制方法
CN111478611A (zh) * 2020-04-16 2020-07-31 山西大学 一种相位关联磁化电流双向复位的辅助谐振换流极逆变器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An Improved Zero-Voltage-Switching Inverter Using Two Coupled Magnetics In One Resonant Pole;Wensong Yu,et al;《2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition》;20090321;第401-406页 *
Research on a Novel Modulation Strategy for Auxiliary Resonant Commutated Pole Inverter With the Smallest Loss in Auxiliary Commutation Circuits;Enhui Chu,et al;《IEEE Transactions on Power Electronics》;20140331;第29卷(第3期);第1103-1117页 *

Also Published As

Publication number Publication date
CN111490698A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
CN111490698B (zh) 一种相位关联zvt磁化电流最小化的辅助谐振换流极逆变器
CN111478611B (zh) 一种相位关联磁化电流双向复位的辅助谐振换流极逆变器
CN108448913B (zh) 一种单级式基于交错并联无桥pfc电路和llc谐振的隔离型ac-dc变换器
CN111478612B (zh) 一种相位关联稳压管钳位的辅助谐振换流极逆变器
CN109217681B (zh) 一种双向谐振变换器
US20220209672A1 (en) High-gain quasi-resonant dc-dc converter based on voltage doubling rectifier circuit
Kim et al. An improved current-fed ZVS isolated boost converter for fuel cell applications
US11418125B2 (en) Three phase bidirectional AC-DC converter with bipolar voltage fed resonant stages
Li et al. A single-stage interleaved resonant bridgeless boost rectifier with high-frequency isolation
CN103441680B (zh) 一种减小环流损耗的软开关全桥直流变换器
CN104980037A (zh) 一种副边调整型定频谐振变换器及其控制方法
CN116131620A (zh) 一种具有高功率因数的交错并联无源缓冲反激逆变器拓扑电路
CN111934576B (zh) 一种相位关联磁化电流对称复位的辅助谐振换流极逆变器
CN114285286A (zh) 一种单级式零电流开关全桥升压直流变换器及其控制方法
Li et al. An interleaved three-phase PWM single-stage resonant rectifier with high-frequency isolation
CN107171563B (zh) 紧调整输出的组合变流器
CN111884521B (zh) 单级式Boost全桥升压零电流开关直流变换器及其控制方法
CN108347174B (zh) 一种Boost全桥隔离型变换器及其复合有源箝位电路
CN201766503U (zh) 一种双端反激型无源无损开关电源拓扑
Han et al. Circulating current-less phase-shifted full-bridge converter with new rectifier structure
Yi et al. A novel full-soft-switching full-bridge converter with a snubber circuit and couple inductor
CN208158437U (zh) 一种Boost全桥隔离型变换器及其复合有源箝位电路
CN208158436U (zh) 一种同步整流反激式直流-直流电源转换装置
Nayanasiri et al. Soft-switching single inductor current-fed push-pull converter for PV applications
CN113991998B (zh) 一种等效电容分压辅助换流的Boost变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant