CN111704445A - 一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法 - Google Patents

一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法 Download PDF

Info

Publication number
CN111704445A
CN111704445A CN202010331700.4A CN202010331700A CN111704445A CN 111704445 A CN111704445 A CN 111704445A CN 202010331700 A CN202010331700 A CN 202010331700A CN 111704445 A CN111704445 A CN 111704445A
Authority
CN
China
Prior art keywords
transparent ceramic
powder
equal
mgalon
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010331700.4A
Other languages
English (en)
Other versions
CN111704445B (zh
Inventor
王皓
陈亮
宗潇
涂兵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Hailing Huizhi New Materials Co ltd
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202010331700.4A priority Critical patent/CN111704445B/zh
Publication of CN111704445A publication Critical patent/CN111704445A/zh
Application granted granted Critical
Publication of CN111704445B publication Critical patent/CN111704445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法。其为单相尖晶石型结构,结构式为
Figure DDA0002465178380000011
其中6≤x≤7.5,0.2≤y≤1.7、且x+y<8、
Figure DDA0002465178380000012
为阳离子空位数。制备:1)以Al(8+a)/3O4‑aNa(0.25≤a≤0.4)、Mg1‑bAl2(1+b/3)O4(0≤b≤0.2)和MgO粉末为原料通过场致快速合成MgAlON陶瓷粉体;2)通过轴向加压结合冷等静压成型得到陶瓷素坯;3)将素坯进行无压预烧得到致密度达到95%以上的陶瓷预烧体;4)进行热等静压烧结获得MgAlON透明陶瓷。本发明在保证透明陶瓷机械性能的前提下,在高镁相图区域发明了一种中红外透过范围比c面蓝宝石更宽的MgAlON透明陶瓷,所得的MgAlON透明陶瓷可应用于红外光学窗口、LED照明等。

Description

一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法
技术领域
本发明涉及一种宽光学透过域透明结构陶瓷及其制备方法,属于透明陶瓷材料制备领域。
背景技术
近十年来,蓝宝石、AlON、MgAl2O4透明陶瓷作为中红外透明材料得到了广泛的应用。其中,AlON透明陶瓷机械性能较好,但其红外截止波长较短;MgAl2O4透明陶瓷有着较宽的透过域,但其机械强度不够,抗热冲击性不足;单晶蓝宝石红外截止波长介于AlON和MgAl2O4透明陶瓷之间,但在加工过程中其材料利用率低,导致生产成本极高。
研究表明,MgAlON透明陶瓷是一种光学性能介于γ-AlON和MgAl2O4之间的新型透明陶瓷材料,其拥有立方尖晶石型晶体结构和各向同性的光学性质,其力学性能和光学性能与AlON透明陶瓷、蓝宝石和镁铝尖晶石比较接近,且可以采用传统的陶瓷烧结方法低成本制备,有望成为蓝宝石材料的替代品,在红外光学窗口、整流罩、LED照明、半导体扫描窗口等领域,具有广阔的应用前景。
目前,对于MgAlON的研究主要集中在中低镁相图区域,以获得高透过率、高硬度透明陶瓷。刘啸等人(Liu X,Wang H,Tu B,et al.Highly TransparentMg0.27Al2.58O3.73N0.27 Ceramic Prepared by Pressureless Sintering[J].Journalof the American Ceramic Society,2014,97(1):63-66)以高活性的MgAlON粉体为原料,采用无压烧结(1875℃/24h)制备出的Mg0.27Al2.58O3.73N0.27透明陶瓷的硬度约为13.39GPa,透过域为0.22~6.24μm,其兼具γ-AlON优异的机械性能和MgAl2O4较宽的红外截止波长。随后,宗潇等人(Zong X,Wang H,Gu H,et al.Highly transparent Mg0.27Al2.58O3.73N0.27ceramic fabricated by aqueous gelcasting,pressureless sintering,and post-HIP[J].Journal of the American Ceramic Society,2019,102(11):6507-6516)对Mg0.27Al2.58O3.73N0.27陶瓷粉体进行凝胶注模成型,通过无压预烧结合热等静压烧结制备了高透明度、形状复杂的Mg0.27Al2.58O3.73N0.27透明陶瓷,样品在5μm处的吸收系数为1.2cm-1,介于AlON和MgAl2O4透明陶瓷之间。
为了使MgAlON透明陶瓷满足整流罩、透明装甲等材料对于高硬度的要求,徐朵朵等人(一种高硬度MgAlON透明陶瓷及其制备方法:CN201810374830.9[P].2018)在MgAlON低镁相图区域场致快速合成高活性的陶瓷粉体,采用无压烧结结合热等静压制备出了具有高硬度的MgAlON透明陶瓷,其硬度值(HK1)高达16.2GPa,透过域为0.2~6.0μm。研究表明,MgAlON透明陶瓷具有比镁铝尖晶石更优异的热机械性能,但其光学透过范围还有待进一步扩展以满足红外光学探测窗口等对材料红外透过范围的要求。
王跃忠等人(王跃忠,张荣实,田猛,等.一种宽频透光氮氧化物透明陶瓷的制备方法)以碳粉、Al2O3粉和MgO粉按质量分数分别为3.0~6.5%、86.0~92.0%、4.0~10.0%比例混合使用碳热还原氮化法合成的MgAlON粉体,然后采用无压烧结结合热等静压后处理的工艺制备具有宽频透光性能的MgAlON透明陶瓷。宗潇等人(Zong X,Wang H,Gu H,et al.Anovel spinel-type Mg0.55Al2.36O3.81N0.19 transparent ceramic with infraredtransmittance range comparable to c-plane sapphire[J].Scripta Materialia,2020,178:428-432)以MgO、AlN、Al2O3粉末为原料高温固相反应合成Mg0.55Al2.36O3.81N0.19陶瓷粉体,通过无压预烧(1825℃)结合热等静压处理(1880℃)制备的Mg0.55Al2.36O3.81N0.19透明陶瓷具有优异的光学性能,在5μm处的吸收系数为0.8cm-1,与c面蓝宝石相当,样品的红外透过范围可与蓝宝石相比拟。
综上,从已有研究来看,MgAlON透明陶瓷机械性能优异,且可通过无压烧结结合热等静压烧结实现不同尺寸透明陶瓷的大规模生产,但其红外透过范围仍有进一步拓宽的空间。
发明内容
本发明的主要目的是提供一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法。
一种宽光学透过域的高镁含量MgAlON透明陶瓷,其为单相尖晶石型结构,结构式为MgxAl(64-2x+y)/3(8-x-y)/3O32-yNy,其中6≤x≤7.5,0.2≤y≤1.7、且x+y<8、□为阳离子空位数。
上述方案中,所述的宽光学透过域MgAlON透明陶瓷,2mm厚样品的光学透过范围为0.2~6.7μm,中红外透过范围介于c面蓝宝石和MgAl2O4透明陶瓷之间。
上述方案中,所述的宽光学透过域MgAlON透明陶瓷在MgO-AlN-Al2O3系统三元相图中的组成范围为MgO:21.26~26.60wt%、AlN:0.72~6.13wt%、Al2O3:72.61~77.81wt%。
上述宽光学透过域MgAlON透明陶瓷的制备方法,首先以Al(8+a)/3O4-aNa(0.25≤a≤0.4)、Mg1-bAl2(1+b/3)O4(0≤b≤0.2)和MgO粉末为原料,通过场致快速合成高镁含量的MgxAl(64-2x+y)/3(8-x-y)/3O32-yNy透明陶瓷粉体;接着通过轴向加压结合冷等静压成型,得到MgAlON透明陶瓷素坯;然后将素坯进行无压预烧,得到气孔封闭,相对致密度在95%以上的陶瓷预烧体;最后将陶瓷预烧体进行热等静压烧结获得宽光学透过域MgAlON透明陶瓷。
具体包括如下步骤:
1)MgAlON透明陶瓷粉体的制备:以Al(8+a)/3O4-aNa,0.25≤a≤0.4、Mg1-bAl2(1+b/3)O40≤b≤0.2和MgO粉末为原料按摩尔百分比为:Al(8+a)/3O4-aNa粉末6.25~41.46mol%、Mg1- bAl2(1+b/3)O4粉末29.27~93.75mol%、MgO粉末0~29.27mol%进行称量混合,并采用场致快速法合成MgxAl(64-2x+y)/3(8-x-y)/3O32-yNy透明陶瓷粉体,其中6≤x≤7.5,0.2≤y≤1.7、且x+y<8、□为阳离子空位数,然后将透明陶瓷粉体进一步球磨得到细化的陶瓷粉体;
2)MgAlON透明陶瓷素坯的制备:将步骤1)的MgAlON透明陶瓷粉体通过轴向加压结合冷等静压成型,得到MgAlON透明陶瓷素坯;
3)MgAlON透明陶瓷预烧体的制备:将步骤2)的MgAlON透明陶瓷素坯进行无压预烧,得到气孔封闭,相对致密度在95%以上的陶瓷预烧体
4)宽光学透过域MgAlON透明陶瓷的制备:将步骤3)中所得气孔封闭的MgAlON透明陶瓷预烧体进行热等静压烧结,获得宽光学透过域MgAlON透明陶瓷。
按上述方案,步骤1)中,将Al(8+a)/3O4-aNa,0.25≤a≤0.4、Mg1-bAl2(1+b/3)O4,0≤b≤0.2和MgO粉末放入混料瓶中,按球料(料为混合粉料)比为4:1加入氧化铝球,加入无水乙醇,滚筒球磨24~30h配制料浆,然后将得到的料浆充分干燥,得到粉末混合物,将粉末混合物过100目筛后使用。
按上述方案,所述的Al(8+a)/3O4-aNa,0.25≤a≤0.4,由Al2O3、AlN按结构式Al(8+a)/ 3O4-aNa中的化学计量比取样,即摩尔比为(4-a)/3:a场致快速合成得到,合成温度为1800-1825℃。
所述的Mg1-bAl2(1+b/3)O4,0≤b≤0.2,由MgO、Al2O3按结构式Mg1-bAl2(1+b/3)O4中的化学计量比取样,即摩尔比为:(1-b):(1+b/3)场致快速合成得到,合成温度为1300-1500℃。
按上述方案,步骤1)中,场致快速合成温度为1600~1750℃,反应时间为8~20min。
按上述方案,步骤1)中的轴向压力为10~40MPa,保压时间10~40s;冷等静压压力为100~200MPa,保压时间为10~30min;
按上述方案,步骤(3)中的无压预烧处理的预烧温度为1600℃~1875℃,保温时间为1~5h;
按上述方案,步骤(3)的无压烧结气氛为高纯氮气。
按上述方案,步骤(3)中的无压预烧处理的升温速率为1~10℃/min。
按上述方案,步骤(4)中热等静压处理温度为1800~1880℃,压力为100~200MPa,保温时间为1~8h。
按上述方案,步骤(4)的热等静压处理气氛为高纯氩气。
对于MgAlON透明陶瓷而言,其红外截止取决于多声子振动吸收,主要受化学组成和晶体结构的影响。根据双原子分子振动模型,振动吸收频率ν为:
Figure BDA0002465178360000041
Figure BDA0002465178360000042
因而得到:
Figure BDA0002465178360000043
式中F为力常数;mi、mj分别为阴阳离子分子质量,c为真空中光速,λR为红外截止波长。
因此,化学键弱且原子质量大的材料具有较长的红外截止波长。同时MgAlON属于固溶体,具有较宽的组成调整范围,可以通过调整其化学组成和晶体结构来调控其本征性能。MgAlON中Mg、Al元素的原子质量相近,O、N元素的原子质量相近,因此化学键强度对MgAlON透明陶瓷的红外截止波长的影响较大。在MgAlON中由于Al3+半径小于Mg2+,Al-(O,N)键表现出比Mg-(O,N)更强的化学键强度,因此可以在高镁含量相图区域设计组成,减弱晶体的化学键强度,制备高镁含量的MgAlON透明陶瓷,实现宽光学透过域MgAlON透明陶瓷的制备。
传统的以MgO、Al2O3和AlN粉末为原料高温固相反应合成MgAlON陶瓷粉体的过程中,往往伴随有Mg2+的挥发,导致不易制备高镁含量的MgAlON透明陶瓷粉体。因此,本研究以更为稳定的尖晶石型Al(8+a)/3O4-aNa和Mg1-bAl2(1+b/3)O4粉体为原料,根据需要辅以少量的MgO粉末,进一步合成高镁含量的MgAlON透明陶瓷粉体,控制Mg元素含量。
与现有技术相比,本发明的优点是:
(1)本发明提供的场致快速合成MgAlON陶瓷粉体的方法合成速度快、效率高,且可准确控制粉体化学组成,所得到的MgAlON陶瓷粉末纯度高(≥98wt%)、粒径均匀细小,适合制作透明陶瓷。
(2)本发明提供的宽光学透过域MgAlON透明陶瓷无第二相的存在,具有良好的光学透过性,拓宽了MgAlON陶瓷的透过域,2mm厚样品的红外截止波长达6.7μm,红外透过范围介于c面蓝宝石和镁铝尖晶石之间,同时该方法制备的产品兼具良好的机械性能和光学性能,对红外窗口、整流罩、半导体扫描窗口和高温视镜的应用具有重要意义。
(3)本发明采用无压预烧结合热等静压处理制备宽光学透过域MgAlON透明陶瓷,工艺可控,能灵活运用于不同组成、不同尺寸的样品烧结,同时降低了生产成本,可以在现有生成条件下进行批量生产,节省设备投资。
附图说明
图1中黑色实线三角形所圈出的部分为本发明涉及的宽光学相图区域在MgO-AlN-Al2O3系统三元相图中的位置。
图2为本发明实施例1所制得Mg7.5Al16.40.1O31.8N0.2透明陶瓷样品的XRD图谱。
图3为本发明的实施例1中得到的Mg7.5Al16.40.1O31.8N0.2陶瓷预烧体的显微结构SEM照片。从图中可以看到在此无压预烧条件下样品气孔封闭,孤立分别于晶界处,无连通气孔存在。
图4为本发明的实施例1热等静压烧结处理后得到的Mg7.5Al16.40.1O31.8N0.2透明陶瓷的显微结构照片。从图中可以看出,样品结构致密,无残余气孔,晶粒尺寸在80~150μm之间。
图5为本发明实施例1透明陶瓷样品与c面蓝宝石、AlON和MgAl2O4透明陶瓷的光学透过率对比图。
图6为本发明实施例2透明陶瓷样品的光学透过率示意图。
具体实施方式
为了更好地理解本发明,下面结合附图、实施例进一步阐明本发明的内容,但不应以此限制本发明的保护范围。
实施例1:
Mg7.5Al16.40.1O31.8N0.2透明陶瓷的制备:
1)Mg7.5Al16.40.1O31.8N0.2透明陶瓷粉体的制备:首先分别将Al2O3、AlN粉末和MgO、Al2O3粉末按摩尔百分比75:25和50:50称量,放入混料瓶中,按球料(料为混合粉料)质量比为4:1加入氧化铝球,再加入无水乙醇,滚筒球磨24h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并分别于1825℃和1300℃保温10min场致快速合成Al2.8O3.6N0.4粉末和MgAl2O4粉末。再将Al2.8O3.6N0.4和MgAl2O4粉末按摩尔百分比6.25:93.75称量,放入混料瓶中,按球料(料为混合粉料)质量比为4:1加入氧化铝球,再加入无水乙醇,滚筒球磨20h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并于1600℃保温20min场致快速合成Mg7.5Al16.40.1O31.8N0.2透明陶瓷粉体;再将Mg7.5Al16.40.1O31.8N0.2透明陶瓷粉体和氧化铝球按质量比1:4称量,放入混料瓶中球磨12h,再加入无水乙醇继续球磨20h,将得到的料浆真空干燥,过200目筛。
2)Mg7.5Al16.40.1O31.8N0.2透明陶瓷预烧体的制备:将步骤1)中Mg7.5Al16.40.1O31.8N0.2透明陶瓷粉体置于钢模中,轴向加压40MPa,保压10s,再经过200MPa冷等静压保压10min,得到透明陶瓷坯体。再将透明陶瓷坯体置于气氛炉中,在氮气气氛下以10℃/min升温速率从室温升至1300℃,再以4℃/min升温速率从1300℃升温至1500℃,再以1℃/min升温速率从1500℃升温至1625℃,最后在1625℃保温5h,自然冷却后得到Mg7.5Al16.40.1O31.8N0.2透明陶瓷预烧体。
3)Mg7.5Al16.40.1O31.8N0.2透明陶瓷的制备:对步骤2)中所得的Mg7.5Al16.40.1O31.8N0.2透明陶瓷预烧体进行热等静压处理,以高纯氩气为传压介质,压强为180MPa,以5℃/min升温至1800℃,保温时间为8h,得到Mg7.5Al16.40.1O31.8N0.2透明陶瓷样品。对所得样品进行研磨、抛光处理,获得2mm厚Mg7.5Al16.40.1O31.8N0.2透明陶瓷样品,光学透过范围为0.2~6.7μm,最大直线透过率为85%(如图5所示)。
本发明实例1热等静压后得到的陶瓷样品的XRD图谱可见图2。
本发明实例1无压预烧后坯体和热等静压处理后透明陶瓷样品的SEM照片分别可见图3和图4。
本发明实例1与c面蓝宝石、AlON和MgAl2O4透明陶瓷的光学透过率对比图谱可见图5。图5表明,本发明制备的MgAlON透明陶瓷的红外透过范围介于c面蓝宝石和MgAl2O4透明陶瓷之间。
实施例2:
Mg6.75Al16.90.35O31.8N0.2透明陶瓷的制备:
1)Mg6.75Al16.90.35O31.8N0.2透明陶瓷粉体的制备:首先分别将Al2O3、AlN粉末和MgO、Al2O3粉末按摩尔百分比83.33:16.67和47.87:52.13称量,放入混料瓶中,按球料(料为混合粉料)质量比为4:1加入氧化铝球,再加入无水乙醇,滚筒球磨24h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并分别于1800℃和1400℃保温10min场致快速合成Al2.75O3.75N0.25粉末和Mg0.9375Al2.0417O4粉末。再将Al2.75O3.75N0.25和Mg0.9375Al2.0417O4粉末按摩尔百分比10:90称量,放入混料瓶中,按球料(料为混合粉料)比为4:1加入氧化铝球,再加入无水乙醇,滚筒球磨22h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并于1625℃保温18min场致快速合成Mg6.75Al16.90.35O31.8N0.2透明陶瓷粉体;再将Mg6.75Al16.90.35O31.8N0.2透明陶瓷粉体和氧化铝球按质量比1:4称量,放入混料瓶中球磨12h,再加入无水乙醇继续球磨22h,将得到的料浆真空干燥,过200目筛。
2)Mg7.5Al16.40.1O31.8N0.2透明陶瓷预烧体的制备:将步骤1)中Mg6.75Al16.90.35O31.8N0.2透明陶瓷粉体置于钢模中,轴向加35MPa,保压15s,再经过190MPa冷等静压保压12min,得到透明陶瓷坯体。再将透明陶瓷坯体置于气氛炉中,在氮气气氛下以10℃/min升温速率从室温升至1300℃,再以4℃/min升温速率从1300℃升温至1600℃,再以1℃/min升温速率从1600℃升温至1650℃,最后在1650℃保温4h,自然冷却后得到Mg7.5Al16.40.1O31.8N0.2透明陶瓷预烧体。
3)Mg6.75Al16.90.35O31.8N0.2透明陶瓷的制备:对步骤2)中所得的Mg7.5Al16.40.1O31.8N0.2透明陶瓷预烧体进行热等静压处理,以高纯氩气为传压介质,压强为160MPa,以6℃/min升温至1810℃,保温时间为7h,得到Mg6.75Al16.90.35O31.8N0.2透明陶瓷样品。对所得样品进行研磨、抛光处理,获得2mm厚Mg6.75Al16.90.35O31.8N0.2透明陶瓷样品,光学透过范围为0.2~6.7μm,最大直线透过率为85%(如图6所示)。
实施例3:
Mg6.0Al17.40.6O31.8N0.2透明陶瓷的制备:
1)Mg6.0Al17.40.6O31.8N0.2透明陶瓷粉体的制备:首先分别将Al2O3、AlN粉末和MgO、Al2O3粉末按摩尔百分比75:25和42.86:57.14称量,放入混料瓶中,按球料(料为混合粉料)质量比为4:1加入氧化铝球,再加入无水乙醇,滚筒球磨24h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并分别于1825℃和1500℃保温10min场致快速合成Al2.8O3.6N0.4粉末和MgAl2O4粉末。再将Al2.8O3.6N0.4和Mg0.80Al2.13O4粉末按摩尔百分比6.25:93.75称量,放入混料瓶中,按球料(料为混合粉料)比为4:1加入氧化铝球,加入无水乙醇,滚筒球磨24h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并于1650℃保温16min场致快速合成Mg6.0Al17.40.6O31.8N0.2透明陶瓷粉体;再将Mg6.0Al17.40.6O31.8N0.2透明陶瓷粉体和氧化铝球按质量比1:4称量,放入混料瓶中球磨12h,再加入无水乙醇继续球磨24h,将得到的料浆真空干燥,过200目筛。
2)Mg6.0Al17.40.6O31.8N0.2透明陶瓷预烧体的制备:将步骤1)中Mg6.0Al17.40.6O31.8N0.2透明陶瓷粉体置于钢模中,轴向加压30MPa,保压20s,再经180MPa冷等静压保压16min,得到透明陶瓷坯体。再将透明陶瓷坯体置于气氛炉中,在氮气气氛下以8℃/min升温速率从室温升至1300℃,再以4℃/min升温速率从1300℃升温至1600℃,再以1℃/min升温速率从1600℃升温至1700℃,最后在1700℃保温4h,自然冷却后得到Mg6.0Al17.40.6O31.8N0.2透明陶瓷预烧体。
3)Mg6.0Al17.40.6O31.8N0.2透明陶瓷的制备:对步骤2)中所得的Mg6.0Al17.40.6O31.8N0.2透明陶瓷预烧体进行热等静压处理,以高纯氩气为传压介质,压强为160MPa,以7℃/min升温至1820℃,保温时间为6h,得到Mg6.0Al17.40.6O31.8N0.2透明陶瓷样品。对所得样品进行研磨、抛光处理,获得2mm厚Mg6.0Al17.40.6O31.8N0.2透明陶瓷样品,光学透过范围为0.2~6.7μm,最大直线透过率为85%。
实施例4:
Mg6.75Al17.150.1O31.05N0.95透明陶瓷的制备:
1)Mg6.75Al17.150.1O31.05N0.95透明陶瓷粉体的制备:首先分别将Al2O3、AlN粉末和MgO、Al2O3粉末按摩尔百分比75:25和50:50称量,放入混料瓶中,按球料(料为混合粉料)质量比为4:1加入氧化铝球,再加入无水乙醇,滚筒球磨24h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并分别于1825℃和1300℃保温10min场致快速合成Al2.8O3.6N0.4粉末和MgAl2O4粉末。再将Al2.8O3.6N0.4、MgAl2O4、MgO粉末按摩尔百分比26.03:57.53:16.44称量,放入混料瓶中,按球料(料为混合粉料)比为4:1加入氧化铝球,加入无水乙醇,滚筒球磨26h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并于1675℃保温14min场致快速合成Mg6.75Al17.150.1O31.05N0.95透明陶瓷粉体;再将Mg6.75Al17.150.1O31.05N0.95透明陶瓷粉体和氧化铝球按质量比1:4称量,放入混料瓶中球磨12h,再加入无水乙醇继续球磨26h,将得到的料浆真空干燥,过200目筛。
2)Mg6.75Al17.150.1O31.05N0.95透明陶瓷预烧体的制备:将步骤1)中Mg6.75Al17.150.1O31.05N0.95透明陶瓷粉体置于钢模中,轴向加压25MPa,保压25s,再经过160MPa冷等静压保压18min,得到透明陶瓷坯体。再将透明陶瓷坯体置于气氛炉中,在氮气气氛下以8℃/min升温速率从室温升至1300℃,再以5℃/min升温速率从1300℃升温至1700℃,再以2℃/min升温速率从1700℃升温至1750℃,最后在1750℃保温3h,自然冷却后得到Mg6.75Al17.150.1O31.05N0.95透明陶瓷预烧体。
3)Mg6.75Al17.150.1O31.05N0.95透明陶瓷的制备:对步骤2)中所得的Mg6.75Al17.150.1O31.05N0.95透明陶瓷预烧体进行热等静压处理,以高纯氩气为传压介质,压强为140MPa,以8℃/min升温至1830℃,保温时间为5h,得到Mg6.75Al17.150.1O31.05N0.95透明陶瓷样品。对所得样品进行研磨、抛光处理,获得2mm厚Mg6.75Al17.150.1O31.05N0.95透明陶瓷样品,光学透过范围为0.2~6.7μm,最大直线透过率为86%。
实施例5:
Mg6.39Al17.390.22O31.05N0.95透明陶瓷的制备:
1)Mg6.39Al17.390.22O31.05N0.95透明陶瓷粉体的制备:首先分别将Al2O3、AlN粉末和MgO、Al2O3粉末按摩尔百分比75:25和50:50称量,放入混料瓶中,按球料(料为混合粉料)质量比为4:1加入氧化铝球,再加入无水乙醇,滚筒球磨24h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并分别于1825℃和1300℃保温10min场致快速合成Al2.8O3.6N0.4粉末和MgAl2O4粉末。再将Al2.8O3.6N0.4、MgAl2O4、MgO粉末按摩尔百分比27.09:61.27:11.64称量,放入混料瓶中,按球料(料为混合粉料)比为4:1加入氧化铝球,加入无水乙醇,滚筒球磨28h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并于1700℃保温12min场致快速合成Mg6.39Al17.390.22O31.05N0.95透明陶瓷粉体;再将Mg6.39Al17.390.22O31.05N0.95透明陶瓷粉体和氧化铝球按质量比1:4称量,放入混料瓶中球磨12h,再加入无水乙醇继续球磨24h,将得到的料浆真空干燥,过200目筛。
2)Mg6.39Al17.390.22O31.05N0.95透明陶瓷预烧体的制备:将步骤1)中Mg6.39Al17.390.22O31.05N0.95透明陶瓷粉体置于钢模中,轴向加压20MPa,保压30s,再经过140MPa冷等静压保压20min,得到透明陶瓷坯体。再将透明陶瓷坯体置于气氛炉中,在氮气气氛下以6℃/min升温速率从室温升至1300℃,再以5℃/min升温速率从1300℃升温至1750℃,再以2℃/min升温速率从1750℃升温至1800℃,最后在1800℃保温2h,自然冷却后得到Mg6.39Al17.390.22O31.05N0.95透明陶瓷预烧体。
3)Mg6.39Al17.390.22O31.05N0.95透明陶瓷的制备:对步骤2)中所得的Mg6.39Al17.390.22O31.05N0.95透明陶瓷预烧体进行热等静压处理,以高纯氩气为传压介质,压强为140MPa,以9℃/min升温至1850℃,保温时间为4h,得到Mg6.39Al17.390.22O31.05N0.95透明陶瓷样品。对所得样品进行研磨、抛光处理,获得2mm厚Mg6.39Al17.390.22O31.05N0.95透明陶瓷样品,光学透过范围为0.2~6.7μm,最大直线透过率为85%。
实施例6:
Mg6.0Al17.650.35O31.05N0.95透明陶瓷的制备:
1)Mg6.0Al17.650.35O31.05N0.95透明陶瓷粉体的制备:首先分别将Al2O3、AlN粉末和MgO、Al2O3粉末按摩尔百分比75:25和50:50称量,放入混料瓶中,按球料(料为混合粉料)质量比为4:1加入氧化铝球,再加入无水乙醇,滚筒球磨24h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并分别于1825℃和1300℃保温10min场致快速合成Al2.8O3.6N0.4粉末和MgAl2O4粉末。再将Al2.8O3.6N0.4、MgAl2O4、MgO粉末按摩尔百分比28.36:65.67:5.97称量,放入混料瓶中,按球料(料为混合粉料)比为4:1加入氧化铝球,加入无水乙醇,滚筒球磨30h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并于1725℃保温10min场致快速合成Mg6.0Al17.650.35O31.05N0.95透明陶瓷粉体;再将Mg6.0Al17.650.35O31.05N0.95透明陶瓷粉体和氧化铝球按质量比1:4称量,放入混料瓶中球磨12h,再加入无水乙醇继续球磨28h,将得到的料浆真空干燥,过200目筛。
2)Mg6.0Al17.650.35O31.05N0.95透明陶瓷预烧体的制备:将步骤1)中Mg6.0Al17.650.35O31.05N0.95透明陶瓷粉体置于钢模中,轴向加压15MPa,保压35s,再经过120MPa冷等静压保压25min,得到透明陶瓷坯体。再将透明陶瓷坯体置于气氛炉中,在氮气气氛下以6℃/min升温速率从室温升至1300℃,再以5℃/min升温速率从1300℃升温至1750℃,再以3℃/min升温速率从1750℃升温至1850℃,最后在1850℃保温1h,自然冷却后得到Mg6.0Al17.650.35O31.05N0.95透明陶瓷预烧体。
3)Mg6.0Al17.650.35O31.05N0.955透明陶瓷的制备:对步骤2)中所得的Mg6.0Al17.650.35O31.05N0.95透明陶瓷预烧体进行热等静压处理,以高纯氩气为传压介质,压强为120MPa,以10℃/min升温至1850℃,保温时间为3h,得到Mg6.0Al17.650.35O31.05N0.95透明陶瓷样品。对所得样品进行研磨、抛光处理,获得2mm厚Mg6.0Al17.650.35O31.05N0.95透明陶瓷样品,光学透过范围为0.2~6.7μm,最大直线透过率为85%。
实施例7:
Mg6.0Al17.90.1O30.3N1.7透明陶瓷的制备:
1)Mg6.0Al17.90.1O30.3N1.7透明陶瓷粉体的制备:首先分别将Al2O3、AlN粉末和MgO、Al2O3粉末按摩尔百分比75:25和50:50称量,放入混料瓶中,按球料(料为混合粉料)质量比为4:1加入氧化铝球,再加入无水乙醇,滚筒球磨24h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并分别于1825℃和1300℃保温10min场致快速合成Al2.8O3.6N0.4粉末和MgAl2O4粉末。再将Al2.8O3.6N0.4、MgAl2O4、MgO粉末按摩尔百分比41.46:29.27:29.27称量,放入混料瓶中,按球料(料为混合粉料)比为4:1加入氧化铝球,加入无水乙醇,滚筒球磨30h,然后将得到的料浆真空干燥,然后过100目筛得到粉末混合物,并于1750℃保温8min场致快速合成Mg6.0Al17.90.1O30.3N1.7透明陶瓷粉体;再将Mg6.0Al17.90.1O30.3N1.7透明陶瓷粉体和氧化铝球按质量比1:4称量,放入混料瓶中球磨12h,再加入无水乙醇继续球磨30h,将得到的料浆真空干燥,过200目筛。
2)Mg6.0Al17.90.1O30.3N1.7透明陶瓷预烧体的制备:将步骤1)中Mg6.0Al17.90.1O30.3N1.7透明陶瓷粉体置于钢模中,轴向加压10MPa,保压40s,再经过100MPa冷等静压保压30min,得到透明陶瓷坯体。再将透明陶瓷坯体置于气氛炉中,在氮气气氛下以6℃/min升温速率从室温升至1300℃,再以5℃/min升温速率从1300℃升温至1750℃,再以3℃/min升温速率从1750℃升温至1875℃,最后在1875℃保温1h,自然冷却后得到Mg6.0Al17.90.1O30.3N1.7透明陶瓷预烧体。
3)Mg6.0Al17.90.1O30.3N1.7透明陶瓷的制备:对步骤2)中所得的Mg6.0Al17.90.1O30.3N1.7透明陶瓷预烧体进行热等静压处理,以高纯氩气为传压介质,压强为100MPa,以10℃/min升温至1880℃,保温时间为1h,得到Mg6.0Al17.90.1O30.3N1.7透明陶瓷样品。对所得样品进行研磨、抛光处理,获得2mm厚Mg6.0Al17.90.1O30.3N1.7透明陶瓷样品,光学透过范围为0.2~6.7μm,最大直线透过率为85%。
本发明各工艺参数(如升温速度、温度、时间等)的上下限取值、以及其区间值,都能实现本发明,在此不一一列举实施例。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化或修饰,均仍属于本发明的技术方案的范围之内。

Claims (10)

1.一种宽光学透过域的高镁含量MgAlON透明陶瓷,其特征在于:为单相尖晶石型结构,结构式为MgxAl(64-2x+y)/3(8-x-y)/3O32-yNy,其中6≤x≤7.5,0.2≤y≤1.7、且x+y<8、□为阳离子空位数。
2.根据权利要求1所述的MgAlON透明陶瓷,其特征在于:2mm厚样品的光学透过范围为0.2~6.7μm,中红外透过范围介于c面蓝宝石和MgAl2O4透明陶瓷之间。
3.根据权利要求1所述的MgAlON透明陶瓷,其特征在于:所述的宽光学透过域MgAlON透明陶瓷在MgO-AlN-Al2O3系统三元相图中的组成范围为MgO:21.26~26.60wt%、AlN:0.72~6.13wt%、Al2O3:72.61~77.81wt%。
4.权利要求1所述的MgAlON透明陶瓷的制备方法,其特征在于:包括如下步骤:
1)MgAlON透明陶瓷粉体的制备:以Al(8+a)/3O4-aNa,0.25≤a≤0.4、Mg1-bAl2(1+b/3)O4,0≤b≤0.2和MgO粉末为原料按摩尔百分比为:Al(8+a)/3O4-aNa粉末6.25~41.46mol%、Mg1- bAl2(1+b/3)O4粉末29.27~93.75mol%、MgO粉末0~29.27mol%进行称量混合,并采用场致快速法合成MgxAl(64-2x+y)/3(8-x-y)/3O32-yNy透明陶瓷粉体,其中6≤x≤7.5,0.2≤y≤1.7、且x+y<8、□为阳离子空位数,然后将透明陶瓷粉体进一步球磨得到细化的陶瓷粉体;
2)MgAlON透明陶瓷素坯的制备:将步骤1)的MgAlON透明陶瓷粉体通过轴向加压结合冷等静压成型,得到MgAlON透明陶瓷素坯;
3)MgAlON透明陶瓷预烧体的制备:将步骤2)的MgAlON透明陶瓷素坯进行无压预烧,得到气孔封闭,相对致密度在95%以上的陶瓷预烧体
4)宽光学透过域MgAlON透明陶瓷的制备:将步骤3)中所得气孔封闭的MgAlON透明陶瓷预烧体进行热等静压烧结,获得宽光学透过域MgAlON透明陶瓷。
5.根据权利要求4所述的制备方法,其特征在于:步骤1)中,将Al(8+a)/3O4-aNa,0.25≤a≤0.4、Mg1-bAl2(1+b/3)O4,0≤b≤0.2和MgO粉末放入混料瓶中,按球料(料为混合粉料)比为4:1加入氧化铝球,加入无水乙醇,滚筒球磨24~30h配制料浆,然后将得到的料浆充分干燥,得到粉末混合物,将粉末混合物过100目筛后使用;
步骤(3)的无压烧结气氛为高纯氮气;
步骤(3)中的无压预烧处理的升温速率为1~10℃/min;
步骤(4)的热等静压处理气氛为高纯氩气。
6.根据权利要求4所述的制备方法,其特征在于:所述的Al(8+a)/3O4-aNa,0.25≤a≤0.4,由Al2O3、AlN按结构式Al(8+a)/3O4-aNa中的化学计量比取样,即摩尔比为(4-a)/3:a场致快速合成得到,合成温度为1800-1825℃;
所述的Mg1-bAl2(1+b/3)O4,0≤b≤0.2,由MgO、Al2O3按结构式Mg1-bAl2(1+b/3)O4中的化学计量比取样,即摩尔比为:(1-b):(1+b/3)场致快速合成得到,合成温度为1300-1500℃。
7.根据权利要求4所述的制备方法,其特征在于:步骤1)中,场致快速合成温度为1600~1750℃,反应时间为8~20min。
8.根据权利要求4所述的制备方法,其特征在于:步骤2)中的轴向压力为10~40MPa,保压时间10~40s;冷等静压压力为100~200MPa,保压时间为10~30min。
9.根据权利要求4所述的制备方法,其特征在于:步骤(3)中的无压预烧处理的预烧温度为1600℃~1875℃,保温时间为1~5h。
10.根据权利要求4所述的制备方法,其特征在于:步骤(4)中热等静压处理温度为1800~1880℃,压力为100~200MPa,保温时间为1~8h。
CN202010331700.4A 2020-04-24 2020-04-24 一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法 Active CN111704445B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010331700.4A CN111704445B (zh) 2020-04-24 2020-04-24 一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010331700.4A CN111704445B (zh) 2020-04-24 2020-04-24 一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111704445A true CN111704445A (zh) 2020-09-25
CN111704445B CN111704445B (zh) 2023-03-24

Family

ID=72537103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010331700.4A Active CN111704445B (zh) 2020-04-24 2020-04-24 一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111704445B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073181A (zh) * 2022-06-09 2022-09-20 大连海事大学 一种高烧结活性纯相MgAlON细粉及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231062A (en) * 1990-08-09 1993-07-27 Minnesota Mining And Manufacturing Company Transparent aluminum oxynitride-based ceramic article
CN104446497A (zh) * 2014-12-01 2015-03-25 中国航天科工集团第三研究院第八三五八研究所 一种宽频透光氮氧化物透明陶瓷的制备方法
CN108585878A (zh) * 2018-04-24 2018-09-28 武汉理工大学 一种高硬度MgAlON透明陶瓷及其制备方法
CN109534823A (zh) * 2018-12-12 2019-03-29 天津津航技术物理研究所 获取MgAlON透明陶瓷的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231062A (en) * 1990-08-09 1993-07-27 Minnesota Mining And Manufacturing Company Transparent aluminum oxynitride-based ceramic article
CN104446497A (zh) * 2014-12-01 2015-03-25 中国航天科工集团第三研究院第八三五八研究所 一种宽频透光氮氧化物透明陶瓷的制备方法
CN108585878A (zh) * 2018-04-24 2018-09-28 武汉理工大学 一种高硬度MgAlON透明陶瓷及其制备方法
CN109534823A (zh) * 2018-12-12 2019-03-29 天津津航技术物理研究所 获取MgAlON透明陶瓷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAO ZONG ET AL.: "A novel spinel-type Mg0.55Al2.36O3.81N0.19 transparent ceramic with infrared transmittance range comparable to c-plane sapphire", 《SCRIPTA MATERIALIA》 *
张舟等: "Mg0.27Al2.58O3.73N0.27透明陶瓷机械性能评价", 《无机材料学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073181A (zh) * 2022-06-09 2022-09-20 大连海事大学 一种高烧结活性纯相MgAlON细粉及其制备方法和应用
CN115073181B (zh) * 2022-06-09 2023-03-17 大连海事大学 一种高烧结活性纯相MgAlON细粉及其制备方法和应用

Also Published As

Publication number Publication date
CN111704445B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
CN109987941B (zh) 一种具有抗氧化性的高熵陶瓷复合材料及其制备方法和应用
CN107721406B (zh) 一种制备高透光性镁铝尖晶石透明陶瓷的方法
CN109879669B (zh) 一种具有高强度的高熵陶瓷复合材料及其制备方法和应用
CN107352994B (zh) 一种镁铝尖晶石透明陶瓷的制备方法
CN104529449A (zh) 一种采用两步烧结制备氧化钇基透明陶瓷的方法
CN100387548C (zh) 增韧镁铝尖晶石透明陶瓷的制备方法
CN114031376B (zh) 一种高硬度、细晶粒zta体系复相陶瓷材料的制备方法
CN108794016B (zh) 一种高红外透过率AlON透明陶瓷的快速制备方法
CN109206141A (zh) 一种高硬高韧氮化硅陶瓷及其制备方法和应用
JP2014508092A (ja) 透明度が向上した多結晶酸窒化アルミニウムの製造方法
CN114105639A (zh) 一种红外透明陶瓷材料及其制备方法
CN110218096A (zh) 一种高硬高耐磨氮化硅陶瓷及其制备方法和应用
CN100422109C (zh) 一种氧化铝/硅碳化钛/氧化铝层状复合材料及制备方法
CN111704445B (zh) 一种宽光学透过域的高镁含量MgAlON透明陶瓷及其制备方法
Fang et al. Effect of heat treatment of green bodies on the sintering and optical properties of large-size and thick transparent YAG ceramics
CN111393170A (zh) 一种通过多因素优化制备高致密度氮化硅陶瓷的方法及制备的氮化硅陶瓷
CN111196727A (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
CN112174644B (zh) 一种无压快速烧结致密纳米晶粒陶瓷的方法
CN107473730B (zh) 一种制备细晶、高强镁铝尖晶石透明陶瓷的方法
CN106747433B (zh) 氧化锆基纳米陶瓷工模具材料及其制备方法
CN109053192B (zh) 一种MgAlON透明陶瓷粉体的制备方法
CN108585878B (zh) 一种高硬度MgAlON透明陶瓷及其制备方法
CN112830792B (zh) 一种高硬度的铪基三元固溶体硼化物陶瓷及其制备方法和应用
CN115385698A (zh) 一种具有织构化的硼化物/氮化硅复合陶瓷及其制备方法和应用
CN101486576A (zh) 一种原位反应热压合成V2AlC块体陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230914

Address after: Inside Building 34, Jindiwei Xinjiangxia Zhizao Park, No. 6 Hejiahu Street, Daqiao Modern Industrial Park, Jiangxia District, Wuhan City, Hubei Province, 430200

Patentee after: Wuhan Hailing Huizhi New Materials Co.,Ltd.

Address before: 430070 Hubei Province, Wuhan city Hongshan District Luoshi Road No. 122

Patentee before: WUHAN University OF TECHNOLOGY