CN111667073B - 一种证据理论改进的模糊卡尔曼滤波目标跟踪方法 - Google Patents

一种证据理论改进的模糊卡尔曼滤波目标跟踪方法 Download PDF

Info

Publication number
CN111667073B
CN111667073B CN202010233907.8A CN202010233907A CN111667073B CN 111667073 B CN111667073 B CN 111667073B CN 202010233907 A CN202010233907 A CN 202010233907A CN 111667073 B CN111667073 B CN 111667073B
Authority
CN
China
Prior art keywords
evidence
fuzzy
kalman filtering
information
representing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010233907.8A
Other languages
English (en)
Other versions
CN111667073A (zh
Inventor
蒋雯
马泽宇
邓鑫洋
耿杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202010233907.8A priority Critical patent/CN111667073B/zh
Publication of CN111667073A publication Critical patent/CN111667073A/zh
Application granted granted Critical
Publication of CN111667073B publication Critical patent/CN111667073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/048Fuzzy inferencing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Algebra (AREA)
  • Operations Research (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Automation & Control Theory (AREA)
  • Fuzzy Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,包括以下步骤:步骤一计算卡尔曼滤波器的不确定信息;步骤二根据不确定信息对输入量模糊量化得到输出量模糊数隶属度;步骤三根据输出量模糊数隶属度生成证据;步骤四融合多个历史时刻的证据;步骤五将融合后的证据转换为概率;步骤六根据概率生成更新因子;步骤七更新卡尔曼滤波器参数。本发明在模糊卡尔曼滤波的基础上,结合证据理论融合处理不确定信息的优势,在参数自适应更新时考虑历史信息,使得卡尔曼滤波能够融合多个时刻的不确定信息,证据理论中的基本概率分配函数和证据组合规则,使改进的卡尔曼滤波能更灵活有效地处理不确定信息,误差更小,具有更好地抗干扰性能。

Description

一种证据理论改进的模糊卡尔曼滤波目标跟踪方法
技术领域
本发明属于目标跟踪技术领域,具体涉及一种证据理论改进的模糊卡尔曼滤波目标跟踪方法。
背景技术
伴随着万物互联时代的来临,各类电子设备和传感器已然遍布生活和工、作的各个角落,结合通信、人工智能等技术,极大改善了人们的生活。与此同、时,制造业升级以及智能制造等带来工业生产设备的更新迭代,自动化生产的、设备往往需要具备对物品识别和跟踪的能力;而在日常生活中,生活方式因智、能视频监控和人脸识别等应用而更加智能化,这些应用也使得目标识别和跟踪、技术更为普及。因而技术发展极大丰富了目标识别与跟踪等理论的应用场景,相关理论方法的研究也受到了广泛重视。
目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标测量数据对目标状态进行精确的估计。目标在运动过程中随着速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,但是由于定位跟踪过程中测量误差、系统噪声和干扰的存在,利用多次含有噪声的观测数据对目标运动状态进行跟踪,需要用滤波方法来获得统计最优的状态估计结果,其实质是最优滤波问题。卡尔曼滤波方法自从1960年被Kalman提出,就因为有良好的目标状态预测性能而备受重视。此后许多研究将仅适用于线性系统和高斯概率分布的经典卡尔曼滤波进一步改进。为提高对目标的跟踪性能,迫切需要研究更为优越的跟踪滤波方法。
智能化同时也造成了数据量的剧增,繁杂多样的信息促使着信息融合技术的快速发展,也使其被用于各种各样的应用中。在众多应用场景中,数据处理中心所能获取的观测数据往往采集自不同的传感器,所能获取的数据量也随之倍增。相比于单个传感器观测数据,多源数据能更充分的反映目标情况,因而在目标识别与跟踪过程中需要融合多源信息,从而提高识别与跟踪的准确性。但是在目标跟踪过程中,传感器在复杂环境中受到噪声干扰等一系列环境不确定因素影响,多源数据间可能出现不一致、冲突等情况,会对传感器性能造成影响,导致所观测的数据具有不确定性,而难以直接对多源数据进行融合,这些不确定性都将给多源数据下的目标识别和跟踪带来困扰,因而在跟踪目标时需结合不确定性理论对不确定信息进行处理。
为了使目标跟踪模型能有更好的性能表现,需要对这些不确定信息进行处理。所以结合不确定性理论构建具有不确定信息处理能力的目标跟踪模型有其研究价值和意义。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其在模糊卡尔曼滤波的基础上,结合证据理论融合处理不确定信息的优势,在参数自适应更新时考虑历史信息,使得卡尔曼滤波能够融合多个时刻的不确定信息。同时,证据理论中的基本概率分配函数和证据组合规则,使改进的卡尔曼滤波能更灵活有效地处理不确定信息,改进后的卡尔曼滤波方法在强干扰条件下预测的目标位置误差更小,有更好地抗干扰性。
为解决上述技术问题,本发明采用的技术方案是:一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于,包括以下步骤:
步骤一、计算卡尔曼滤波器的不确定信息:
步骤101、多个传感器采集当前时刻目标运动状态;
步骤102、计算机根据公式
Figure GDA0003393324700000021
计算不确定信息ΔDk,其中Sk表示卡尔曼滤波器在k时刻的新息噪声协方差理论值,Mk表示卡尔曼滤波器在k时刻的新息噪声协方差实际值;
步骤二、根据不确定信息对输入量模糊量化得到输出量模糊数隶属度:
步骤201、模糊量化:计算机根据不确定信息ΔDk和隶属度函数计算得到三个输入量模糊数隶属度,三个输入量模糊数隶属度分别为
Figure GDA00033933247000000320
Figure GDA00033933247000000313
步骤202、模糊推理:模糊推理可得输出量模糊数隶属度与输入量模糊数隶属度一一对应,输出量模糊数隶属度分别为
Figure GDA00033933247000000316
Figure GDA00033933247000000315
因此
Figure GDA00033933247000000317
Figure GDA00033933247000000318
以及
Figure GDA00033933247000000319
步骤三:根据输出量模糊数隶属度生成证据:计算机根据公式
Figure GDA0003393324700000031
计算卡尔曼滤波器在k时刻的证据mk(A),其辨识框架为
Figure GDA0003393324700000032
步骤四、融合多个历史时刻的证据;
步骤401、多时刻证据加权平均:
Figure GDA0003393324700000033
其中
Figure GDA0003393324700000034
表示加权平均证据信息,ωi表示k-i+1时刻的证据mk-i+1(A)对应的权重,
Figure GDA0003393324700000035
i表示正整数,l表示共l个时刻;
步骤402、证据融合:对加权平均证据信息
Figure GDA0003393324700000036
采用证据组合规则进行l-1次融合得到m(A),
Figure GDA0003393324700000037
该式中
Figure GDA0003393324700000038
出现l-1次,任意两组的证据组合规则为
Figure GDA0003393324700000039
表示融合后的证据信息,m1(A)和m2(B)表示两组在辨识框架Θ上待融合的证据,A、B表示幂集2Θ的子集,C表示A和B的交集;
步骤五、将融合后的证据转换为概率BetP(A);
步骤六、根据概率BetP(A)生成更新因子α;
步骤七、更新卡尔曼滤波器参数。
上述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于:步骤102中
Figure GDA00033933247000000310
其中H表示观测矩阵,
Figure GDA00033933247000000311
表示k时刻目标状态预测值的误差协方差,Rk表示k时刻的观测噪声协方差。
上述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于:步骤102中
Figure GDA0003393324700000041
其中
Figure GDA0003393324700000042
zk表示k时刻目标状态的实际观测值,
Figure GDA0003393324700000043
表示k时刻目标状态的预测值,k≥n≥1。
上述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于:步骤102中,当ΔDk为矩阵形式时,取该矩阵主对角线的均值作为ΔDk
上述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于,步骤五中将融合后的证据转换为概率包括以下步骤:利用公式
Figure GDA0003393324700000044
计算得到近似累积概率分布BetP(A),其中|A|表示子集A的模。
上述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于,步骤六中根据概率生成更新因子包括以下步骤:计算机根据公式
Figure GDA0003393324700000045
计算更新因子α,其中P(A)表示模糊数的去模糊函数。
上述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于:对于三角模糊数
Figure GDA0003393324700000046
所用的去模糊公式为
Figure GDA0003393324700000047
上述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于,步骤七中更新卡尔曼滤波器参数包括以下步骤:计算机根据公式Rk+1=α·Rk计算得到k+1时刻新息噪声协方差Rk+1
本发明与现有技术相比具有以下优点:
1、本发明的步骤简单、设计合理,实现及使用操作方便。
2、本发明采用多个传感器采集当前时刻目标运动状态,相比于单个传感器观测数据,多个传感器所能获取的数据量也随之倍增,多源数据能更充分的反映目标情况,从而提高目标跟踪的准确性。
3、本发明采用不确定信息ΔDk间接反映卡尔曼滤波的准确性,基于比值ΔDk在噪声发生变化时对卡尔曼滤波器的参数进行自适应更新,以实现对目标状态的良好预测。
4、本发明采用模糊卡尔曼滤波,模糊集理论具有在集合论框架下描述不完善、不确定信息的优势,模糊卡尔曼滤波通过构建输入量模糊数及输出量模糊数,描述了新息协方差理论值与实际值的差值和观测噪声协方差更新因子之间的不确定关系,模糊数的应用使得模糊卡尔曼滤波在更新相关参数时具备一定的不确定信息处理能力,从而提升其滤波性能。
5、本发明采用基本概率分配函数mk(A)来表示证据,证据理论提供了Dempster组合规则,该规则不但能满足交换律与结合律,而且即使在先验信息缺失时也能有效地完成证据融合,能更为有效地表达随机性和不确定性,也能更好地处理不确定信息,提升在干扰环境下目标跟踪的准确性。
6、本发明在更新自适应模糊卡尔曼滤波参数时融合了多个时刻的历史信息,减少了仅由于当前k时刻观测数据影响而产生误更新的情况,从而在目标跟踪时具有更好的抗干扰能力。
7、本发明在证据融合时为每个历史时刻的证据分配了不同的权重,使得对历史信息的利用更贴合实际,使用效果好。
综上所述,本发明结构简单、设计合理,在模糊卡尔曼滤波的基础上,结合证据理论融合处理不确定信息的优势,在参数自适应更新时考虑历史信息,使得卡尔曼滤波能够融合多个时刻的不确定信息,同时证据理论中的基本概率分配函数和证据组合规则,使改进的卡尔曼滤波能更灵活有效地处理不确定信息,改进后的卡尔曼滤波方法在强干扰条件下预测的目标位置误差更小,有更好地抗干扰性。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明的方法流程图。
图2为本发明的输入量隶属度函数图像。
图3为本发明的输出量隶属度函数图像。
图4为本发明未加强干扰时三种卡尔曼滤波方法结果对比图。
图5为本发明添加强干扰后三种卡尔曼滤波方法结果对比图。
具体实施方式
下面结合附图及本发明的实施例对本发明的方法作进一步详细的说明。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
如图1所示,本发明包括以下步骤:
步骤一、计算卡尔曼滤波器的不确定信息:
步骤101、多个传感器采集当前时刻目标运动状态。
实际使用时,采用多个传感器采集当前时刻目标运动状态xk。相比于单个传感器观测数据,多个传感器所能获取的数据量也随之倍增。多源数据能更充分的反映目标情况,从而提高目标跟踪的准确性。xk表示k时刻的目标运动状态,目标运动状态包括目标位置、目标速度和目标加速度,k时刻表示当前时刻,k-1时刻表示上一时刻,k+1时刻表示下一时刻。
步骤102、计算机根据公式
Figure GDA0003393324700000071
计算不确定信息ΔDk,其中Sk表示卡尔曼滤波器在k时刻的新息噪声协方差理论值,Mk表示卡尔曼滤波器在k时刻的新息噪声协方差实际值。
实际使用时,新息噪声协方差的理论值
Figure GDA0003393324700000072
其中H表示观测矩阵,
Figure GDA0003393324700000073
表示k时刻目标状态预测值的误差协方差,
Figure GDA0003393324700000074
Pk-1表示上一时刻目标状态的误差协方差,Qk为系统噪声协方差。k时刻表示当前时刻,k-1表示上一时刻。Rk表示k时刻的观测噪声协方差。
新息噪声协方差的实际值
Figure GDA0003393324700000075
其中新息值
Figure GDA0003393324700000076
zk表示k时刻对目标运动状态xk进行观测得到的实际观测值,包括距离、方位角、俯仰角,
Figure GDA0003393324700000077
表示k时刻目标状态的预测值,
Figure GDA0003393324700000078
xk-1表示上一时刻的目标运动状态,目标运动状态包括目标位置、目标速度和目标加速度等,A为状态转移矩阵,A表示目标运动状态随时间变化的规律,常见状态方程形式有匀速运动、匀加速运动以及匀速圆周运动等。n表示共l个时刻、l个时刻中的前n个时刻。
当ΔDk为矩阵形式时,取该矩阵主对角线的均值作为ΔDk
卡尔曼滤波在目标状态预测过程中,需要设定系统噪声协方差Qk和观测噪声协方差Rk等参数。而实际的观测环境中,传感器受过如电磁干扰等各种不确定因素的影响,从而使得目标观测信息存在不精确性、不确定性。同时干扰强度的变化使得观测噪声协方差Rk也随之改变,而假定的观测噪声协方差Rk必然无法反映真实情况,根据公式
Figure GDA0003393324700000081
可知,目标跟踪模型输出的理论值Sk受观测噪声协方差Rk影响,所以经典卡尔曼滤波的预测结果会随环境噪声强度的变化而变差。为了更好地调节卡尔曼滤波参数以实现对目标状态的良好预测,则要考虑实际噪声变化的不确定信息。
当实际噪声大于Rk时,新息值Δzk会很大,由此求得的新息协方差实际值Mk会偏大,而新息协方差理论值Sk与所设定的观测噪声协方差Rk有关,两者间的差异会增大,因此它们的比值ΔDk反映了所用参数是否符合实际噪声,因此本申请采用不确定信息ΔDk间接反映卡尔曼滤波的准确性,也可以反映出所用的观测噪声协方差Rk是否符合实际噪声情况。基于比值ΔDk在噪声发生变化时对卡尔曼滤波器的观测噪声协方差Rk进行自适应更新,使用效果好。
步骤二、根据不确定信息对输入量模糊量化得到输出量模糊数隶属度:
步骤201、模糊量化:计算机根据不确定信息ΔDk和隶属度函数计算得到三个输入量模糊数隶属度,三个输入量模糊数隶属度分别为
Figure GDA0003393324700000082
Figure GDA0003393324700000083
步骤202、模糊推理:模糊推理可得输出量模糊数隶属度与输入量模糊数隶属度一一对应,输出量模糊数隶属度分别为
Figure GDA0003393324700000084
Figure GDA0003393324700000085
因此
Figure GDA0003393324700000086
Figure GDA0003393324700000087
以及
Figure GDA0003393324700000088
实际使用时,利用模糊逻辑算法得到输出量模糊数隶属度包括模糊量化和模糊推理两步。
模糊量化:用输入量隶属度函数将ΔDk转换成模糊数形式,输入量模糊数包括
Figure GDA0003393324700000089
Figure GDA00033933247000000810
Figure GDA00033933247000000811
Figure GDA00033933247000000812
分别对应负、零和正三种情况。输入量隶属函数如图2所示,根据ΔDk的值对输入量模糊量化,分别计算三个模糊数的隶属度
Figure GDA0003393324700000091
Figure GDA0003393324700000092
若隶属度
Figure GDA0003393324700000093
Figure GDA0003393324700000094
加和不为1,则将剩余值均分给多个模糊数,即ΔDk>0时均分给模糊数z和模糊数p,反之则均分给模糊数z和模糊数n。
模糊推理:输出量模糊数包括
Figure GDA0003393324700000095
Figure GDA0003393324700000096
其分别与输入量模糊数
Figure GDA0003393324700000097
Figure GDA0003393324700000098
一一对应;根据模糊推理可得输出量模糊数隶属度与输入量模糊数隶属度一一对应,因此
Figure GDA0003393324700000099
以及
Figure GDA00033933247000000910
采用模糊卡尔曼滤波,模糊集理论具有在集合论框架下描述不完善、不确定信息的优势,模糊卡尔曼滤波通过构建输入量模糊数及输出量模糊数,描述了新息协方差理论值与实际值的差值和观测噪声协方差更新因子之间的不确定关系,模糊数的应用使得模糊卡尔曼滤波在更新相关参数时具备一定的不确定信息处理能力,从而提升卡尔曼滤波抗干扰的性能。
步骤三:根据输出量模糊数隶属度生成证据:计算机根据公式
Figure GDA00033933247000000911
计算卡尔曼滤波器在k时刻的证据mk(A),其辨识框架为
Figure GDA00033933247000000912
实际使用时,mk(A)表示基本概率分配函数,又称证据。在将输出量模糊数隶属度
Figure GDA00033933247000000913
Figure GDA00033933247000000914
转换成证据mk(A)形式时,构建了如下的辨识框架
Figure GDA00033933247000000915
证据mk(A)的生成公式
Figure GDA00033933247000000916
表示,将输出量模糊数隶属度
Figure GDA00033933247000000917
Figure GDA00033933247000000918
分配给单子集
Figure GDA00033933247000000919
Figure GDA00033933247000000920
若信度加和不为一,则将剩余信度分配给多子集
Figure GDA00033933247000000921
Figure GDA00033933247000000922
正是基本概率分配函数mk(A)允许将信度分配给多子集,使得证据理论比传统概率论有更强的不确定性表示能力。
采用基本概率分配函数mk(A)来表示证据,证据理论提供了Dempster组合规则,该规则不但能满足交换律与结合律,而且即使在先验信息缺失时也能有效地完成证据融合,能更为有效地表达随机性和不确定性,也能更好地处理不确定信息,提升在干扰环境下目标跟踪的准确性。
步骤四、融合多个历史时刻的证据;
步骤401、多时刻证据加权平均:
Figure GDA0003393324700000101
其中
Figure GDA0003393324700000102
表示加权平均证据信息,ωi表示k-i+1时刻的证据mk-i+1(A)对应的权重,
Figure GDA0003393324700000103
i表示正整数,l表示共l个时刻。
若当前k时刻观测数据因随机性而较大地偏离真实值,仅依据当前k时刻不确定信息对k+1时刻观测噪声协方差Rk+1进行更新,则会使观测噪声协方差Rk+1进一步偏离真实情况。由于对目标跟踪结果有较大影响的干扰往往会持续一段时间,所以相邻时刻点的噪声参数设定具有一定延续性,k时刻之前的时刻点的不确定信息对于当前k时刻会有一定参考价值。为了减少这种由于当前k时刻观测数据影响而产生误更新的情况,则需要对历史信息加以利用。在更新自适应模糊卡尔曼滤波参数时融合了多个时刻的历史信息,从而在目标跟踪时具有更好的抗干扰能力。
本申请中,在证据融合时为每个历史时刻的证据分配了不同的权重,使得对历史信息的利用更贴合实际,使用效果好。实际使用时,因为当前时刻的不确定信息更能反映当前观测噪声的情况,所以不同时刻的不确定信息重要程度不同,故在证据融合时为每个证据分配了不同的权重。当l=5时,
Figure GDA0003393324700000104
其中ω1表示k时刻的权重、ω2表示k-1时刻的权重、ω3表示k-2时刻的权重、ω4表示k-3时刻的权重、ω5表示k-4时刻的权重,权重取值体现出越靠近当前k时刻权重越大。
步骤402、证据融合:对加权平均证据信息
Figure GDA0003393324700000105
进行l-1次融合得到m(A),
Figure GDA0003393324700000106
融合的本质是正交和,用符号
Figure GDA0003393324700000107
表示,该式中
Figure GDA0003393324700000108
出现l-1次,任意两组的融合规则为
Figure GDA0003393324700000109
表示融合后的证据信息,m1(A)和m2(B)表示两组在辨识框架Θ上待融合的证据,A、B表示幂集2Θ的子集,C表示A和B的交集。
本申请对对同一个卡尔曼滤波器的历史时刻证据进行融合。融合规则使得证据理论在较好反映信息不确定性的同时,能对多源信息进行有效地处理和融合,多源信息包含更多的目标信息,因而对多源信息进行有效融合能更好提高目标跟踪的抗干扰性。
实际使用时,当l=5时,对加权平均证据信息
Figure GDA0003393324700000111
进行4次融合得到m(A),
Figure GDA0003393324700000112
辨识框架Θ可采用
Figure GDA0003393324700000113
步骤五、将融合后的证据转换为概率BetP(A):利用公式
Figure GDA0003393324700000114
计算得到近似累积概率分布BetP(A),其中|A|表示子集A的模,即子集A所含焦元个数。
实际使用时,融合生成的证据m(A)是在事件的幂集空间上进行信度分配,不利于最终的决策分析,所以实际应用中,需要将证据m(A)转换成概率形式BetP(A),再进行决策。
步骤六、根据概率BetP(A)生成更新因子α:根据公式
Figure GDA0003393324700000115
计算更新因子α,其中P(A)表示为去模糊后的清晰数。
实际使用时,
Figure GDA0003393324700000116
去模糊公式采用
Figure GDA0003393324700000117
对于
Figure GDA0003393324700000118
如图3所示,a、b、c取值分别是0.7、0.8和0.9,因此
Figure GDA0003393324700000119
对于
Figure GDA00033933247000001110
a、b、c取值分别是0.9、1和1.1,
Figure GDA00033933247000001111
对于
Figure GDA00033933247000001112
a、b、c取值分别是1.1、1.2和1.3,
Figure GDA00033933247000001113
因此计算更新因子α的公式可被简化为:
Figure GDA00033933247000001114
步骤七、更新卡尔曼滤波器参数:计算机根据k时刻新息噪声协方差更新k+1时刻新息噪声协方差:Rk+1=α·Rk。本实施例中仅对新息噪声协方差Rk进行自适应更新。具体使用时,包括但不限于系统噪声协方差Qk和观测噪声协方差Rk、预测值误差协方差
Figure GDA00033933247000001115
等参数,由此实现卡尔曼滤波器参数的自适应更新,从而进行k+1时刻的滤波。
具体实施时,图4为未加强干扰时三种卡尔曼滤波方法结果对比图,三种波形分别表示了平方根容积卡尔曼滤波(SRCKF)、模糊卡尔曼滤波(fuzzyKF)以及本申请所采用的结合证据理论的模糊卡尔曼滤波方法(DS-KF)。
在350~400时刻传感器做匀速运动,三种卡尔曼滤波方法参数设置如下:目标从(100,100,9)处以速度
Figure GDA0003393324700000121
往原点方向飞行根据运动状态的变化,传感器运动轨迹分为4个阶段,先是从位置(0,5,7)以速度(100,0,0)m/s往x轴正方向做匀速运动,再250~300时刻以加速度(2,0,0)m/s2在x轴正方向上做匀加速运动,然后在300~350时刻在xoy平面上做角速度
Figure GDA0003393324700000122
的匀速圆周运动,最后在350~400时刻做匀速直线运动。
观测噪声协方差
Figure GDA0003393324700000123
其中距离的观测误差标准差σr=50m,方位角的观测误差标准差σ=0.6°,俯仰角的观测误差标准差σε=0.6°。系统噪声
Figure GDA0003393324700000124
其中q=[qx,qy,qz],Qx=0.25m2s-3,Qy=0.25m2s-3,Qz=0.001m2s-3
如图4所示,三种卡尔曼滤波在没有强干扰出现的情况下预测的位置误差相接近。
在350~400时刻添加了5倍强度的观测噪声作为强干扰,如图5所示,在强干扰环境下,本申请所采用的基于证据理论的模糊卡尔曼滤波方法(DS-KF)相比于其他两种方法,其预测误差更小,具有更好地抗干扰性,因而能提升强干扰下目标跟踪的精确性。
本申请在模糊卡尔曼滤波的基础上,结合证据理论融合处理不确定信息的优势,在参数自适应更新时考虑历史信息,使得卡尔曼滤波能够融合多个时刻的不确定信息,同时证据理论中的基本概率分配函数和证据组合规则,使基于证据理论的模糊卡尔曼滤波方法能更灵活有效地处理不确定信息,改进后的卡尔曼滤波方法在强干扰条件下预测的目标位置误差更小,有更好地抗干扰性。
以上所述,仅是本发明的实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (8)

1.一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于,包括以下步骤:
步骤一、计算卡尔曼滤波器的不确定信息:
步骤101、多个传感器采集当前时刻目标运动状态;
步骤102、计算机根据公式
Figure FDA0003360827640000011
计算不确定信息ΔDk,其中Sk表示卡尔曼滤波器在k时刻的新息噪声协方差理论值,Mk表示卡尔曼滤波器在k时刻的新息噪声协方差实际值;
步骤二、根据不确定信息对输入量模糊量化得到输出量模糊数隶属度:
步骤201、模糊量化:计算机根据不确定信息ΔDk和隶属度函数计算得到三个输入量模糊数隶属度,三个输入量模糊数隶属度分别为
Figure FDA0003360827640000012
Figure FDA0003360827640000013
步骤202、模糊推理:模糊推理可得输出量模糊数隶属度与输入量模糊数隶属度一一对应,输出量模糊数隶属度分别为
Figure FDA0003360827640000014
Figure FDA0003360827640000015
因此
Figure FDA0003360827640000016
Figure FDA0003360827640000017
以及
Figure FDA0003360827640000018
步骤三、根据输出量模糊数隶属度生成证据:计算机根据公式
Figure FDA0003360827640000019
计算卡尔曼滤波器在k时刻的证据mk(A),其辨识框架为
Figure FDA00033608276400000110
步骤四、融合多个历史时刻的证据;
步骤401、多时刻证据加权平均:
Figure FDA00033608276400000111
其中
Figure FDA00033608276400000112
表示加权平均证据信息,ωi表示k-i+1时刻的证据mk-i+1(A)对应的权重,
Figure FDA00033608276400000113
i表示正整数,l表示共l个时刻;
步骤402、证据融合:对加权平均证据信息
Figure FDA00033608276400000114
采用证据组合规则进行l-1次融合得到m(A),
Figure FDA00033608276400000115
该式中
Figure FDA00033608276400000116
出现l-1次,任意两组的证据组合规则为
Figure FDA00033608276400000117
Figure FDA00033608276400000118
表示融合后的证据信息,m1(A)和m2(B)表示两组在辨识框架Θ上待融合的证据,A、B表示幂集2Θ的子集,C表示A和B的交集;
步骤五、将融合后的证据转换为概率BetP(A);
步骤六、根据概率BetP(A)生成更新因子α;
步骤七、更新卡尔曼滤波器参数。
2.按照权利要求1所述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于:步骤102中
Figure FDA0003360827640000021
其中H表示观测矩阵,
Figure FDA0003360827640000022
表示k时刻目标状态预测值的误差协方差,Rk表示k时刻的观测噪声协方差。
3.按照权利要求2所述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于:步骤102中
Figure FDA0003360827640000023
其中
Figure FDA0003360827640000024
zi表示i时刻目标状态的实际观测值,
Figure FDA0003360827640000025
表示i时刻目标状态的预测值,k≥n≥1,n表示共l个时刻、l个时刻中的前n个时刻。
4.按照权利要求1所述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于:步骤102中,当ΔDk为矩阵形式时,取该矩阵主对角线的均值作为ΔDk
5.按照权利要求1所述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于,步骤五中将融合后的证据转换为概率包括以下步骤:利用公式
Figure FDA0003360827640000026
计算得到近似累积概率分布BetP(A),其中|A|表示子集A的模。
6.按照权利要求1所述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于,步骤六中根据概率生成更新因子包括以下步骤:计算机根据公式
Figure FDA0003360827640000031
计算更新因子α,其中P(A)表示模糊数的去模糊函数。
7.按照权利要求6所述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于:对于三角模糊数
Figure FDA0003360827640000032
所用的去模糊公式为
Figure FDA0003360827640000033
8.按照权利要求1所述的一种证据理论改进的模糊卡尔曼滤波目标跟踪方法,其特征在于,步骤七中更新卡尔曼滤波器参数包括以下步骤:计算机根据公式Rk+1=α·Rk计算得到k+1时刻观测噪声协方差Rk+1
CN202010233907.8A 2020-03-30 2020-03-30 一种证据理论改进的模糊卡尔曼滤波目标跟踪方法 Active CN111667073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010233907.8A CN111667073B (zh) 2020-03-30 2020-03-30 一种证据理论改进的模糊卡尔曼滤波目标跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010233907.8A CN111667073B (zh) 2020-03-30 2020-03-30 一种证据理论改进的模糊卡尔曼滤波目标跟踪方法

Publications (2)

Publication Number Publication Date
CN111667073A CN111667073A (zh) 2020-09-15
CN111667073B true CN111667073B (zh) 2021-12-28

Family

ID=72382645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010233907.8A Active CN111667073B (zh) 2020-03-30 2020-03-30 一种证据理论改进的模糊卡尔曼滤波目标跟踪方法

Country Status (1)

Country Link
CN (1) CN111667073B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747742B (zh) * 2020-12-22 2022-10-14 上海交通大学 一种基于卡尔曼滤波的终端位置自适应更新方法
CN112478015B (zh) * 2021-02-03 2021-04-16 德鲁动力科技(成都)有限公司 四足机器人足端触地检测方法及系统
CN114792112B (zh) * 2022-04-22 2024-02-20 河南大学 基于自适应处理策略的时域证据融合方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108802707A (zh) * 2018-08-31 2018-11-13 中国科学院电子学研究所 改进的用于目标跟踪的卡尔曼滤波方法
CN109190811A (zh) * 2018-08-20 2019-01-11 浙江工业大学 一种基于自适应扩展卡尔曼滤波的车辆速度跟踪方法
CN109520503A (zh) * 2018-11-27 2019-03-26 南京工业大学 一种平方根容积模糊自适应卡尔曼滤波slam方法
CN110443832A (zh) * 2019-06-21 2019-11-12 西北工业大学 一种基于观测区间值的证据滤波目标跟踪方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101216998B (zh) * 2008-01-11 2011-04-06 浙江工业大学 基于模糊粗糙集的证据理论城市交通流信息融合方法
CN101976346A (zh) * 2010-10-14 2011-02-16 西北工业大学 基于模糊隶属函数的证据理论bpa生成方法
CN102592038B (zh) * 2011-01-07 2015-01-28 中国科学院计算技术研究所 基于ds推理的无线传感器网络多目标跟踪数据关联方法
CN106156790B (zh) * 2016-06-08 2020-04-14 北京工业大学 一种应用于传感器网络的分布式协作算法和数据融合机制
CN107689046A (zh) * 2017-07-25 2018-02-13 西北工业大学 一种基于d‑s证据理论的脑部mri图像分割方法
CN107767406B (zh) * 2017-11-13 2019-05-10 西北工业大学 一种基于ds证据理论的多光谱图像弱小目标跟踪方法
CN108520266B (zh) * 2018-03-01 2019-10-22 西北工业大学 一种基于ds证据理论的时域融合故障诊断方法
CN108761263B (zh) * 2018-05-24 2021-03-12 中电华创(苏州)电力技术研究有限公司 一种基于证据理论的故障诊断系统
CN110188882B (zh) * 2018-12-28 2022-05-31 湖南大学 一种基于模糊推理的高冲突证据融合方法
CN109856625A (zh) * 2019-03-06 2019-06-07 国网福建省电力有限公司莆田供电公司 一种基于多源数据融合的船舶位置识别方法
CN110349188B (zh) * 2019-07-18 2023-10-27 深圳大学 基于tsk模糊模型的多目标跟踪方法、装置及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109190811A (zh) * 2018-08-20 2019-01-11 浙江工业大学 一种基于自适应扩展卡尔曼滤波的车辆速度跟踪方法
CN108802707A (zh) * 2018-08-31 2018-11-13 中国科学院电子学研究所 改进的用于目标跟踪的卡尔曼滤波方法
CN109520503A (zh) * 2018-11-27 2019-03-26 南京工业大学 一种平方根容积模糊自适应卡尔曼滤波slam方法
CN110443832A (zh) * 2019-06-21 2019-11-12 西北工业大学 一种基于观测区间值的证据滤波目标跟踪方法

Also Published As

Publication number Publication date
CN111667073A (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
CN111667073B (zh) 一种证据理论改进的模糊卡尔曼滤波目标跟踪方法
CN107292911B (zh) 一种基于多模型融合和数据关联的多目标跟踪方法
CN110443832B (zh) 一种基于观测区间值的证据滤波目标跟踪方法
CN112119409A (zh) 具有关系存储器的神经网络
CN111968133A (zh) 自动驾驶场景下的三维点云数据实例分割方法及系统
CN110708318A (zh) 基于改进的径向基神经网络算法的网络异常流量预测方法
CN111563918B (zh) 一种多卡尔曼滤波器数据融合的目标跟踪方法
CN117029817A (zh) 一种二维栅格地图融合方法及系统
Wang et al. A compensation method for gyroscope random drift based on unscented Kalman filter and support vector regression optimized by adaptive beetle antennae search algorithm
CN115470957A (zh) 基于深度学习的台风期间近海海浪波高预测系统、计算机设备、存储介质
CN111652263B (zh) 一种基于多滤波器信息融合的自适应目标跟踪方法
CN111208506B (zh) 一种简化的交互式多模型跟踪方法
Fan et al. A novel dynamic Bayesian network based threat assessment algorithm
Lv et al. Underwater target tracking based on strong tracking sparse grid quadrature filter
Duell et al. The Markov Decision Process Extraction Network.
CN111523090B (zh) 基于高斯混合概率假设密度的数目时变多目标跟踪方法
CN112837351B (zh) 一种改进的标签多伯努利分布式优化融合跟踪方法
Chen et al. Shared reservoir modular echo state networks for chaotic time series prediction
Nguyen et al. SOLUTION SELECTION FOR FASTER ESSENTIAL MATRIX BASED STEREO VISUAL ODOMETRY
CN116756265B (zh) 一种轨迹数据的处理方法、装置、电子设备及存储介质
Yang et al. Uncovering the human motion pattern: Pattern Memory-based Diffusion Model for Trajectory Prediction
Peng et al. Fuzzy Data Association-Towards Better Uncertainty Tracking in Clutter Environments
CN117092624A (zh) 一种外参标定方法、系统、介质及设备
Wei et al. Improvement of the simultaneous localization and map building algorithm applying scaled unscented transformation
CN117496303A (zh) 一种手势识别模型生成方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant