CN111656597B - 热电电容器 - Google Patents

热电电容器 Download PDF

Info

Publication number
CN111656597B
CN111656597B CN201980008360.7A CN201980008360A CN111656597B CN 111656597 B CN111656597 B CN 111656597B CN 201980008360 A CN201980008360 A CN 201980008360A CN 111656597 B CN111656597 B CN 111656597B
Authority
CN
China
Prior art keywords
thermoelectric
energy
nihcf
pani
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980008360.7A
Other languages
English (en)
Other versions
CN111656597A (zh
Inventor
冯宪平
汪洵
黄榆婷
郑泽阳
王雷
李家豪
牟凯钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Versitech Ltd
Original Assignee
Versitech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Versitech Ltd filed Critical Versitech Ltd
Publication of CN111656597A publication Critical patent/CN111656597A/zh
Application granted granted Critical
Publication of CN111656597B publication Critical patent/CN111656597B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/21Temperature-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本发明提供将热能转换为电能的装置及其制作方法。不对称热电化学电容器使用GO基正电极和蓄电池型负电极来开启操作电压窗口,并且提高放电容量以便以优良效率、快速热充电时间和稳定循环将低位热能转换为电能。热电化学装置包括碳基正电极、导电聚合物或金属有机框架作为负电极、集电器和多孔隔板。

Description

热电电容器
技术领域
本发明实施例涉及热电化学电容器(TEC),其将热能转换为电能,并且将低位热能转换与电荷存储相结合。
背景技术
低位热能(<100°C)因其在环境中的充足可用性(例如太阳热能、地热能)以及来自工业过程的废热形式,预计将成为最可持续能源之一。全球的全部能量消耗的至少三分之一最终都是低位热能。2004年,美国能源部发布了一项研究,“工业环境中的工业损失降低和回收”,该研究发现可以从废热回收将近2万亿 BTU的能量。根据 美国能源部,废热的回收为行业提供每年大约$60亿的节省机会。
普遍存在的低位热能(<100℃)通常未经利用就被浪费,而没有转换为可用电能。但是,转换仍然是大难题,因为由于低温差和热源的分布性质,将低位热能转换成电能是低效的。当前可用的热能-电能转换器在低位热能条件下操作的的性能和成本不值得广泛采用。热能-电能转换的普遍选择是热电(TE)半导体材料(例如Bi2Te3),其通过温差进行工作,但是其在低位热能条件下操作时转换效率小于2%。电化学系统受到越来越多的关注,因为>1 mV/K的塞贝克系数比TE材料(100-200 µV/K)高一个数量级。热电化学电池(TEC)通常成本较低,因为它们使用现成可用材料,而无需昂贵制作工艺。与TE发生器相似,TEC可以在温差下运行,以基于热与冷侧之间的温度相关的氧化还原电位将热能转换为电能。但是,由于电解质的离子导电率差其效率仅为0.2%~0.3%。另一种TEC方式是基于蓄电池系统中的温度相关的氧化还原电位或者电化学电容器系统中与温度相关的静电位来利用热循环以便将热能转换为电能,其中与热或冷贮存器的连接以循环交替进行。基于热循环的TEC在低位热能条件下循环时达到大约3%的良好效率,但是这样做需要在开始时使用外部电力以在每个循环中对电极强制充电,这使系统设计复杂化并且限制实际应用。
电化学系统中的“热充电”现象为通过加热操作将热能转换成电能,而不是使用热梯度或热循环,提供了节省成本的途径 (注意:一定量的能量必须用来保持良好温差,这通常不计入总体能量转换效率的计算)。
发明内容
使用氧化石墨烯(GO)基的正电极和蓄电池型负电极的不对称TEC可以实现超过3%的TEC转换效率,这高于低温条件下的TE发生器的转换效率。聚苯胺(PANI)的导电聚合物和铁氰化镍(NiHCF)的金属有机框架(MOF)可以用作蓄电池型负电极的活性材料。这个系统在70℃下加热时可以达到3-4.4 mV/K的高电化学塞贝克系数和200-350 mV的热电压。在高温下产生的电能可以在其温度下降到室温之后存储在装置(例如商用超级电容器)中。采用高电化学塞贝克系数、快速动力和低热容量的进一步优化可以导致将低位热能转换和电荷存储相结合的商业产品。
本发明的实施例提供了使用GO基正电极和蓄电池型负电极的不对称TEC,以开启工作电压窗口,并提高放电容量以将低位热能转换为电能,其具有优良效率、快速热充电时间和稳定循环。聚苯胺(PANI)的导电聚合物和铁氰化镍(NiHCF)的金属有机框架(MOF)可以用作负电极的活性材料。GO基的正电极的功函数和表面润湿性可以被调谐,以进一步增加热电压并且缩短热充电时间。实验结果证实低温条件下TEC转换效率高于TE发生器。
附图说明
图1(a)示出二电极TEC袋状电池配置的照片的简图和图像。
图1(b)示出TE温度循环器的简图和图像。
图2(a)示出对具有GO/CC和CC的TEC、具有GO/CC和PANI/TF的TEC以及具有GO/CC和NiHCF/TF的TEC在70℃下测量的OCP的图表。
图2(b)示出在各种温度下测量的GO/CC、PANI/TF和NiHCF/TF的OCP(相对于 Ag/AgCl)的图表。
图3示出TEC和TE的理论效率的图表。
图4(a)示出使用TEC充电到商用Panasonic 1F超级电容器中所建立的示范的图像。
图4(b)示出通过串联连接充电的超级电容器来点亮LED的图像。
图5(a)示出烹饪锅充电器的TEC原型产品设计。
图5(b)示出用于生成1.1 V的热电压所建立的TEC产品的示范。
具体实施方式
低位热能在工业过程、环境、生物实体、太阳热能和地热能中是充足可用的。本发明的实施例提供了有效地将这种低位热能(<100℃)转换为电能的装置和方法。在低位热能条件下操作的当前可用热-电流转换器(例如热电发生器)其效率不高于几个百分点。TEC结合了低位热能转换和电荷存储。TEC将热能转换成电能,并且提供用于从太阳热和废热来生成和存储能量的新可持续方法。
本发明的实施例提供一种热电化学装置(TEC),其将热能转换为电能,并且包括:(a)碳基(例如氧化石墨烯(GO))正电极;(b)导电聚合物(例如聚苯胺(PANI))或金属有机框架(MOF)(例如,普鲁士蓝(PB)类似物,例如NiHCF和CuHCF)负电极;(c)集电器;以及(d)多孔隔板。
一种制备正电极的方法包括将氧化石墨烯(GO)、碳黑和聚偏氟乙烯(PVDF)与N-甲基-2-吡咯烷酮(NMP)混合为膏剂,并且然后将膏剂涂敷到碳布上。GO、碳黑和PVDF的质量比可以为75:15:10,以及NMP中的总固体含量可以为大约25 mg/mL。
一种制备PANI负电极的方法可以包括在NMP中混合75 wt% PANI粉末(翠绿亚胺碱(emeraldine base))、15 wt%碳黑和10 wt% PVDF,然后可以通过滴涂来涂敷到钛型(TF)或碳布(CC)上。
一种制备NiHCF电极的方法可以包括在NMP中混合70 wt% NiHCF纳米粒子、20 wt%碳黑和10 wt% PVDF,然后通过滴涂将该物质涂敷到钛型或碳布上。
TEC装置可以在等温条件下操作的同时执行热能-电流转换,而无需使用热梯度或热循环。等温操作实现高效热能回收(50-70%),以提升装置的总体效率。该装置可以在0℃至200℃的温度范围内在等温条件下操作。
本发明的实施例将热能转换成电能,其与当前可用技术(例如固态热电发生器)相比在低位热能条件下更为有效且成本更低。本发明的某些实施例可适用于可再充电装置(其可以直接存储通过加热所生成的电能)的开发。
本发明包括但不限于下列例示实施例。
实施例1。一种将热能转换为电能的热电化学装置,包括:
碳基正电极;
导电聚合物或金属有机框架(MOF)作为负电极;
集电器;以及
多孔隔板。
实施例2。实施例1的热电化学装置,其中碳基正电极包括氧化石墨烯(GO)。
实施例3。按照实施例1-2中的任一个的热电化学装置,其中导电聚合物为聚苯胺(PANI)。
实施例4。按照实施例1-3中的任一个的热电化学装置,其中金属有机框架为普鲁士蓝类似物(例如NiHCF或CuHCF)。
实施例5。按照实施例1-4中的任一个的热电化学装置,其中装置在热能-电流转换循环期间在等温条件下操作。
实施例6。按照实施例5的热电化学装置,其中装置在从0℃至200℃的温度范围之内进行操作。
实施例7。一种制作热电化学装置的方法,该方法包括:
通过将GO、碳黑、聚偏氟乙烯和N-甲基-2-吡咯烷酮(NMP)混合为膏剂并且将膏剂涂敷到碳布,来制备氧化石墨烯正电极。
实施例8。实施例7的方法,其中氧化石墨烯、碳黑和PVDF的质量比为75:15:10;以及NMP的总固体含量为25 mg/mL。
实施例9。按照实施例1-8中的任一个的热电化学装置,还包括:
通过在N-甲基-2-吡咯烷酮中将75 wt% PANI粉末与翠绿亚胺碱、15 wt%碳黑和10wt% PVDF相混合并且将PANI混合物质涂敷到钛型或碳布上,来制备PANI负电极。
实施例10。实施例9的方法,其中PANI混合物质通过滴涂来涂敷到钛型或碳布上。
实施例11。按照实施例1-8中的任一个的热电化学装置,还包括:
通过在NMP中混合70 wt% NiHCF纳米粒子、20 wt%碳黑和10 wt% PVDF并且将NiHCF混合物质涂敷到钛型或碳布上,来制备NiHCF负电极。
实施例12。实施例11的方法,其中NiHCF混合物质通过滴涂来涂敷到钛型或碳布上。
实施例13。热电化学(TEC)装置的潜在应用。
对本发明及其许多优点的更多了解可从作为说明所给出的下列示例得到。下列示例说明本发明的方法、应用、实施例和变体的部分。它们当然不是被理解为限制本发明。针对本发明可以进行许多变更和修改。
示例1
为了促进快速和均匀加热,在初步实验中使用二电极或三电极TEC袋状电池配置,如图1(a)所示。三电极袋状电池用来单独测量每个电极相对位于隔板之间的参考Ag/AgCl电极的电位。通过在1 mA/cm2的恒定电流下在1M NaCl中将Ag箔氧化40分钟来制作参考Ag/AgCl电极。二电极袋状电池用来测量全电池热电压、放电容量和能量转换效率(
Figure 461950DEST_PATH_IMAGE001
)。正电极、多孔隔板和负电极夹合有500 μL 1M KCl电解质(pH=7,102 mS/cm)。使用KCl水溶液作为电解质,因为它是中性、环境健壮的、在环境条件下易于处理,并且与有机电解质(例如ACN中的1M TEABF4)相比具有几乎二倍导电率。Ti箔用作集电器,因为它是稳定的,并且在KCl溶液中不会腐蚀。电池的典型厚度为1至1.5 mm。自制的基于热电的温度循环器用来使用Labview程序来控制加热和冷却(参见例如图1(b))。热胶(Omega)施加到全部界面,以确保良好热接触。电化学测量(例如OCP、放电容量)在Gamry Reference 3000恒电势器中执行。在短路均衡过程的12小时之后测试全部袋状电池。
示例2—GO正电极
选择经由改良的Hummer方法从天然石墨片所合成的氧化石墨烯(GO)作为活性材料,因为它在表面上具有更多和更强羧基和羰基官能团(例如–COOH,–C=O)。GO、碳黑和聚偏氟乙烯(PVDF)与N-甲基-2-吡咯烷酮(NMP)混合为膏剂,并且然后涂敷到碳布(CC)。GO、碳黑和PVDF的质量比为75:15:10,以及NMP中的总固体含量为大约25 mg/mL。在70℃下干燥3小时之后,GO的质量负荷为3 mg/cm2
示例3—PANI或NiHCF负电极
PANI的导电聚合物和NiHCF的MOF分别用作负电极的活性材料。通过在NMP中混合75 wt% PANI粉末(翠绿亚胺碱)、15 wt%碳黑和10 wt% PVDF来制备PANI电极,然后通过滴涂将其涂敷到Ti型(TF)或CC。PANI的质量负荷为大约1 mg/cm2。除了PANI之外,NiHCF用作负电极的活性材料。NiHCF是具有化学式KNiFe(CN)6·nH2O的普鲁士蓝(PB)类似物,其由开放框架(其可以包含溶剂化碱离子(例如K+或Na+)和/或沸石水)内的大间隙位点组成。这种结构可以允许在充电/放电过程期间在整个晶格中快速离子传输。通过在50℃下将50 mMNi(NO3)2溶液滴入25 mM K3Fe(CN)6溶液中,使用简单溶液方式来合成NiHCF纳米粒子。通过在NMP中混合70 wt% NiHCF纳米微粒、20 wt%碳黑和10 wt% PVDF,来制备NiHCF电极,然后通过滴涂来涂敷到钛型或碳布。NiHCF的质量负荷为大约1 mg/cm2
示例4—热能-电能转换效率
TEC电池采用GO正电极和PANI或NiHCF负电极与500 μL的1M KCl电解质来组装。在具有GO/CC和NiHCF/TF电极的TEC在70℃下加热时,在30分钟内生成高达350 mV的全电池电压(参见例如图2),表明高电化学塞贝克系数为4.4 mV/K(注意:这将是电化学系统中的记录高值)。应注意的是,即使在室温下,也可以缓慢产生电压,这表明热充电过程与赝电容行为相似,其中表面吸收/解吸速率随温度增加而增强。热电压持续若干循环,其中二电极袋状电池在70℃下热充电30分钟,并且然后以1 mA的恒定电流放电到0 V。
所提出的热充电TEC的
Figure 11881DEST_PATH_IMAGE001
可以计算为一个热充电过程之后的电能放电除以加热该装置所需的热能量,其可以表达为:
Figure 955566DEST_PATH_IMAGE002
(1)
其中,Q是放电容量(库仑或mAh),V是电压(V),m是总质量Cp是TEC的平均比热,
Figure 249144DEST_PATH_IMAGE003
是热源与室温之间的温差(例如
Figure 696306DEST_PATH_IMAGE004
),
Figure 682716DEST_PATH_IMAGE005
是能量损失,以及
Figure 113698DEST_PATH_IMAGE006
是热回收效率。按照材料的比热,二电极TEC的平均比热估计为大约0.72 J g-1 K-1,假定集电器、电极材料、电解质和隔板的质量比大致为65%:15%:0.25%:19.75%。所使用TEC的总质量为0.255克,包括除了Al封装箔之外的全部材料。计算表明,当达到350 mV的热电压和0.3 mAh的放电容量(参见例如图3)时,在70℃下
Figure 945387DEST_PATH_IMAGE001
可以超过3%(
Figure 14100DEST_PATH_IMAGE007
),其可比拟类似低温条件下具有ZT≈2的TE(~20%卡诺效率)。因为在加热操作中可以容易地达到50%-70%的
Figure 640253DEST_PATH_IMAGE006
,所以如果使用
Figure 292951DEST_PATH_IMAGE006
为50%的热交换器,则总
Figure 662753DEST_PATH_IMAGE001
可进一步提高至6%。
图4(a)示出使用TEC将热能转换为电能,然后充电到商用Panasonic 1F超级电容器,并通过串联连接充电的超级电容器点亮LED的示范,如在图4(b)中所示。系统实现3%的高转换效率,其可以在50%热能回收下提高到~4.76%。
示例5—TEC原型产品设计及其应用
对于大规模生产,焦点在于材料、TEC系统、产品设计和热/电管理系统的开发。可以改进电极和电池组合件的尺寸以满足更大尺寸TEC模块的要求。图5示出用作烹饪锅充电器的TEC模块的原型设计,其可以在温度达到>90 °C时实现>1 V的热电压。TEC模块可以串联和并联连接,以实现更高电压和功率输出。
示例6—TEC作为可穿戴装置的电源
本发明的TEC电池可用作可穿戴电子设备和医疗设备(例如助听器、手表、活动跟踪器、传感器、无线发射器、眼镜、血压监测仪、温度计、睡眠跟踪器、UV传感器、智能服装等)的主或辅助电源,可以从周围环境和用户的体热中获取能量。TEC电池还可以附连到不同种类的商用和家用太阳能电池板,以提高太阳能电池板的功率转换效率。
应当理解,本文所述的示例和实施例仅为了便于说明,并且根据其的各种修改或变更将向本领域的技术人员建议,并且将要包含在本申请的精神和范围之内。
本文所参照或所述的全部专利、专利申请、临时申请和发表物(包括“参考文献”小节中的内容)在它们不是与本说明书的明确理论不一致的程度上通过引用完整地结合,包括全部附图和表。
参考文献
[1] S.Chu, A.Majumdar, Opportunities and challenges for a sustainableenergy future, Nature 488, 294 (2012).
[2] A.S.Rattner, S.Garimella, Energy harvesting, reuse and upgrade toreduce primary energy usage in the USA, Energy 36, 6172 (2011).
[3] L.E.Bell, Cooling, Heating, generating power, and recoveringwaste heat with thermoelectric systems, Science 321, 1457 (2008).
[4] C.B.Vining, An inconvenient truth about thermoelectrics, NatureMaterials 8, 83 (2009).
[5] F.D.Rosi, Thermoelectricity and thermoelectric power generation,Solid-State Electronics 11, 833 (1968).
[6] F.J.DiSalvo, Thermoelectric cooling and power generation, Science285, 703 (1999).
[7] B.Poudel, Q.Hao, Y.Ma, Y.C.Lan, A.Minnich, B.Yu, X.Yan, D.Wang,A.Muto, D.Vashaee, X.Y.Chen, J.Liu, M.S.Dresselhaus, G.Chen, Z.F.Ren, Highthermoelectric performance of nanostructured bismuth antimony telluride bulkalloys, Science 320, 634 (2008).
[8] D.Kraemer, B.Poudel, S.P.Feng, J.C.Caylor, B.Yu, X.Yan, Y.Ma,X.Wang, D.Wang, A.Muto, K.McEnaney, M.Chiesa, Z.F.Ren, G.Chen, High-performance flat-panel solar thermoelectric generators with high thermoconcentration, Nature Materials 10, 532 (2011).
[9] M.Zebarjadi, K.Esfarjani, M.S.Dresselhaus, Z.F.Ren, G.Chen,Perspectives on thermoelectrics: from fundamentals to device applications,Energy & Environmental Science 5, 5147 (2012).
[10] S.P.Feng, Y.H.Chang, J.Yang, B.Poudel, B.Yu,, Z.F.Ren, G.Chen,Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectricmaterials, Physical Chemistry Chemical Physics 15, 6757 (2013).
[11] H.S.Kim , W.Liu , G.Chen, C.W.Chu, Z.F.Ren, Relationship betweenthermoelectric figure of merit and energy conversion efficiency, Proceedingsof the National Academy of Sciences 112, 8205 (2015).
[12] T.I.Quickenden, Y.Mua, A review of power generation in aqueousthermogalvanic cells, Journal of The Electrochemical Society 142, 3985(1995).
[13] R.Hu, B.A.Cola, N.Haram, J.N.Barisci, S.Lee, S.Stoughton,G.Wallace, C.Too, M.Thomas, A.Gestos, M.E.Cruz, J.P.Ferraris, A.A.Zakhidov,R.H.Baughman, Harvesting waste thermo energy using a carbon-nanotube-basedthermo-electrochemical cell, Nano Letters 10, 838 (2010).
[14] L.Zhang, T.Kim, N.Li, T.J.Kang, J.Chen, J.M.Pringle, M.Zhang,A.H.Kazim, S.Fang, C.Haines, D.Al-Masri, B.A.Cola, J.M.Razal, J.Di, S.Beirne,D.R.MacFarlane, A.Gonzalez- Martin, S.Mathew, Y.H.Kim, G.Wallace,R.H.Baughman, High power density electrochemical thermocells forinexpensively harvesting low-grade thermo energy, Advanced Materials 29,1605652 (2017).
[15] T.J.Abraham, D.R.MacFarlanea, J.M.Pringleb, High Seebeckcoefficient redox ionic liquid electrolytes for thermo energy harvesting,Energy & Environmental Science 6, 2639 (2013).
[16] P.F.Salazar, S.Kumar, B.A.Cola, Nitrogen- and Boron-Doped CarbonNanotube Electrodes in a Thermo-Electrochemical Cell, Journal of TheElectrochemical Society 159, B483 (2012).
[17] I.Gur, K.Sawyer, R.Prasher, Searching for a Better ThermoBattery, Science 335, 1454 (2012).
[18] S.W.Lee, Y.Yang, H.W.Lee, H.Ghasemi, D.Kraemer, G.Chen, Y.Cui,An electrochemical system for efficiently harvesting low-grade heat energy,Nature Communications 5, 3942 (2014).
[19] Y.Yang, J.Loomis, H.Ghasemi, S.W.Lee, Y.J.Wang, Y.Cui, G.Chen,Membrane-free battery for harvesting low-grade thermo energy, Nano Letters14, 6578 (2014).
[20] Y.Yang, S.W.Lee, H.Ghasemi, J.Loomis, X.Li, D.Kraemer, G.Zheng,Y.Cui, G.Chen, Charging-free electrochemical system for harvesting low-gradethermo energy, Proceedings of the National Academy of Sciences 111, 17011(2014).
[21] A.Härtel, D.Weingarth, V.Presser, R.van Roij, Heat-to-currentconversion of low-grade heat from a thermocapacitive cycle bysupercapacitors, Energy & Environmental Science 8, 2396 (2015).
[22] P.Zhai, Y.H.Chang, Y.T.Huang, T.C.Wei, H.Su, S.P.Feng, Water-soluble microwave-exfoliated graphene nanosheet/platinum nanoparticlecomposite and its application in dye-sensitized solar cells, ElectrochimicaActa 132, 186 (2014).
[23] P.Zhai, T.C.Wei, Y.H.Chang, Y.T.Huang, W.T.Yeh, H.Su, S.P.Feng,High electrocatalytic and wettable nitrogen-doped microwave-exfoliatedgraphene nanosheets as counter electrode for dye-sensitized solar cells,Small 10, 3347 (2014).
[24] P.Zhai, H.Jia, Z.Zheng, C.C.Lee, H.Su, T.C.Wei, S.P.Feng, Tuningsurface wettability and adhesivity of nitrogen-doped graphene foam afterwater vapor treatment for efficient oil removal, Advanced MaterialsInterfaces 2, 1500243 (2015).
[25] P.Zhai, C.C.Lee, Y.H.Chang, C.Liu, T.C.Wei, S.P.Feng, Asignificant improvement in the electrocatalytic stability of N-doped graphenenanosheets used as a counter electrode for [Co(bpy)3]3+/2+ based porphyrin-sensitized solar cells, ACS Applied Materials & Interfaces 7, 2116 (2015).
[26] P.Zhai, Y.Wang, C.Liu, X.Wang, S.P.Feng, Electric-field-tunableconductivity in graphene/water and graphene/ice systems, Small 13, 1701149(2017).
[27] Y.Zhu, S.Murali, M.D.Stoller, K.J.Ganesh, W.Cai, P.J.Ferreira,A.Pirkle, R.M.Wallace, K.A.Cychosz, M.Thommes, D.Su, E.A.Stach, R.S.Ruoff,Carbon-based supercapacitors produced by activation of graphene, Science 332,1537 (2011).
[28] C.D.Wessells, S.V.Peddada, R.A.Huggins, Y.Cui, NickelHexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium IonBatteries, Nano Letters 11, 5421 (2011).
[29] B.E.Conway, E.Gileadi, M.Dzieciuch, Calculation and analysis ofadsorption pseudocapacitance and surface coverage from e.m.f.decay andpolarization curves:Applications to a decarboxylation reaction,Electrochim.Acta 8, 143 (1963).
[30] R.J.Forster, L.R.Faulkner, Electrochemistry of spontaneouslyadsorbed monolayers.Effects of solvent, potential, and temperature onelectron transfer dynamics, Journal of the American Chemical Society 116,5453 (1994).
[31] Y.S.Al-Degs, M.I.El-Barghouthi, A.H.El-Sheikh, G.M.Walker,Effect of solution pH, ionic strength, and temperature on adsorption behaviorof reactive dyes on activated carbon, Dyes Pigments 77, 16 (2008).

Claims (9)

1.一种将热能转换为电能的热电化学装置,包括:
碳基正电极,包括氧化石墨烯GO;
蓄电池型负电极,其活性物质为导电聚合物或金属有机框架MOF,其中氧化石墨烯GO正电极和蓄电池型负电极形成不对称热电化学电容器TEC,其中,所述导电聚合物为聚苯胺PANI,以及其中所述金属有机框架为普鲁士蓝类似物;
集电器;以及
多孔隔板。
2.如权利要求1所述的热电化学装置,其中,所述普鲁士蓝类似物是NiHCF或CuHCF。
3.如权利要求1所述的热电化学装置,其中,所述装置在热量-电流转换循环期间在等温条件下操作。
4.如权利要求3所述的热电化学装置,其中,所述装置在从0℃至200℃的温度范围内进行操作。
5.一种制作热电化学装置的方法,所述方法包括:
通过将氧化石墨烯GO、碳黑、聚偏氟乙烯 PVDF和N-甲基-2-吡咯烷酮NMP混合为膏剂并且将所述膏剂涂敷到碳布,来制备氧化石墨烯正电极,以及通过在N-甲基-2-吡咯烷酮中将75 wt% 聚苯胺PANI粉末与翠绿亚胺碱、15 wt%碳黑和10 wt% 聚偏氟乙烯 PVDF相混合并且将PANI混合物质涂敷到钛型或碳布上,来制备PANI负电极。
6.如权利要求5所述的方法,其中,氧化石墨烯、碳黑和PVDF的质量比为75:15:10,以及NMP的总固体含量为25 mg/mL。
7.如权利要求5所述的方法,其中,所述PANI混合物质通过滴涂来涂敷到所述钛型或碳布上。
8.如权利要求5所述的方法,还包括:
通过在NMP中混合70 wt% NiHCF纳米粒子、20 wt%碳黑和10 wt% PVDF并且将NiHCF混合物质涂敷到钛型或碳布上,来制备NiHCF负电极。
9.如权利要求8所述的方法,其中,所述NiHCF混合物质通过滴涂来涂敷到所述钛型或碳布上。
CN201980008360.7A 2018-01-15 2019-01-15 热电电容器 Active CN111656597B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862617514P 2018-01-15 2018-01-15
US62/617514 2018-01-15
PCT/CN2019/071777 WO2019137556A1 (en) 2018-01-15 2019-01-15 Thermo-electric capacitor

Publications (2)

Publication Number Publication Date
CN111656597A CN111656597A (zh) 2020-09-11
CN111656597B true CN111656597B (zh) 2022-11-08

Family

ID=67219404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980008360.7A Active CN111656597B (zh) 2018-01-15 2019-01-15 热电电容器

Country Status (5)

Country Link
US (1) US11626256B2 (zh)
EP (1) EP3740997A4 (zh)
CN (1) CN111656597B (zh)
TW (1) TWI798324B (zh)
WO (1) WO2019137556A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11602712B2 (en) 2020-03-11 2023-03-14 Honeywell International Inc. Atmospheric water extraction system
CN114388276B (zh) * 2022-01-26 2022-11-25 中国科学院兰州化学物理研究所 一种直接利用太阳光热充电的超级电容器及其充电方法
CN115347252A (zh) * 2022-07-29 2022-11-15 天津大学 一种环境热-氧捕获高效热电化学系统及其工作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143273A1 (en) * 2016-02-18 2017-08-24 The Texas A&M University System Thermally self-chargeable flexible energy storage device and method of forming and operating the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140252531A1 (en) * 2013-03-07 2014-09-11 Qualcomm Incorporated Systems and methods for harvesting dissipated heat from integrated circuits (ics) in electronic devices into electrical energy for providing power for the electronic devices
WO2015047484A2 (en) * 2013-06-18 2015-04-02 Massachusetts Institute Of Technology Electrochemical systems and methods for harvesting heat energy
JP2017513787A (ja) * 2014-02-21 2017-06-01 クラトス・エル・エル・シー 官能基化第iva族粒子の構造体のためのナノシリコン材料の調製
US20150311569A1 (en) * 2014-04-17 2015-10-29 Aiping Yu Wearable Battery Charger
CN106935862A (zh) * 2017-04-11 2017-07-07 桂林电子科技大学 一种钴基金属有机框架材料的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017143273A1 (en) * 2016-02-18 2017-08-24 The Texas A&M University System Thermally self-chargeable flexible energy storage device and method of forming and operating the same

Also Published As

Publication number Publication date
CN111656597A (zh) 2020-09-11
WO2019137556A1 (en) 2019-07-18
EP3740997A4 (en) 2022-04-06
TWI798324B (zh) 2023-04-11
EP3740997A1 (en) 2020-11-25
TW201935723A (zh) 2019-09-01
US20210366659A1 (en) 2021-11-25
US11626256B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
Zhang et al. High power density electrochemical thermocells for inexpensively harvesting low-grade thermal energy.
Ding et al. Simultaneous energy harvesting and storage via solar-driven regenerative electrochemical cycles
Im et al. Flexible thermocells for utilization of body heat
CN111656597B (zh) 热电电容器
CN103326007B (zh) 三维石墨烯基二氧化锡复合材料的制备方法及其应用
Huo et al. Progress and prospects for low-grade heat recovery electrochemical technologies
CN106057477B (zh) 一种水系可充钠离子电容电池及其制备方法
Li et al. Graphene materials for miniaturized energy harvest and storage devices
CN107601501A (zh) 一种生物质基多孔碳的制备方法及其应用
CN103825000A (zh) 基于三维石墨烯自支撑结构的介孔碳负载硫/硒柔性电极及其制备方法与应用
Peng et al. Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors
Xu et al. High-performance flexible redox supercapacitors induced by methylene blue with a wide voltage window
CN104393268A (zh) 一种气凝胶修饰的SnSb/碳纳米管复合负极材料的制备方法
CN105702958A (zh) 一种二氧化锡(SnO2)量子点溶液及其复合材料的制备方法与应用
CN105633327B (zh) 一种TiS2为正极的铝离子二次电池及其制备工艺
WO2020121799A1 (ja) 熱電池
CN107492455B (zh) 一种全固态共面非对称柔性微型超级电容器的制备方法
Yasin et al. Battery-nanogenerator hybrid systems
Sun et al. Ubiquitous clean and sustainable energy-driven self-rechargeable batteries realized by and used in organic electronics
Kulkarni et al. Energy conversion and storage devices
CN111541398A (zh) 一种功能化石墨烯卷水伏pn结的制备方法
CN104637701A (zh) 一种石墨烯基五氧化二钒纳米线超级电容电极材料的制备方法
KR101567693B1 (ko) 자가 충전 슈퍼커패시터 장치 및 제작방법
TW202105779A (zh) 熱電電池
Li et al. High-efficiency zinc thermal charging supercapacitors enabled by hierarchical porous carbon electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant