TW201935723A - 熱電電容器 - Google Patents

熱電電容器 Download PDF

Info

Publication number
TW201935723A
TW201935723A TW107147129A TW107147129A TW201935723A TW 201935723 A TW201935723 A TW 201935723A TW 107147129 A TW107147129 A TW 107147129A TW 107147129 A TW107147129 A TW 107147129A TW 201935723 A TW201935723 A TW 201935723A
Authority
TW
Taiwan
Prior art keywords
thermoelectrochemical
nihcf
pani
carbon
nmp
Prior art date
Application number
TW107147129A
Other languages
English (en)
Other versions
TWI798324B (zh
Inventor
馮憲平
汪洵
黃榆婷
鄭澤陽
王雷
家豪 李
牟凱鈺
Original Assignee
香港商港大科橋有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港商港大科橋有限公司 filed Critical 香港商港大科橋有限公司
Publication of TW201935723A publication Critical patent/TW201935723A/zh
Application granted granted Critical
Publication of TWI798324B publication Critical patent/TWI798324B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/21Temperature-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Hybrid Cells (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

本發明提供將熱能轉換為電能的裝置及其製作方法。不對稱熱電化學電容器使用GO基正電極和蓄電池型負電極來開啟操作電壓視窗,並且提高放電容量以便以優良效率、快速熱充電時間和穩定迴圈將低位熱能轉換為電能。熱電化學裝置包括碳基正電極、導電聚合物或金屬有機框架作為負電極、集電器和多孔隔板。

Description

熱電電容器
本發明實施例涉及熱電化學電容器(TEC),其將熱能轉換為電能,並且將低位元熱能轉換與電荷存儲相結合。
低位熱能(<100℃)因其在環境中的充足可用性(例如太陽熱能、地熱能)以及來自工業過程的廢熱形式而預計將成為最可持續能源之一。全球的全部能量消耗的至少三分之一最終都是低位熱能。2004年,美國能源部發佈了一項研究“工業環境中的工業損失降低和回收”,其發現可以從廢熱回收將近2×1015 BTU的能量。美國能源部表示,廢熱的回收為工業提供大約$60億/年的節省機會。
普遍存在的低位熱能(<100℃)通常未經利用就被浪費,而沒有轉換為可用電能。但是,轉換仍然是大難題,因為將低位熱能轉換成電能由於低溫差和熱源的分佈性質是低效的。當前可用的熱能-電能轉換器在低位熱能條件下操作的的性能和成本不值得廣泛採用。熱能-電能轉換的普遍選擇是熱電(TE)半導體材料(例如Bi2 Te3 ),其通過溫差進行工作,但是其在低位熱能條件下操作時轉換效率小於2%。電化學系統受到越來越多的關注,因為> 1 mV/K的塞貝克係數比TE材料(100-200 µV/K)要高一個數量級。熱電化學電池(TEC)通常成本較低,因為它們使用現成可用材料,而無需昂貴製作工藝。與TE發生器相似,TEC可以在溫差下運行,以基於熱與冷側之間的溫度相關的氧化還原電位將熱能轉換為電能。但是,由於電解質的離子導電率差其效率僅為0.2%~0.3%。另一種TEC方式是基於蓄電池系統中的溫度相關的氧化還原電位或者電化學電容器系統中與溫度相關的靜電位元來利用熱迴圈以便將熱能轉換為電能,其中與熱或冷貯存器的連接在迴圈中交替。基於熱迴圈的TEC在低位熱能條件下迴圈時達到大約3%的良好效率,但是這樣做需要在開始時使用外部電力以在每個迴圈中對電極強制充電,這使系統設計複雜化並且限制實際應用。
電化學系統中的“熱充電”現象為通過加熱操作將熱能轉換成電能,而不是使用熱梯度或熱迴圈,提供了節省成本的途徑 (注意:一定量的能量必須用來保持良好溫差,這通常不計入總體能量轉換效率的計算)。使用氧化石墨烯(GO)基的正電極和蓄電池型負電極的不對稱TEC可以實現超過3%的TEC轉換效率,其高於低溫條件下的TE發生器的轉換效率。聚苯胺(PANI)的導電聚合物和鐵氰化鎳(NiHCF)的金屬有機框架(MOF)可以用作蓄電池型負電極的活性材料。這個系統在70℃下加熱時可以達到3-4 mV/K的高電化學塞貝克係數和200-350 mV的熱電壓。在高溫下產生的電能可以在其溫度下降到室溫之後存儲在裝置(例如商用超級電容器)中。採用高電化學塞貝克係數、快速動力和低熱容量的進一步優化可以產生將低位元熱能轉換和電荷存儲相結合的商業產品。
本發明的實施例提供了使用GO基正電極和蓄電池型負電極的不對稱TEC,以開啟工作電壓視窗,並提高放電容量以將低位元熱能轉換為電能,其具有優良效率、快速熱充電時間和穩定迴圈。聚苯胺(PANI)的導電聚合物和鐵氰化鎳(NiHCF)的金屬有機框架(MOF)可以用作負電極的活性材料。GO基的正電極的功函數和表面潤濕性可以被調諧,以進一步增加熱電壓並且縮短熱充電時間。實驗結果證實低溫條件下TEC轉換效率高於TE發生器。
低位熱能在工業過程、環境、生物實體、太陽熱能和地熱能中是充足可用的。本發明的實施例提供了有效地將這種低位熱能(<100℃)轉換為電能的裝置和方法。在低位熱能條件下操作的當前可用熱-電流轉換器(例如熱電發生器)其效率不高於幾個百分點。TEC結合了低位元熱能轉換和電荷存儲。TEC將熱能轉換成電能,並且提供用於從太陽熱和廢熱來生成和存儲能量的新可持續方法。
本發明的實施例提供一種熱電化學裝置(TEC),其將熱能轉換為電能,並且包括:(a)碳基(例如氧化石墨烯(GO))正電極;(b)導電聚合物(例如聚苯胺(PANI))或金屬有機框架(MOF)(例如,普魯士藍(PB)類似物,例如NiHCF和CuHCF)負電極;(c)集電器;以及(d)多孔隔板。
一種製備正電極的方法包括將氧化石墨烯(GO)、碳黑和聚偏氟乙烯(PVDF)與N-甲基-2-吡咯烷酮(NMP)混合為膏劑,並且然後將膏劑塗敷到碳布上。GO、碳黑和PVDF的品質比可以為75:15:10,以及NMP中的總固體含量可以為大約25 mg/mL。
一種製備PANI負電極的方法可以包括在NMP中混合75 wt% PANI粉末(翠綠亞胺鹼 (emeraldine base))、15 wt%碳黑和10 wt% PVDF,然後可以通過滴塗來塗敷到鈦型(TF)或碳布(CC)上。
一種製備NiHCF電極的方法可以包括在NMP中混合70 wt% NiHCF奈米粒子、20 wt%碳黑和10 wt% PVDF,然後通過滴塗將該物質塗敷到鈦型或碳布上。
TEC裝置可以在等溫條件下操作的同時執行熱能-電流轉換,而無需使用熱梯度或熱迴圈。等溫操作實現高效熱能回收(50-70%),以提升裝置的總體效率。該裝置可以在0℃至200℃的溫度範圍內在等溫條件下操作。
本發明的實施例將熱能轉換成電能,其與當前可用技術(例如固態熱電發生器)相比在低位元熱能條件下更為有效且成本更低。本發明的某些實施例可適用於可再充電裝置(其可以直接存儲通過加熱所生成的電能)的開發。
本發明包括但不限於下列例示實施例。
實施例1. 一種將熱能轉換為電能的熱電化學裝置,包括:
碳基正電極;
導電聚合物或金屬有機框架(MOF)作為負電極;
集電器;以及
多孔隔板。
實施例2. 實施例1的熱電化學裝置,其中碳基正電極由氧化石墨烯(GO)組成。
實施例3. 按照實施例1-2中的任一個的熱電化學裝置,其中導電聚合物為聚苯胺(PANI)。
實施例4. 按照實施例1-3中的任一個的熱電化學裝置,其中金屬有機框架為普魯士藍類似物(例如NiHCF或CuHCF)。
實施例5. 按照實施例1-4中的任一個的熱電化學裝置,其中裝置在熱能-電流轉換迴圈期間工作在等溫條件。
實施例6. 實施例5的熱電化學裝置,其中裝置在從0℃至200℃的溫度範圍之內進行操作。
實施例7. 一種製作熱電化學裝置的方法,該方法包括:
通過將GO、碳黑、聚偏氟乙烯和N-甲基-2-吡咯烷酮(NMP)混合為膏劑並且將膏劑塗敷到碳布,來製備氧化石墨烯正電極。
實施例8. 實施例7的方法,其中氧化石墨烯、碳黑和PVDF的品質比為75:15:10;以及NMP的總固體含量為25 mg/mL。
實施例9. 按照實施例1-8中的任一個的熱電化學裝置,還包括:
通過在N-甲基-2-吡咯烷酮中將75 wt% PANI粉末與翠綠亞胺鹼、15 wt%碳黑和10 wt% PVDF相混合並且將PANI混合物質塗敷到鈦型或碳布上,來製備PANI負電極。
實施例10. 實施例9的方法,其中PANI混合物質通過滴塗來塗敷到鈦型或碳布上。
實施例11. 按照實施例1-8中的任一個的熱電化學裝置,還包括:
通過在NMP中混合70 wt% NiHCF奈米粒子、20 wt%碳黑和10 wt% PVDF並且將NiHCF混合物質塗敷到鈦型或碳布上,來製備NiHCF負電極。
實施例12. 實施例11的方法,其中NiHCF混合物質通過滴塗來塗敷到鈦型或碳布上。
實施例13. 熱電化學(TEC)裝置的潛在應用。
對本發明及其許多優點的更多瞭解可從作為說明所給出的下列示例得到。下列示例說明本發明的方法、應用、實施例和變體的部分。它們當然不是被理解為限制本發明。針對本發明可以進行許多變更和修改。

示例1
為了促進快速和均勻加熱,在初步實驗中使用二電極或三電極TEC袋狀電池配置,如圖1(a)所示。三電極袋狀電池用來單獨測量每個電極相對位於隔板之間的參考Ag/AgCl電極的電位。通過在1 mA/cm2 的恒定電流下在1M NaCl中將Ag箔氧化40分鐘來製作參考Ag/AgCl電極。二電極袋狀電池用來測量全電池熱電壓、放電容量和能量轉換效率()。正電極、多孔隔板和負電極夾合有500 μL 1M KCl電解質(pH=7,102 mS/cm)。使用KCl水溶液作為電解質,因為它是中性、環境健壯的、在環境條件下易於操控,並且與有機電解質(例如ACN中的1M TEABF4 )相比具有幾乎二倍導電率。Ti箔用作集電器,因為它是穩定的,並且在KCl溶液中不會腐蝕。電池的典型厚度為1至1.5 mm。自製的基於熱電的溫度迴圈器用來使用Labview程式來控制加熱和冷卻(參見例如圖1(b))。熱膠(Omega)施加到全部介面,以確保良好熱接觸。電化學測量(例如OCP、放電容量)在Gamry Reference 3000恒電勢器中執行。全部袋狀電池在短路均衡過程的12小時之後測試。

示例2-GO正電極
選擇經由修正Hummer方法從天然石墨片所合成的氧化石墨烯(GO)作為活性材料,因為它在表面上具有更多和更強羧基和羰基官能團(例如-COOH,-C=O)。GO、碳黑和聚偏氟乙烯(PVDF)與N-甲基-2-吡咯烷酮(NMP)混合為膏劑,並且然後塗敷到碳布(CC)。GO、碳黑和PVDF的品質比為75:15:10,以及NMP中的總固體含量為大約25 mg/mL。在70℃下乾燥3小時之後,GO的品質負荷為3 mg/cm2

示例3-PANI或NiHCF負電極
PANI的導電聚合物和NiHCF的MOF分別用作負電極的活性材料。通過在NMP中混合75 wt% PANI粉末(翠綠亞胺鹼)、15 wt%碳黑和10 wt% PVDF來製備PANI電極,然後通過滴塗來塗敷到Ti型(TF)或CC。PANI的品質負荷為大約1 mg/cm2 。除了PANI之外,NiHCF用作負電極的活性材料。NiHCF是具有化學式KNiFe(CN)6 ·nH2 O的普魯士藍(PB)類似物,其由開放框架(其可以包含溶劑化鹼離子(例如K+ 或Na+ )和/或沸石水)內的大間隙位點組成。這個結構可以允許在充電/放電過程期間在其晶格中快速離子傳輸。通過在50℃下將50 mM Ni(NO3 )2 溶液滴入25 mM K3 Fe(CN)6 溶液中,使用簡單溶液方式來合成NiHCF奈米粒子。通過在NMP中混合70 wt% NiHCF奈米微粒、20 wt%碳黑和10 wt% PVDF,來製備NiHCF電極,然後通過滴塗來塗敷到鈦型或碳布。NiHCF的品質負荷為大約1 mg/cm2

示例4-熱能-電能轉換效率
TEC電池採用GO正電極和PANI或NiHCF負電極與500 μL的1M KCl電解質來組裝。在具有GO/CC和NiHCF/TF電極的TEC在70℃下加熱時,在30分鐘內生成高達350 mV的全電池電壓(參見例如圖2),表明高電化學塞貝克係數為4.4 mV/K(注意:這將是電化學系統中的記錄高值)。應注意的是,即使在室溫下,也可以緩慢產生電壓,這表明熱充電過程與贗電容行為相似,其中表面吸收/解吸速率隨溫度增加而增強。熱電壓持續若干迴圈,其中二電極袋狀電池在70℃下熱充電30分鐘,並且然後以1 mA的恒定電流放電到0 V。
所提出熱充電TEC的可以計算為一個熱充電過程之後的電能放電除以加熱該裝置所需的熱能量,其可以表達為:
(1)
其中,Q是放電容量(庫侖或mAh),V是電壓(V),m是總品質Cp 是TEC的平均比熱,是熱源與室溫之間的溫差(例如),是能量損失,以及是熱回收效率。按照材料的比熱,二電極TEC的平均比熱估計為大約0.72 J g-1 K-1 ,假定集電器、電極材料、電解質和隔板的品質比大致為65%:15%:0.25%:19.75%。所使用TEC的總品質為0.255克,包括除了Al封裝箔之外的全部材料。計算表明,當達到350 mV的熱電壓和0.3 mAh的放電容量(參見例如圖3)時,在70℃下可以超過3%(),其可比擬類似低溫條件下具有ZT≈2的TE(~20%卡諾效率)。因為在加熱操作中可以容易地達到50%-70%的,所以如果使用為50%的熱交換器,則總可進一步提高至6%。
圖4(a)示出使用TEC將熱能轉換為電能,然後充電到商用Panasonic 1F超級電容器,並通過串聯連接充電的超級電容器點亮LED的示範,如在圖4(b)中所示。系統實現3%的高轉換效率,其可以在50%熱能回收下提高到~4.76%。

示例5-TEC原型產品設計及其應用
對於大規模生產,焦點在於材料、TEC系統、產品設計和熱/電管理系統的開發。可以改進電極和電池組合件的尺寸以滿足更大尺寸TEC模組的要求。圖5示出用作烹飪鍋充電器的TEC模組的原型設計,其可以在溫度達到>90℃時實現>1 V的熱電壓。TEC模組可以串聯和並聯連接,以實現更高電壓和功率輸出。

示例6-TEC作為可穿戴裝置的電源
通過從周圍環境和用戶的體熱中獲取能量,本發明的TEC電池可用作可穿戴電子設備和醫療設備(例如助聽器、手錶、活動跟蹤器、感測器、無線發射器、眼鏡、血壓監測儀、溫度計、睡眠跟蹤器、UV感測器、智慧服裝等)的主或輔助電源。TEC電池還可以附連到不同種類的商用和家用太陽能電池板,以提高太陽能電池板的功率轉換效率。
應當理解,本文所述的示例和實施例僅為了便於說明,並且根據其的各種修改或變更將向本領域的技術人員建議,並且將要包含在本申請的精神和範圍之內。
本文所參照或所述的全部專利、專利申請、臨時申請和發表物(包括“參考文獻”小節中的內容)在它們不是與本說明書的明確理論不一致的程度上通過引用完整地結合,包括全部附圖和表。



參考文獻



圖1(a)示出二電極TEC袋狀電池配置的照片的簡圖和圖像。
圖1(b)示出TE溫度迴圈器的簡圖和圖像。
圖2(a)示出對具有GO/CC和CC的TEC、具有GO/CC和PANI/TF的TEC以及具有GO/CC和NiHCF/TF的TEC在70℃下測量的OCP的圖表。
圖2(b)示出在各種溫度下測量的GO/CC、PANI/TF和NiHCF/TF的OCP(vs. Ag/AgCl)的圖表。
圖3示出TEC和TE的理論效率的圖表。
圖4(a)示出為使用TEC充電到商用Panasonic 1F超級電容器中所建立的示範的圖像。
圖4(b)示出通過串聯連接充電超級電容器來點亮LED的圖像。
圖5(a)示出烹飪鍋充電器的TEC原型產品設計。
圖5(b)示出用於生成1.1 V的熱電壓所建立的TEC產品的示範。

Claims (12)

  1. 一種將熱能轉換為電能的熱電化學裝置,包括: 碳基正電極; 導電聚合物或金屬有機框架(MOF)作為負電極; 集電器;以及 多孔隔板。
  2. 如請求項1所述的熱電化學裝置,其中,所述碳基正電極由氧化石墨烯(GO)組成。
  3. 如請求項1所述的熱電化學裝置,其中,所述導電聚合物是聚苯胺(PANI)。
  4. 如請求項1所述的熱電化學裝置,其中,所述金屬有機框架是普魯士藍類似物,如NiHCF或CuHCF。
  5. 如請求項1所述的熱電化學裝置,其中,所述裝置在熱量-電流轉換迴圈期間在等溫條件下操作。
  6. 如請求項5所述的熱電化學裝置,其中,所述裝置在從0℃至200℃的溫度範圍內進行操作。
  7. 一種製作熱電化學裝置的方法,所述方法包括: 通過將氧化石墨烯(GO)、碳黑、聚偏氟乙烯(PVDF)和N-甲基-2-吡咯烷酮(NMP)混合為膏劑並且將所述膏劑塗敷到碳布,來製備氧化石墨烯正電極。
  8. 如請求項7所述的方法,其中,氧化石墨烯(GO)、碳黑和聚偏氟乙烯 (PVDF)的品質比為75:15:10,以及N-甲基-2-吡咯烷酮(NMP)的所述總固體含量為25 mg/mL。
  9. 如請求項7所述的方法,還包括: 通過在N-甲基-2-吡咯烷酮(NMP)中將75 wt% 聚苯胺(PANI)粉末與翠綠亞胺鹼、15 wt%碳黑和10 wt% 聚偏氟乙烯 (PVDF)相混合並且將PANI混合物質塗敷到鈦型或碳布上,來製備PANI負電極。
  10. 如請求項9所述的方法,其中,所述PANI混合物質通過滴塗來塗敷到所述鈦型或碳布上。
  11. 如請求項7所述的方法,還包括: 通過在NMP中混合70 wt% NiHCF奈米粒子、20 wt%碳黑和10 wt% PVDF並且將NiHCF混合物質塗敷到鈦型或碳布上,來製備NiHCF負電極。
  12. 如請求項11所述的方法,其中,所述NiHCF混合物質通過滴塗來塗敷到所述鈦型或碳布上。
TW107147129A 2018-01-15 2018-12-26 熱電電容器 TWI798324B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862617514P 2018-01-15 2018-01-15
US62/617,514 2018-01-15

Publications (2)

Publication Number Publication Date
TW201935723A true TW201935723A (zh) 2019-09-01
TWI798324B TWI798324B (zh) 2023-04-11

Family

ID=67219404

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107147129A TWI798324B (zh) 2018-01-15 2018-12-26 熱電電容器

Country Status (5)

Country Link
US (1) US11626256B2 (zh)
EP (1) EP3740997A4 (zh)
CN (1) CN111656597B (zh)
TW (1) TWI798324B (zh)
WO (1) WO2019137556A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11602712B2 (en) * 2020-03-11 2023-03-14 Honeywell International Inc. Atmospheric water extraction system
CN114388276B (zh) * 2022-01-26 2022-11-25 中国科学院兰州化学物理研究所 一种直接利用太阳光热充电的超级电容器及其充电方法
CN115347252A (zh) * 2022-07-29 2022-11-15 天津大学 一种环境热-氧捕获高效热电化学系统及其工作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140252531A1 (en) 2013-03-07 2014-09-11 Qualcomm Incorporated Systems and methods for harvesting dissipated heat from integrated circuits (ics) in electronic devices into electrical energy for providing power for the electronic devices
WO2015047484A2 (en) * 2013-06-18 2015-04-02 Massachusetts Institute Of Technology Electrochemical systems and methods for harvesting heat energy
EP3108525A4 (en) * 2014-02-21 2017-10-18 Kratos LLC Nanosilicon material preparation for functionalized group iva particle frameworks
US20150311569A1 (en) * 2014-04-17 2015-10-29 Aiping Yu Wearable Battery Charger
WO2017143273A1 (en) * 2016-02-18 2017-08-24 The Texas A&M University System Thermally self-chargeable flexible energy storage device and method of forming and operating the same
CN106935862A (zh) 2017-04-11 2017-07-07 桂林电子科技大学 一种钴基金属有机框架材料的应用

Also Published As

Publication number Publication date
EP3740997A1 (en) 2020-11-25
CN111656597A (zh) 2020-09-11
CN111656597B (zh) 2022-11-08
US20210366659A1 (en) 2021-11-25
TWI798324B (zh) 2023-04-11
WO2019137556A1 (en) 2019-07-18
EP3740997A4 (en) 2022-04-06
US11626256B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
Luo et al. Recent advances in triboelectric nanogenerator based self-charging power systems
Liu et al. Unity convoluted design of solid li‐ion battery and triboelectric nanogenerator for self‐powered wearable electronics
Wei et al. Energy conversion technologies towards self-powered electrochemical energy storage systems: the state of the art and perspectives
Gao et al. Thermally regenerative electrochemical cycle for low-grade heat harvesting
Tian et al. Body heat powers future electronic skins
Im et al. Flexible thermocells for utilization of body heat
Härtel et al. Heat-to-current conversion of low-grade heat from a thermocapacitive cycle by supercapacitors
CN204068767U (zh) 一种穿戴式温差发电装置
TW201935723A (zh) 熱電電容器
Eapen et al. Low grade heat recovery for power generation through electrochemical route: Vanadium Redox Flow Battery, a case study
Huo et al. Progress and prospects for low-grade heat recovery electrochemical technologies
Li et al. Ionic gelatin thermoelectric generators
Lim et al. Thermally chargeable supercapacitor working in a homogeneous, changing temperature field
Manda et al. Thermocells of carbon material electrodes and its performance characteristics
Abdal-Kadhim et al. Application of thermal energy harvesting in powering WSN node with event-priority-driven dissemination algorithm for IOT applications
CN111541398A (zh) 一种功能化石墨烯卷水伏pn结的制备方法
CN203617934U (zh) 微型半导体温差发电装置
Li et al. Thermoelectric ionogel for low-grade heat harvesting
CN111211000B (zh) 纳米粒子电解液的热充电超级电容器
Zhang et al. Gigantic and Continuous Output Power in Ionic Thermo‐Electrochemical Cells by Using Electrodes with Redox Couples
TW202105779A (zh) 熱電電池
Kulkarni et al. Energy conversion and storage devices
Bae et al. Thermobattery based on CNT coated carbon textile and thermoelectric electrolyte
Mensah et al. Stimulating green energy potential in Sub-Saharan Africa: An analysis of copper–copper sulphate thermogalvanic cell architecture
Wang et al. Combined energy supply and management of self-powered wireless sensors based on radioisotope thermoelectric generator for multiple scenarios