CN111653768A - 一种NiO/Ni多孔微球的制备方法 - Google Patents

一种NiO/Ni多孔微球的制备方法 Download PDF

Info

Publication number
CN111653768A
CN111653768A CN202010449582.7A CN202010449582A CN111653768A CN 111653768 A CN111653768 A CN 111653768A CN 202010449582 A CN202010449582 A CN 202010449582A CN 111653768 A CN111653768 A CN 111653768A
Authority
CN
China
Prior art keywords
nio
preparation
porous microspheres
porous
hydrazine hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010449582.7A
Other languages
English (en)
Other versions
CN111653768B (zh
Inventor
文伟
耿超
吴进明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan University
Original Assignee
Hainan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan University filed Critical Hainan University
Priority to CN202010449582.7A priority Critical patent/CN111653768B/zh
Publication of CN111653768A publication Critical patent/CN111653768A/zh
Application granted granted Critical
Publication of CN111653768B publication Critical patent/CN111653768B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开一种NiO/Ni多孔微球的制备方法。步骤包括:将醋酸镍和水合肼加入去离子水中,水合肼和醋酸镍的物质的量之比为2:1,充分搅拌后于400℃加热15min,得到NiO/Ni多孔微球。本发明制备方法较简单,所制备的材料为NiO/Ni复合材料,具有球状外形和多孔结构。

Description

一种NiO/Ni多孔微球的制备方法
技术领域
本发明涉及NiO/Ni多孔微球的制备方法,适合于锂离子电池负极材料等领域。
背景技术
NiO纳米材料在催化、锂离子电池等领域具有潜在的应用前景。NiO的电化学性能主要取决于其成分和微结构。作为锂离子电池负极时,NiO的电导率较低,导致倍率性能较差。在NiO电极材料中复合金属Ni纳米颗粒可提高电极整体的电导率;多孔结构有利于电解质的迁移和浸润;球形结构有利于获得较高的堆积密度。因此,NiO/Ni多孔微球的低成本快速制备技术具有重要应用前景。
发明内容
本发明的目的是提供一种NiO/Ni多孔微球的制备方法。
本发明的NiO/Ni多孔微球的制备方法,其步骤如下:
将醋酸镍和水合肼加入去离子水中,水合肼和醋酸镍的物质的量之比为2:1,充分搅拌后于400℃加热15min,得到NiO/Ni多孔微球。
本发明的NiO/Ni复合材料具有球状外形和多孔结构,制备过程简单,有望用于锂离子电池负极材料等领域。
附图说明
图1为NiO/Ni多孔微球的X射线衍射图谱;
图2为NiO/Ni多孔微球的扫描电子显微镜照片;
图3为NiO/Ni多孔微球的透射电子显微镜照片。
具体实施方式
以下结合实施例进一步阐述本发明,但本发明不仅仅局限于下述实施例。
实施例1
将1.25g四水合醋酸镍(C4H6NiO4·4H2O)和0.6g质量分数为85%的水合肼(H4N2·H2O)溶液加入10mL去离子水中,搅拌1h后,再置于400℃的马弗炉中加热15min后取出。图1为所得样品的X射线衍射图谱,经与标准卡片对比可知,样品为NiO与Ni的混相结构。图2为所得样品的扫描电子显微镜照片,可以看出,样品具有球形结构,直径为几百纳米,且从部分微球上可以看到开口的结构。图3为所制样品的透射电子显微镜照片,可以看出,样品具有中空结构,进一步验证了其多孔结构。

Claims (1)

1.一种NiO/Ni多孔微球的制备方法,其步骤如下:
将醋酸镍和水合肼加入去离子水中,水合肼和醋酸镍的物质的量之比为2:1,充分搅拌后于400℃加热15min,得到NiO/Ni多孔微球。
CN202010449582.7A 2020-05-25 2020-05-25 一种NiO/Ni多孔微球的制备方法 Active CN111653768B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010449582.7A CN111653768B (zh) 2020-05-25 2020-05-25 一种NiO/Ni多孔微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010449582.7A CN111653768B (zh) 2020-05-25 2020-05-25 一种NiO/Ni多孔微球的制备方法

Publications (2)

Publication Number Publication Date
CN111653768A true CN111653768A (zh) 2020-09-11
CN111653768B CN111653768B (zh) 2023-03-24

Family

ID=72352754

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010449582.7A Active CN111653768B (zh) 2020-05-25 2020-05-25 一种NiO/Ni多孔微球的制备方法

Country Status (1)

Country Link
CN (1) CN111653768B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010012542A1 (en) * 2000-01-17 2001-08-09 Yasutaka Takahashi Solution for forming nickel metal thin film and method of forming nickel metal thin film using the said solution
US20080193841A1 (en) * 2005-04-01 2008-08-14 Yang Kook Sun Layered Core-Shell Cathode Active Materials For Lithium Secondary Batteries, Method For Preparing Thereof And Lithium Secondary Batteries Using The Same
CN101704558A (zh) * 2009-11-19 2010-05-12 北京航空航天大学 均匀、中孔结构的氧化镍纳米薄片的制备方法
CN102534288A (zh) * 2012-02-17 2012-07-04 浙江大学 一种镍基大孔材料的制备方法
CN102757101A (zh) * 2012-02-22 2012-10-31 太原理工大学 一种大比表面积多孔氧化镍微球的制备方法
CN103274452A (zh) * 2013-06-04 2013-09-04 中国科学院微电子研究所 一种制备花瓣形掺杂氧化镍的二氧化锡的方法
CN103752845A (zh) * 2014-01-15 2014-04-30 上海交通大学 镍或镍合金纳米穿孔球及其制备方法
CN103894623A (zh) * 2014-03-19 2014-07-02 深圳航天科技创新研究院 一种抗氧化超细镍粉的制备方法
CN107469789A (zh) * 2017-07-25 2017-12-15 东莞市联洲知识产权运营管理有限公司 一种放射状多级孔结构的石墨烯/氢氧化镍/聚合物复合微球及其制备方法和应用
CN108565454A (zh) * 2018-05-18 2018-09-21 湖北大学 一种三维沙漠波浪结构的镍锰酸锂正极材料及其制备方法和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010012542A1 (en) * 2000-01-17 2001-08-09 Yasutaka Takahashi Solution for forming nickel metal thin film and method of forming nickel metal thin film using the said solution
US20080193841A1 (en) * 2005-04-01 2008-08-14 Yang Kook Sun Layered Core-Shell Cathode Active Materials For Lithium Secondary Batteries, Method For Preparing Thereof And Lithium Secondary Batteries Using The Same
CN101704558A (zh) * 2009-11-19 2010-05-12 北京航空航天大学 均匀、中孔结构的氧化镍纳米薄片的制备方法
CN102534288A (zh) * 2012-02-17 2012-07-04 浙江大学 一种镍基大孔材料的制备方法
CN102757101A (zh) * 2012-02-22 2012-10-31 太原理工大学 一种大比表面积多孔氧化镍微球的制备方法
CN103274452A (zh) * 2013-06-04 2013-09-04 中国科学院微电子研究所 一种制备花瓣形掺杂氧化镍的二氧化锡的方法
CN103752845A (zh) * 2014-01-15 2014-04-30 上海交通大学 镍或镍合金纳米穿孔球及其制备方法
CN103894623A (zh) * 2014-03-19 2014-07-02 深圳航天科技创新研究院 一种抗氧化超细镍粉的制备方法
CN107469789A (zh) * 2017-07-25 2017-12-15 东莞市联洲知识产权运营管理有限公司 一种放射状多级孔结构的石墨烯/氢氧化镍/聚合物复合微球及其制备方法和应用
CN108565454A (zh) * 2018-05-18 2018-09-21 湖北大学 一种三维沙漠波浪结构的镍锰酸锂正极材料及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ALEKSANDAR KREMENOVIĆ等: "Exchange-Bias And Grain-surface relaxations in nanostructured NiO/Ni induced by a particle size reduction", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *
WEI WEN 等: "NiO/Ni powders with effective architectures as anode materials in Li-ion batteries", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
李双明等: "超临界甲醇中镍基前驱物对制备超细镍粉的影响", 《稀有金属材料与工程》 *
陈璇璇等: "介孔NiO制备及其在超级电容器的应用", 《电化学》 *

Also Published As

Publication number Publication date
CN111653768B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
CN106861740B (zh) 氮掺杂有序分级介孔碳催化剂的制备及其碳催化剂和应用
CN107583662B (zh) 一种氧还原催化剂及其制备方法和应用
CN103236519B (zh) 一种锂离子电池用多孔碳基单块复合材料及制备方法
CN112968185B (zh) 植物多酚改性的超分子网络框架结构锰基纳米复合电催化剂的制备方法
CN108242538B (zh) 一种中空三明治型铁基负极材料的制备方法
CN107293705B (zh) 锂离子电池竹炭/金属氧化物复合负极材料及其制法和应用
CN102290253B (zh) 一种碳包覆纳米过渡金属氧化物及其制备方法
CN105428614A (zh) 一种氮元素掺杂多孔复合负极材料及其制备方法
CN108923050A (zh) 一种高催化性能的核壳碳纳米结构电催化剂及其制备方法
CN113512737B (zh) 一种氢氧化镍电催化剂、制备方法、电化学活化方法及其应用
CN109473666A (zh) 一种石墨烯支撑的SbVO4纳米颗粒复合材料及其制备方法
CN106410203B (zh) 一种以金属醇盐为前驱体制备球形钴酸锌/碳复合材料的方法
CN110787823B (zh) 三维氮掺杂的花型碳球负载超细氮掺杂碳化钼纳米粒子及制备方法和应用
CN113436905B (zh) 碳/氧化镍复合电极材料的制备方法
Lu et al. Hemin-based conjugated effect synthesis of Fe–N/CNT catalysts for enhanced oxygen reduction
CN108963237B (zh) 一种钠离子电池负极材料的制备方法
CN107694586B (zh) 一种石墨烯缠绕碳化钼/碳微球电催化剂及其制备方法以及在酸性条件下电解水制氢中应用
CN117239102A (zh) 钠离子电池正极材料及其制备方法、钠离子电池
CN106299300B (zh) 一种碳复合金属锂氧化物正极材料的制备方法
CN109148829A (zh) 一种生物质衍生纳米碳复合氧化镍电极及其应用
CN110683589B (zh) 一种四氧化三钴纳米材料的制备方法
CN111653768B (zh) 一种NiO/Ni多孔微球的制备方法
CN108598462A (zh) 一种钠离子电池负极材料及其制备方法和应用
CN116742023A (zh) 氮掺杂碳纳米管负载金属合金掺氮碳纳米片催化剂及其制备方法与应用
CN113173567B (zh) 一种中空球型铁基金属含磷化物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant