CN111617633A - 一种多壳层光催化剂和活性炭复合降解VOCs的制备方法 - Google Patents

一种多壳层光催化剂和活性炭复合降解VOCs的制备方法 Download PDF

Info

Publication number
CN111617633A
CN111617633A CN202010627310.1A CN202010627310A CN111617633A CN 111617633 A CN111617633 A CN 111617633A CN 202010627310 A CN202010627310 A CN 202010627310A CN 111617633 A CN111617633 A CN 111617633A
Authority
CN
China
Prior art keywords
shell
tio
activated carbon
photocatalyst
vocs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010627310.1A
Other languages
English (en)
Inventor
姜冬青
吕美林
罗金宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Bolin Environmental Protection Technology Co ltd
Original Assignee
Jiangsu Bolin Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Bolin Environmental Protection Technology Co ltd filed Critical Jiangsu Bolin Environmental Protection Technology Co ltd
Priority to CN202010627310.1A priority Critical patent/CN111617633A/zh
Publication of CN111617633A publication Critical patent/CN111617633A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种多壳层光催化剂和活性炭复合降解VOCs的制备方法,包括以下步骤:S1制备三层空心SiO2纳米球,S2以SiO2为模板加入钛源后进行水热反应制备出多壳层的光催化剂TiO2,S3在多壳层TiO2上面负载一定比例的贵金属,S4将负载贵金属的TiO2与比例适当的活性炭均匀混合,得到复合材料。本发明方法制备的复合材料不仅可以提供较大的比表面积,而且其内部空腔可以实现光的多重反射从而产生更多的光生空虚,并结合了活性炭丰富的孔径结构,可以实现吸附和降解VOCs同时进行,是一种高效、节能的降解VOCs新型材料。

Description

一种多壳层光催化剂和活性炭复合降解VOCs的制备方法
技术领域
本发明涉及挥发性有机物降解技术领域,尤其是涉及一种多壳层光催化剂和活性炭复合降解VOCs的制备方法。
背景技术
挥发性有机化合物(VOCs)属于典型气态的污染物,其不仅造成环境污染,而且对人类的呼吸系统和神经系统会造成潜在的危害。因此目前对VOCs的治理是环保行业的重点工作内容之一。光催化氧化法因成本低廉、反应条件温和等优点,是当前研究处理VOCs较热门的方法之一,主要原理是利用光催化剂吸收光子产生的空穴的氧化性,将吸附在催化剂表面的VOCs进行降解处理,转化为水和二氧化碳。但传统的光催化剂材料具有较大的颗粒,入射光无法穿透过材料,所以只能吸收一小部分光照,而大部分的入射光都会被反射,极大地限制了对入射光的利用率。而且因其比表面积较小,吸附能力弱,反应位点小,不利于提高VOCs的降解率。
发明内容
发明目的:为了克服背景技术的不足,本发明公开了一种多壳层光催化剂和活性炭复合降解VOCs的制备方法。
技术方案:本发明的多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于,包括以下步骤:
S1合成多壳层SiO2纳米球模板
将CTAB添加到浓氨水、无水乙醇和水的混合物中搅拌均匀,再在溶液中分三次加入BTSE和TEOS的混合物,每次加入后搅拌均匀,收集有机硅球,将其重新分散在水中,并加热完成多界面转化得到三层空心SiO2纳米球模板;
S2多壳层催化剂TiO2的制备
将获得的多壳层SiO2纳米球模板超声分散在无水乙醇中,加入的十二胺和浓氨水搅拌,再加入异丙醇钛搅拌后,进行离心烘干,将样品在乙醇和盐酸的混合液中洗涤,然后用去离子水将其洗至溶液呈中性,离心烘干,将样品加入到乙醇和氨水混合进行水热反应,用去离子水洗至中性后烘干,得TiO2粉体;
S3多壳层TiO2上负载贵金属
将氯铂酸溶液加入到TiO2粉体中烘干,再进行加热;
S4光催化剂TiO2与活性炭混合
将负载了贵金属的多壳层TiO2与活性炭混合,加入无机胶黏剂搅拌均匀,得到复合的吸附降解材料。
进一步的,S1中TEOS、BTSE、CBTA、氨水、水、无水乙醇和水的混合物的摩尔比为(0.5~5):(0.1~4):(0.2~2):(11~30):(6000~8000):1000。
进一步的,S2中十二胺和浓氨水的比例为1:(0.4-6)。
进一步的,S2中加入异丙醇钛使SiO2和TiO2的质量比为1:(0.5-6)。
进一步的,S2中用于洗涤的乙醇和盐酸按体积比为(40-100):1混合。
进一步的,S2中用于水热反应的乙醇和氨水的体积比为(1-4):1。
进一步的,S3中所述的氯铂酸的负载量,其中Pt的质量为光催化剂的0.1-6%。
进一步的,S4中所述得活性炭为木质炭、煤质炭、果壳炭、再生炭、矿物质原料炭的一种或多种。
进一步的,S4中TiO2与活性炭的比例为1:9~4:6。
进一步的,S4中所述的无机胶黏剂使用二氧化硅溶胶、三氧化二铝溶胶、二氧化钛溶胶、磷酸盐溶液中的一种或多种。
有益效果:与现有技术相比,本发明的优点为:本发明中多壳层TiO2光催化剂可以实现较大的比表面积以及提高对光子吸收的效率,与活性炭复合后可以利用其丰富的孔径结构,可以实现活性炭吸附VOCs后光催化剂利用光照直接将其降解,提高了VOCs的降解速率和降解效率。
附图说明
图1为本发明多壳层TiO2光催化剂TEM图;
图2为本发明制备的复合材料对甲苯的降解图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
实施例1
S1合成多壳层SiO2纳米球模板
将CTAB添加到浓氨水、无水乙醇和水的混合物中搅拌均匀,再在溶液中分三次加入BTSE和TEOS的混合物,TEOS、BTSE、CBTA、氨水、水、无水乙醇和水的混合物按照1:0.6:0.78:23.6:7455:1000的摩尔比进行混合,每次加入后在1100rmp的转速下搅拌均匀,收集有机硅球,将其重新分散在去离子水中,并加热完成多界面转化得到三层空心SiO2纳米球模板;
S2多壳层催化剂TiO2的制备
称取10g多壳层SiO2纳米球模板超声分散在无水乙醇中,加入体积比为1:2的十二胺和浓氨水搅拌,再加入异丙醇钛搅拌后使SiO2和TiO2的质量比为1:2,进行离心烘干,将样品在体积比为80:1的乙醇和盐酸的混合液中洗涤6次,然后用去离子水将其洗至溶液呈中性,离心烘干,将样品加入到体积比为2:1的乙醇和氨水混合进行水热反应,用去离子水洗至中性后烘干,得TiO2粉体;
S3多壳层TiO2上负载贵金属
将1wt%的氯铂酸溶液加入到TiO2粉体中烘干,再进行加热;
S4光催化剂TiO2与活性炭混合
将负载了Pt的多壳层TiO2与木质炭按照4:6的比例进行混合,加入质量比为5%的二氧化硅溶胶搅拌均匀,得到复合的吸附降解材料。
实施例2
S1合成多壳层SiO2纳米球模板
将CTAB添加到浓氨水、无水乙醇和水的混合物中搅拌均匀,再在溶液中分三次加入BTSE和TEOS的混合物,TEOS、BTSE、CBTA、氨水、水、无水乙醇和水的混合物按照0.5:0.1:0.2:11:600:1000的摩尔比进行混合,每次加入后在1100rmp的转速下搅拌均匀,收集有机硅球,将其重新分散在去离子水中,并加热完成多界面转化得到三层空心SiO2纳米球模板;
S2多壳层催化剂TiO2的制备
称取10g多壳层SiO2纳米球模板超声分散在无水乙醇中,加入体积比为1:0.4的十二胺和浓氨水搅拌,再加入异丙醇钛搅拌后使SiO2和TiO2的质量比为1:0.5,进行离心烘干,将样品在体积比为100:1的乙醇和盐酸的混合液中洗涤6次,然后用去离子水将其洗至溶液呈中性,离心烘干,将样品加入到体积比为1:1的乙醇和氨水混合进行水热反应,用去离子水洗至中性后烘干,得TiO2粉体;
S3多壳层TiO2上负载贵金属
将0.1wt%的氯铂酸溶液加入到TiO2粉体中烘干,再进行加热;
S4光催化剂TiO2与活性炭混合
将负载了Pt的多壳层TiO2与煤质炭按照1:9的比例进行混合,加入质量比为5%的三氧化二铝溶胶搅拌均匀,得到复合的吸附降解材料。
实施例3
S1合成多壳层SiO2纳米球模板
将CTAB添加到浓氨水、无水乙醇和水的混合物中搅拌均匀,再在溶液中分三次加入BTSE和TEOS的混合物,TEOS、BTSE、CBTA、氨水、水、无水乙醇和水的混合物按照5:4:2:30:8000:1000的摩尔比进行混合,每次加入后在1100rmp的转速下搅拌均匀,收集有机硅球,将其重新分散在去离子水中,并加热完成多界面转化得到三层空心SiO2纳米球模板;
S2多壳层催化剂TiO2的制备
称取10g多壳层SiO2纳米球模板超声分散在无水乙醇中,加入体积比为1:6的十二胺和浓氨水搅拌,再加入异丙醇钛搅拌后使SiO2和TiO2的质量比为1:6,进行离心烘干,将样品在体积比为40:1的乙醇和盐酸的混合液中洗涤6次,然后用去离子水将其洗至溶液呈中性,离心烘干,将样品加入到体积比为4:1的乙醇和氨水混合进行水热反应,用去离子水洗至中性后烘干,得TiO2粉体;
S3多壳层TiO2上负载贵金属
将6wt%的氯铂酸溶液加入到TiO2粉体中烘干,再进行加热;
S4光催化剂TiO2与活性炭混合
将负载了Pt的多壳层TiO2与果壳炭、再生炭、矿物质原料炭混合物按照1:2的比例进行混合,加入质量比为5%的二氧化钛溶胶、磷酸盐溶液混合物搅拌均匀,得到复合的吸附降解材料。
图1中所示为多壳层光催化剂TiO2的TEM图,可以看出按照本专利所述方法合成了3壳层的TiO2。图2所示为多壳层TiO2和活性炭的复合材料在400nm可见光下降解甲苯曲线图。

Claims (10)

1.一种多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于,包括以下步骤:
S1合成多壳层SiO2纳米球模板
将CTAB添加到浓氨水、无水乙醇和水的混合物中搅拌均匀,再在溶液中分三次加入BTSE和TEOS的混合物,每次加入后搅拌均匀,收集有机硅球,将其重新分散在水中,并加热完成多界面转化得到三层空心SiO2纳米球模板;
S2多壳层催化剂TiO2的制备
将获得的多壳层SiO2纳米球模板超声分散在无水乙醇中,加入的十二胺和浓氨水搅拌,再加入异丙醇钛搅拌后,进行离心烘干,将样品在乙醇和盐酸的混合液中洗涤,然后用去离子水将其洗至溶液呈中性,离心烘干,将样品加入到乙醇和氨水混合进行水热反应,用去离子水洗至中性后烘干,得TiO2粉体;
S3多壳层TiO2上负载贵金属
将氯铂酸溶液加入到TiO2粉体中烘干,再进行加热;
S4光催化剂TiO2与活性炭混合
将负载了贵金属的多壳层TiO2与活性炭混合,加入无机胶黏剂搅拌均匀,得到复合的吸附降解材料。
2.根据权利要求1所述得多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于:S1中TEOS、BTSE、CBTA、氨水、水、无水乙醇和水的混合物的摩尔比为(0.5~5):(0.1~4):(0.2~2):(11~30):(6000~8000):1000。
3.根据权利要求1所述得多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于:S2中十二胺和浓氨水的比例为1:(0.4-6)。
4.根据权利要求1所述得多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于:S2中加入异丙醇钛使SiO2和TiO2的质量比为1:(0.5-6)。
5.根据权利要求1所述得多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于:S2中用于洗涤的乙醇和盐酸按体积比为(40-100):1混合。
6.根据权利要求1所述得多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于:S2中用于水热反应的乙醇和氨水的体积比为(1-4):1。
7.根据权利要求1所述得多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于:S3中所述的氯铂酸的负载量,其中Pt的质量为光催化剂质量的0.1-6%。
8.根据权利要求1所述得多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于:S4中所述得活性炭为木质炭、煤质炭、果壳炭、再生炭、矿物质原料炭的一种或多种。
9.根据权利要求1所述得多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于:S4中TiO2与活性炭的比例为1:9~4:6。
10.根据权利要求1所述得多壳层光催化剂和活性炭复合降解VOCs的制备方法,其特征在于:S4中所述的无机胶黏剂使用二氧化硅溶胶、三氧化二铝溶胶、二氧化钛溶胶、磷酸盐溶液中的一种或多种。
CN202010627310.1A 2020-07-02 2020-07-02 一种多壳层光催化剂和活性炭复合降解VOCs的制备方法 Withdrawn CN111617633A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010627310.1A CN111617633A (zh) 2020-07-02 2020-07-02 一种多壳层光催化剂和活性炭复合降解VOCs的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010627310.1A CN111617633A (zh) 2020-07-02 2020-07-02 一种多壳层光催化剂和活性炭复合降解VOCs的制备方法

Publications (1)

Publication Number Publication Date
CN111617633A true CN111617633A (zh) 2020-09-04

Family

ID=72267770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010627310.1A Withdrawn CN111617633A (zh) 2020-07-02 2020-07-02 一种多壳层光催化剂和活性炭复合降解VOCs的制备方法

Country Status (1)

Country Link
CN (1) CN111617633A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114011390A (zh) * 2021-12-09 2022-02-08 江苏埃夫信自动化工程有限公司 一种多孔沸石吸附剂的制备方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060276360A1 (en) * 2005-06-03 2006-12-07 Muradov Nazim Z Method for masking and removing stains from rugged solid surfaces
CN104474984A (zh) * 2014-11-27 2015-04-01 中国人民解放军南京军区南京总医院 多层结构的介孔有机-无机杂化空心球及其制备方法
CN106744742A (zh) * 2016-11-11 2017-05-31 天津大学 多壳层石墨相氮化碳空心纳米球及其合成方法和应用
US20170282171A1 (en) * 2010-10-08 2017-10-05 Toyota Jidosha Kabushiki Kaisha Catalyst particles, carbon-supported catalyst particles and fuel cell catalysts, and methods of manufacturing such catalyst particles and carbon-supported catalyst particles
CN108295842A (zh) * 2018-02-05 2018-07-20 唐吉龙 一种用于空气净化器的复合光催化材料
CN108640149A (zh) * 2018-05-29 2018-10-12 东北大学 二氧化钛纳米空心球及其制备方法
CN109310937A (zh) * 2016-06-13 2019-02-05 乐金华奥斯有限公司 光催化剂功能性过滤器
CN109876809A (zh) * 2019-04-01 2019-06-14 中国科学院过程工程研究所 一种复合金属氧化物中空多壳层材料及其制备方法和用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060276360A1 (en) * 2005-06-03 2006-12-07 Muradov Nazim Z Method for masking and removing stains from rugged solid surfaces
US20170282171A1 (en) * 2010-10-08 2017-10-05 Toyota Jidosha Kabushiki Kaisha Catalyst particles, carbon-supported catalyst particles and fuel cell catalysts, and methods of manufacturing such catalyst particles and carbon-supported catalyst particles
CN104474984A (zh) * 2014-11-27 2015-04-01 中国人民解放军南京军区南京总医院 多层结构的介孔有机-无机杂化空心球及其制备方法
CN109310937A (zh) * 2016-06-13 2019-02-05 乐金华奥斯有限公司 光催化剂功能性过滤器
CN106744742A (zh) * 2016-11-11 2017-05-31 天津大学 多壳层石墨相氮化碳空心纳米球及其合成方法和应用
CN108295842A (zh) * 2018-02-05 2018-07-20 唐吉龙 一种用于空气净化器的复合光催化材料
CN108640149A (zh) * 2018-05-29 2018-10-12 东北大学 二氧化钛纳米空心球及其制备方法
CN109876809A (zh) * 2019-04-01 2019-06-14 中国科学院过程工程研究所 一种复合金属氧化物中空多壳层材料及其制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHENWEI TONG ET AL.: ""Thylakoid-Inspired Multishell g-C3N4 Nanocapsules with Enhanced Visible-Light Harvesting and Electron Transfer Properties for High-Efficiency Photocatalysis"", 《ACS NANO》 *
邵俊伟等: ""多孔TiO2空心球降解挥发性有机物的性能"", 《环境化学》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114011390A (zh) * 2021-12-09 2022-02-08 江苏埃夫信自动化工程有限公司 一种多孔沸石吸附剂的制备方法及其应用

Similar Documents

Publication Publication Date Title
CN105170097B (zh) 一种TiO2/ZIF‑8核壳结构纳米复合材料及其制备方法
CN107174919B (zh) 石墨烯改性的复合介孔碳微球空气净化剂
CN108714431B (zh) 一种纳米纤维素增强复合光催化剂及其制备方法和应用
CN107185493A (zh) 石墨烯改性的复合介孔碳微球空气净化剂制备方法
CN108786874A (zh) 负载二氧化锰的石墨相氮化碳纳米片材料及其制备方法和应用
CN106552651B (zh) 一种Bi12O17Br2光催化剂的合成及应用方法
CN108558381A (zh) 一种高效净化室内空气的硅藻土壁砖及制备方法
CN104525119A (zh) 一种g-C3N4/ZnO/活性炭的功能性炭吸附材料及其制备方法
Li et al. Study on adsorption coupling photodegradation on hierarchical nanostructured gC 3 N 4/TiO 2/activated carbon fiber composites for toluene removal
CN113333023B (zh) 一种高吸附碘氧化铋可见光催化剂及其应用
Li et al. Construction of CeO 2/TiO 2 heterojunctions immobilized on activated carbon fiber and its synergetic effect between adsorption and photodegradation for toluene removal
Adepu et al. Synthesis of a high-surface area V 2 O 5/TiO 2–SiO 2 catalyst and its application in the visible light photocatalytic degradation of methylene blue
CN109331817A (zh) 一种用于分解空气中有机物的光催化材料及制备方法
CN109482178A (zh) 一种银增强型木质素碳/纳米二氧化钛复合光催化剂及其制备方法和应用
CN111617633A (zh) 一种多壳层光催化剂和活性炭复合降解VOCs的制备方法
CN101602008B (zh) 一种纳米材料复合可见光催化剂及其制备方法
CN104624211A (zh) 一种可见光响应的复合光催化剂的制备方法及其应用
CN108906015B (zh) 一种纳米洋葱碳/二氧化钛/二氧化硅复合光催化材料及其制备方法和应用
CN110882699B (zh) 基于三重异质结结构的光触媒及其制备方法
CN106179295B (zh) 一种光催化活性炭纤维及其制备方法
Chen et al. 3D laminated graphitic carbon nitride decorating with 2D/2D Bi2WO6/rGO nanosheets for selective photoreduction of CO2 to CO
CN104725021B (zh) 常温催化氧化型空气净化装饰材料及其制备方法
CN112206746A (zh) 一种负载TiO2/MIL-53 (Al)氧化石墨烯复合材料的制备方法
CN108212148B (zh) 一种去除甲醛的凹凸棒石黏土复合催化剂及其制备方法和应用
CN110590227A (zh) 一种高效持久除甲醛硅藻泥及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200904

WW01 Invention patent application withdrawn after publication