CN111614252B - 电源装置 - Google Patents
电源装置 Download PDFInfo
- Publication number
- CN111614252B CN111614252B CN202010081549.3A CN202010081549A CN111614252B CN 111614252 B CN111614252 B CN 111614252B CN 202010081549 A CN202010081549 A CN 202010081549A CN 111614252 B CN111614252 B CN 111614252B
- Authority
- CN
- China
- Prior art keywords
- boost converter
- boost
- control
- power supply
- supply device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/64—Constructional details of batteries specially adapted for electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
- H02M3/1584—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/003—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L1/00—Supplying electric power to auxiliary equipment of vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/007—Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
- H02J1/102—Parallel operation of dc sources being switching converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/157—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/12—Buck converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/10—DC to DC converters
- B60L2210/14—Boost converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/52—Drive Train control parameters related to converters
- B60L2240/525—Temperature of converter or components thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明提供一种电源装置,具备将来自蓄电装置的电力升压并供给的并联连接的多个升压转换器和控制各升压转换器的控制装置。在无法使多个升压转换器通过反馈控制而工作时,控制装置仅使多个升压转换器中的1个升压转换器通过前馈控制而工作。
Description
技术领域
本发明涉及电源装置,详细而言,涉及具备将来自蓄电装置的电力升压并供给的并联连接的多个升压转换器的电源装置。
背景技术
以往,作为这种电源装置,提出了具备将来自蓄电池的电力升压并供给的并联连接的第一升压转换器和第二升压转换器的电源装置(例如,参照专利文献1)。在电动机的负荷的减少量比规定值大时,以使第一升压转换器的电抗器电流比包括值0的规定范围的下限小的方式控制第一升压转换器,并且以利用第二升压转换器的电抗器电流比规定范围的上限高的功率分配量来维持第二升压转换器的功率分配量的方式控制第二升压转换器。并且,在该控制中第一升压转换器的电抗器电流变得比下限小时,以使第二升压转换器的功率分配量减少的方式控制第二升压转换器。由此,抑制升压后的电压的变动。
现有技术文献
专利文献
专利文献1:日本特开2018-191435号公报
发明内容
发明所要解决的课题
一般,在搭载有多个升压转换器的电源装置中,各升压转换器通过反馈控制而工作。在由于某些缘故而无法使各升压转换器通过反馈控制而工作时,可考虑通过前馈控制使各升压转换器工作。在该情况下,向各升压转换器以在同一定时下开关的方式进行指令,但暂且不说各升压转换器的性能完全相同的情况,若元件、性能存在不均,则会产生实际的开关定时相对于指令稍微偏离的情况。这样的开关定时的偏离会产生在升压转换器间电流循环的情况,使元件发热,使损失增加。
本发明的电源装置的主要目的在于,应对无法使多个升压转换器通过反馈控制而工作的情况。
用于解决课题的方案
本发明的电源装置为了达成上述的主要目的而采取了以下的方案。
本发明的电源装置具备将来自蓄电装置的电力升压并供给的并联连接的多个升压转换器和控制各升压转换器的控制装置,其特征在于,
在无法使所述多个升压转换器通过反馈控制而工作的特定异常状态时,所述控制装置仅使所述多个升压转换器中的1个升压转换器通过前馈控制而工作。
在本发明的电源装置中,在无法使多个升压转换器通过反馈控制而工作的特定异常状态时,仅使多个升压转换器中的1个升压转换器通过前馈控制而工作。即,除了通过前馈控制而工作的升压转换器之外,不使其他升压转换器工作。由此,能够抑制因使多个升压转换器同时通过前馈控制工作而可能产生的升压转换器间的电流的循环。即,能够应对无法使多个升压转换器通过反馈控制而工作的情况。
在本发明的电源装置中,所述控制装置可以基于在各升压转换器中流动的电流来对各升压转换器进行反馈控制,在无法检测在各升压转换器中流动的电流时判断为所述特定异常状态。
在本发明的电源装置中,所述控制装置可以利用占空比控制作为所述前馈控制来仅使所述1个升压转换器工作。
在本发明的电源装置中,通过前馈控制而工作的升压转换器可以是所述多个升压转换器中的温度最低的升压转换器。这样一来,能够抑制升压转换器的过热。在此,作为升压转换器的温度,电抗器的温度相当于此。
附图说明
图1是示出搭载作为本发明的一实施例的电源装置的电动汽车20的电结构的概略的结构图。
图2是示出由电子控制单元50执行的升压转换器工作处理的一例的流程图。
具体实施方式
接着,使用实施例对用于实施本发明的方式进行说明。
实施例
图1是示出搭载作为本发明的一实施例的电源装置的电动汽车20的电结构的概略的结构图。如图1所示,实施例的电动汽车20具备电动机22、变换器24、作为蓄电装置的蓄电池26、第一升压转换器CVT1、第二升压转换器CVT2及电子控制单元50。作为电源装置,蓄电池26、第一升压转换器CVT1及第二升压转换器CVT2相当于此。
电动机22例如构成为同步发电电动机,虽然未图示,但转子连接于经由差速齿轮而连结于驱动轮的驱动轴。变换器24连接于电动机22并且连接于高电压侧电力线32。通过由电子控制单元50对变换器24的未图示的多个开关元件进行开关控制来驱动电动机22旋转。
蓄电池26例如构成为锂离子二次电池或镍氢二次电池,连接于低电压侧电力线34。在低电压侧电力线34的正极侧线和负极侧线上从蓄电池26侧起依次安装有进行蓄电池26的连接和切断的系统主继电器28和平滑用的电容器36。
第一升压转换器CVT1连接于高电压侧电力线32和低电压侧电力线34,构成为具有2个晶体管T11、T12、2个二极管D11、D12、电抗器L1及电容器C1的周知的升降压转换器。晶体管T11连接于高电压侧电力线32的正极侧线。晶体管T12连接于晶体管T11和高电压侧电力线32及低电压侧电力线34的负极侧线。电抗器L1连接于晶体管T11、T12彼此的连接点和低电压侧电力线34的正极侧线。电容器C1连接于高电压侧电力线32和低电压侧电力线34。通过由电子控制单元50调节晶体管T11、T12的接通时间的比例,第一升压转换器CVT1将低电压侧电力线34的电力伴随着电压的升压而向高电压侧电力线32供给,或者将高电压侧电力线32的电力伴随着电压的降压而向低电压侧电力线34供给。
第二升压转换器CVT2从蓄电池26观察与第一升压转换器CVT1并联连接。虽然存在元件的不均、制造厂家不同的情况,但第二升压转换器CVT2构成为与第一升压转换器CVT1实质上相同的性能的升压转换器。即,第二升压转换器CVT2与第一升压转换器CVT1同样,连接于高电压侧电力线32和低电压侧电力线34,构成为具有2个晶体管T21、T22、2个二极管D21、D22、电抗器L2及电容器C2的周知的升降压转换器。通过由电子控制单元50调节晶体管T21、T22的接通时间的比例,该第二升压转换器CVT2将低电压侧电力线34的电力伴随着电压的升压而向高电压侧电力线32供给,或者将高电压侧电力线32的电力伴随着电压的降压而向低电压侧电力线34供给。
虽然未图示,但电子控制单元50构成为以CPU为中心的微处理器,除了CPU之外,还具备存储处理程序的ROM、暂时存储数据的RAM、非易失性的快闪存储器、输入输出端口。
如图1所示,来自各种传感器的信号经由输入端口而向电子控制单元50输入。作为向电子控制单元50输入的信号,例如可以举出来自检测电动机22的转子的旋转位置的未图示的旋转位置检测传感器的旋转位置θm、来自检测在电动机22的各相流动的电流的未图示的电流传感器的相电流Iu、Iv。另外,也可以举出蓄电池26的端子间的电压、在蓄电池26流动的电流Ib、蓄电池26的温度Tb、高电压侧电力线32的电压VH、低电压侧电力线34的电压VL等。而且,也可以举出来自检测在第一升压转换器CVT1的电抗器L1中流动的电流的电流传感器38的第一电抗器电流IL1、来自检测在第二升压转换器CVT2的电抗器L2中流动的电流的电流传感器39的第二电抗器电流IL2、来自安装于电抗器L1、电抗器L2的未图示的温度传感器的电抗器温度T1、T2等。而且,虽然未图示,但也可以举出来自点火开关的点火信号、来自检测变速杆的操作位置的挡位传感器的挡位、来自检测加速器踏板的踩踏量的加速器踏板位置传感器的加速器开度Acc、来自检测制动器踏板的踩踏量的制动器踏板位置传感器的制动器踏板位置、来自车速传感器的车速V。
如图1所示,从电子控制单元50经由输出端口而输出各种控制信号。作为从电子控制单元50输出的信号,例如可以举出向变换器24的多个开关元件的开关控制信号、向第一升压转换器CVT1的晶体管T11、T12的开关控制信号、向第二升压转换器CVT2的晶体管T21、T22的开关控制信号、向系统主继电器28的驱动控制信号。
电子控制单元50基于电动机22的转子的旋转位置θm来运算电动机22的电角度θe、转速Nm。另外,电子控制单元50基于在蓄电池26流动的电流Ib的累计值来运算蓄电池26的蓄电比例SOC,基于运算出的蓄电比例SOC和蓄电池26的温度Tb来运算可以对蓄电池26进行充放电的最大容许电力即输入输出限制Win、Wout。在此,蓄电比例SOC是能够从蓄电池26放电的电力的容量相对于蓄电池26的总容量的比例。
在这样构成的实施例的电动汽车20中,作为行驶用的控制,例如能够使用以下的控制。首先,基于加速器开度Acc和车速V来设定行驶所要求的(驱动轴26所要求的)要求转矩Tp*,将要求转矩Tp*设定为电动机22的转矩指令Tm*。接着,以使电动机22由转矩指令Tm*驱动的方式进行变换器24的多个开关元件的开关控制。关于第一升压转换器CVT1和第二升压转换器CVT2,基于电动机22的转矩指令Tm*来设定高电压侧电力线32的目标电压VH*,以使高电压侧电力线32的电压VH成为目标电压VH*的方式进行控制。
作为第一升压转换器CVT1和第二升压转换器CVT2的控制,例如可以使用以下的控制。首先,将行驶所需的功率以预先确定的分配比设定为第一升压转换器CVT1的功率分配量P1和第二升压转换器CVT2的功率分配量P2。接着,关于第一升压转换器CVT1,以输出功率分配量P1的方式基于由电流传感器38检测的第一电抗器电流IL1进行反馈控制。关于第二升压转换器CVT2,以输出功率分配量P2的方式基于由电流传感器39检测的第二电抗器电流IL2进行反馈控制。
接着,对这样构成的实施例的电动汽车20的动作、尤其是无法使第一升压转换器CVT1、第二升压转换器CVT2通过反馈控制而工作时的动作进行说明。图2是示出由电子控制单元50执行的升压转换器工作处理的一例的流程图。
当执行升压转换器工作处理时,电子控制单元50首先判定是否处于能够对第一升压转换器0CVT1及第二升压转换器CVT2进行反馈控制的状态(步骤S100)。如上所述,第一升压转换器CVT1的反馈控制基于由电流传感器38检测的第一电抗器电流IL1来进行,因此在电流传感器38产生了异常的情况或产生了断路等异常的情况等下判定为无法对第一升压转换器CVT1进行反馈控制。关于第二升压转换器CVT2也是同样,在电流传感器39产生了异常的情况或产生了断路等异常的情况等下判定为无法对第二升压转换器CVT2进行反馈控制。
在步骤S100中判定为处于能够对第一升压转换器CVT1及第二升压转换器CVT2进行反馈控制的状态时,如通常那样,通过反馈控制使第一升压转换器CVT1及第二升压转换器CVT2工作(步骤S110),结束本处理。
在步骤S100中判定为不处于能够对第一升压转换器CVT1和第二升压转换器CVT2的一方或双方进行反馈控制的状态时,通过前馈控制仅使第一升压转换器CVT1工作(步骤S120),结束本处理。即,将第二升压转换器CVT2关断(使晶体管T21、T22断开),通过前馈控制仅使第一升压转换器CVT1工作。作为前馈控制,例如可以使用相对于行驶所需的功率求出占空比,基于求出的占空比来对第一升压转换器CVT1的晶体管T11、T12进行开关的控制。这样仅使第一升压转换器CVT1通过前馈控制而工作是因为,若使第一升压转换器CVT1和第二升压转换器CVT2的双方通过前馈控制而工作,则由于元件的不均、制造厂家不同所引起的若干性能差,即使以在同一定时下开关的方式进行指令,也会产生实际的开关定时稍微偏离的情况,会产生在第一升压转换器CVT1与第二升压转换器CVT2之间电流循环的情况。需要说明的是,由于仅使第一升压转换器CVT1工作,所以在驾驶员大幅踩踏加速器踏板而要求了大功率时,会以能够通过第一升压转换器CVT1供给的功率进行限制,但这是异常时的行驶限制,退避行驶没有问题。
在以上说明的实施例的电动汽车20所搭载的电源装置中,在判定为不处于能够对第一升压转换器CVT1和第二升压转换器CVT2的一方或双方进行反馈控制的状态时,通过前馈控制仅使第一升压转换器CVT1工作。由此,能够抑制由使第一升压转换器CVT1和第二升压转换器CVT2的双方通过前馈控制而工作引起的不良情况(电流的循环)。
在实施例的电动汽车20所搭载的电源装置中,在判定为不处于能够对第一升压转换器CVT1和第二升压转换器CVT2的一方或双方进行反馈控制的状态时,通过前馈控制仅使第一升压转换器CVT1工作。但是,也可以将第一升压转换器CVT1断开(关断)而通过前馈控制仅使第二升压转换器CVT2工作。另外,也可以使电抗器L1、L2的温度T1、T2中的较低温度的升压转换器通过前馈控制而工作。
在实施例的电动汽车20所搭载的电源装置中,具备第一升压转换器CVT1和第二升压转换器CVT2这并联连接的2个升压转换器,但也可以具备并联连接的3个以上的升压转换器。
对实施例的主要要素与用于解决课题的方案一栏所记载的发明的主要要素的对应关系进行说明。在实施例中,蓄电池26相当于“蓄电装置”,第一升压转换器CVT1和第二升压转换器CVT2相当于“多个升压转换器”,电子控制单元50相当于“控制装置”。
需要说明的是,实施例是用于具体说明用于实施用于解决课题的方案一栏所记载的发明的方式的一例,因此实施例的主要要素与用于解决课题的方案一栏所记载的发明的主要要素的对应关系不对用于解决课题的方案一栏所记载的发明的要素进行限定。即,关于用于解决课题的方案一栏所记载的发明的解释应该基于该栏的记载来进行,实施例只不过是用于解决课题的方案一栏所记载的发明的具体的一例。
以上,虽然使用实施例对用于实施本发明的方式进行了说明,但本发明完全不限定于这样的实施例,当然能够在不脱离本发明的主旨的范围内以各种方式来实施。
产业上的可利用性
本发明能够在电力变换装置的制造产业等中利用。
Claims (5)
1.一种电源装置,具备将来自蓄电装置的电力升压并供给的并联连接的多个升压转换器和控制各升压转换器的控制装置,其特征在于,
在无法使所述多个升压转换器通过反馈控制而工作的特定异常状态时,所述控制装置仅使所述多个升压转换器中的1个升压转换器通过前馈控制而工作。
2.根据权利要求1所述的电源装置,
所述控制装置基于在各升压转换器中流动的电流来对各升压转换器进行反馈控制,在无法检测在各升压转换器中流动的电流时判断为所述特定异常状态。
3.根据权利要求1或2所述的电源装置,
所述控制装置利用占空比控制作为所述前馈控制而仅使所述1个升压转换器工作。
4.根据权利要求1或2所述的电源装置,
通过前馈控制而工作的升压转换器是所述多个升压转换器中的温度最低的升压转换器。
5.根据权利要求3所述的电源装置,
通过前馈控制而工作的升压转换器是所述多个升压转换器中的温度最低的升压转换器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-032638 | 2019-02-26 | ||
JP2019032638A JP7200747B2 (ja) | 2019-02-26 | 2019-02-26 | 電源装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111614252A CN111614252A (zh) | 2020-09-01 |
CN111614252B true CN111614252B (zh) | 2023-04-11 |
Family
ID=72142184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010081549.3A Active CN111614252B (zh) | 2019-02-26 | 2020-02-06 | 电源装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11312247B2 (zh) |
JP (1) | JP7200747B2 (zh) |
CN (1) | CN111614252B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11715961B2 (en) * | 2019-12-03 | 2023-08-01 | Fundamental Innovation Systems International Llc | Hybrid battery system and method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011030343A (ja) * | 2009-07-24 | 2011-02-10 | Toyota Motor Corp | 電源システムおよびそれを備える電動車両、ならびに電源システムの制御方法 |
JP2011125129A (ja) * | 2009-12-10 | 2011-06-23 | Toyota Motor Corp | 電源装置 |
JP2013169140A (ja) * | 2013-03-28 | 2013-08-29 | Toyota Motor Corp | 電源システムおよびそれを備える電動車両、ならびに電源システムの制御方法 |
CN106849656A (zh) * | 2015-11-10 | 2017-06-13 | 丰田自动车株式会社 | 电源装置 |
JP2017147871A (ja) * | 2016-02-18 | 2017-08-24 | トヨタ自動車株式会社 | 電源装置 |
JP2017153199A (ja) * | 2016-02-23 | 2017-08-31 | トヨタ自動車株式会社 | 駆動装置 |
JP2018078673A (ja) * | 2016-11-07 | 2018-05-17 | トヨタ自動車株式会社 | モータ駆動装置 |
CN108155787A (zh) * | 2016-11-25 | 2018-06-12 | 丰田自动车株式会社 | 驱动装置 |
CN108233758A (zh) * | 2016-12-13 | 2018-06-29 | 丰田自动车株式会社 | 电力系统 |
JP2018191435A (ja) * | 2017-05-08 | 2018-11-29 | トヨタ自動車株式会社 | 車両用電源装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012210013A (ja) * | 2011-03-29 | 2012-10-25 | Nec Commun Syst Ltd | 電源装置 |
US9733287B2 (en) * | 2013-03-15 | 2017-08-15 | Michigan Technological University | Distributed control system for parallel-connected DC boost converters |
EP3220524B1 (en) * | 2014-11-13 | 2019-01-02 | Panasonic Intellectual Property Management Co., Ltd. | In-vehicle power supply device and vehicle having in-vehicle power supply device mounted therein |
US9755537B2 (en) * | 2015-03-04 | 2017-09-05 | Infineon Technologies Austria Ag | Multi-cell power conversion method with failure detection and multi-cell power converter |
EP3214724B1 (en) * | 2016-03-03 | 2020-04-29 | Lg Chem, Ltd. | Battery energy storage system |
JP6747181B2 (ja) * | 2016-08-30 | 2020-08-26 | トヨタ自動車株式会社 | 電源装置および自動車 |
JP6440783B1 (ja) * | 2017-07-24 | 2018-12-19 | 三菱電機株式会社 | 電力変換装置および電力変換装置の制御方法 |
-
2019
- 2019-02-26 JP JP2019032638A patent/JP7200747B2/ja active Active
-
2020
- 2020-02-06 CN CN202010081549.3A patent/CN111614252B/zh active Active
- 2020-02-07 US US16/784,870 patent/US11312247B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011030343A (ja) * | 2009-07-24 | 2011-02-10 | Toyota Motor Corp | 電源システムおよびそれを備える電動車両、ならびに電源システムの制御方法 |
JP2011125129A (ja) * | 2009-12-10 | 2011-06-23 | Toyota Motor Corp | 電源装置 |
JP2013169140A (ja) * | 2013-03-28 | 2013-08-29 | Toyota Motor Corp | 電源システムおよびそれを備える電動車両、ならびに電源システムの制御方法 |
CN106849656A (zh) * | 2015-11-10 | 2017-06-13 | 丰田自动车株式会社 | 电源装置 |
JP2017147871A (ja) * | 2016-02-18 | 2017-08-24 | トヨタ自動車株式会社 | 電源装置 |
JP2017153199A (ja) * | 2016-02-23 | 2017-08-31 | トヨタ自動車株式会社 | 駆動装置 |
JP2018078673A (ja) * | 2016-11-07 | 2018-05-17 | トヨタ自動車株式会社 | モータ駆動装置 |
CN108155787A (zh) * | 2016-11-25 | 2018-06-12 | 丰田自动车株式会社 | 驱动装置 |
CN108233758A (zh) * | 2016-12-13 | 2018-06-29 | 丰田自动车株式会社 | 电力系统 |
JP2018191435A (ja) * | 2017-05-08 | 2018-11-29 | トヨタ自動車株式会社 | 車両用電源装置 |
Also Published As
Publication number | Publication date |
---|---|
JP7200747B2 (ja) | 2023-01-10 |
US20200269707A1 (en) | 2020-08-27 |
CN111614252A (zh) | 2020-09-01 |
JP2020137391A (ja) | 2020-08-31 |
US11312247B2 (en) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109639137B (zh) | 电源装置 | |
CN108569159B (zh) | 驱动装置 | |
EP2041862B1 (en) | Electric power source system and method for the same | |
EP3342624B1 (en) | Drive unit, vehicle, and control method for drive unit | |
US10040356B2 (en) | Power supply device | |
US20160052396A1 (en) | Electric vehicle | |
CN112046288B (zh) | 电源系统 | |
JP2015138760A (ja) | 電力出力装置 | |
CN108155787B (zh) | 驱动装置 | |
CN111614252B (zh) | 电源装置 | |
US11413963B2 (en) | Vehicle power supply system | |
US10181808B2 (en) | Vehicle | |
CN111464059B (zh) | 电力变换装置 | |
JP7197023B2 (ja) | 昇圧コンバータ装置 | |
JP6862960B2 (ja) | 駆動装置 | |
JP7236341B2 (ja) | 車両用電源装置 | |
JP6930363B2 (ja) | 駆動装置 | |
JP2019140829A (ja) | 昇圧コンバータ装置 | |
WO2021182363A1 (ja) | 電力変換装置 | |
JP2019080377A (ja) | 昇圧コンバータ装置 | |
JP6816695B2 (ja) | 昇圧コンバータ装置 | |
JP2010206898A (ja) | 電気自動車 | |
JP2015201955A (ja) | 昇圧コンバータの制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20201015 Address after: Aichi Prefecture, Japan Applicant after: DENSO Corp. Address before: TOYOTA City, Aichi Prefecture, Japan Applicant before: Toyota Motor Corp. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |