CN111599881A - 一种单晶氧化亚铜复合半导体纳米发电机及其制造方法 - Google Patents

一种单晶氧化亚铜复合半导体纳米发电机及其制造方法 Download PDF

Info

Publication number
CN111599881A
CN111599881A CN201910982818.0A CN201910982818A CN111599881A CN 111599881 A CN111599881 A CN 111599881A CN 201910982818 A CN201910982818 A CN 201910982818A CN 111599881 A CN111599881 A CN 111599881A
Authority
CN
China
Prior art keywords
layer
cuprous oxide
single crystal
type semiconductor
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910982818.0A
Other languages
English (en)
Other versions
CN111599881B (zh
Inventor
李阳
罗凯
王志勇
陶冉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201910982818.0A priority Critical patent/CN111599881B/zh
Publication of CN111599881A publication Critical patent/CN111599881A/zh
Application granted granted Critical
Publication of CN111599881B publication Critical patent/CN111599881B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及维纳能源技术领域,具体地说,是一种单晶氧化亚铜复合半导体纳米发电机及其制造方法,能够应用于半导体领域、光伏发电领域,以及热电转换领域,包括透明基底、底部电极层、p型半导体层、单晶氧化亚铜层、n型半导体层、顶部电极层,其中,单晶氧化亚铜层为定向生长所得,使其与p型半导体层接触部分为{111}晶面,且与n型半导体层接触部分为{100}晶面,本发明具有结构简单、生产成本低,经济环保等诸多优点与特点。

Description

一种单晶氧化亚铜复合半导体纳米发电机及其制造方法
技术领域
本发明涉及维纳能源技术领域,具体地说,是一种单晶氧化亚铜复合半导体纳米发电机及其制造方法,能够应用于半导体领域、光伏发电领域,以及热电转换领域。
背景技术
太阳能电池是直接把光能转化成电能的装置。目前研发以及商用的太阳能电池主要依赖于p-n结。太阳光照射在半导体p-n结上,形成新的空穴-电子对。在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,连接外电路后就形成电流。
氧化亚铜(Cu2O)是一种直接带隙半导体材料,具有原料丰富、制备简单、价格便宜、环境友好等特点。其禁带宽度与薄膜制备条件有关,一般为1.7~2.1 eV,其太阳能电池的理论光电转换效率可以超过20%。
目前公开的Cu2O太阳能电池,一般需要形成异质结来辅助载流子分离,如p-Cu2O/n-ZnO(氧化锌),不但结构复杂、制造工艺要求高,成本较高,而且异质结电池的界面缺陷密度大,从而造成较大的界面复合电流,实际发电效率低。
虽然已有报道公开了Cu2O同质结太阳能电池,p-Cu2O/n-Cu2O(CN 102376783 A),但目前仍然缺少理论依据与检测分析,转换效率仍然偏低。
发明内容
本发明的第一个目的是为了开发一种不同于传统p-n结的载流子分离结构,提供了一种全新的“晶面结”载流子分离结构。
本发明的第二个目的是优化“晶面结”载流子分离结构,提出了一种全新的复合半导体结构。
本发明的第三个目的是提供了一种基于晶面结的单晶氧化亚铜复合半导体纳米发电机的制备方法。
为了实现第一和第二个目的,本发明的技术方案是:一种单晶氧化亚铜复合半导体纳米发电机,包括透明基底层,透明基底层上设置有底部电极层,底部电极层上设置有n型半导体层,n型半导体层上设置有单晶氧化亚铜层,单晶氧化亚铜层的表面设置有p型半导体层,p型半导体层上设置有顶部电极层。
在上述技术方案中,透明基底层由为玻璃、石英或塑料薄膜材料制成;底部电极层为透明导电层,透明导电层为ITO层或FTO层;顶部电极层由导体材料制成,导体材料为金属或导电类有机物、无机物或氧化物薄膜;单晶氧化亚铜层为定向生长所得,其与n型半导体层(3)接触部分为{111}晶面(A),且与p型半导体层(5)接触部分为{100}晶面(B)。
为实现第三个发明目的,所采用的技术方案是:一种单晶氧化亚铜复合半导体纳米发电机的制造方法,包括如下步骤:步骤一:透明基底的清洗与底部电极层的制备:透明基底清洗吹干,利用磁控溅射法生长底部电极层;步骤二:n型半导体层的制备:采用旋涂法、刮涂法、浸渍提拉法、物理气相沉积法、化学气相沉积法生长n型半导体;步骤三:单晶氧化亚铜的制备:利用电沉积法生长氧化亚铜单晶薄膜;步骤四:p型半导体层的制备:采用旋涂法、刮涂法、浸渍提拉法、物理气相沉积法、化学气相沉积法生长p型半导体;步骤五:顶部电极层的制备:采用物理气相沉积法、匀胶法、刮涂法,在氧化亚铜{100}晶面上覆盖一层导体层。
本发明利用电沉积生长的Cu2O在底部电极层一侧为{111}晶面,在顶部电极层一侧为{100}晶面,由于两种晶面间的能带结构不一致形成了天然的能量差异,致使在Cu2O内部产生的电子自发流向{100}晶面,空穴流向{111}晶面,从而达到载流子的分离。此外,p型半导体层和n型半导体层分别作为空穴传输层和电子传输层,加快了载流子的分离和传输,底部电极与顶部电极分别作为电池的负极与正极。当连接外电路时,底部电极层作为负极(阳极),顶部电极层作为正极(阴极),向外输送电能。
本发明的有益效果:本发明基于氧化亚铜各晶面存在各相异性,即同时存在{100}和{111}晶面,{100}晶面与{111}晶面会分别表现出还原性与氧化性,采用不同晶面间的各相异性,来实现载流子的自动分离,从而向外输出电能。此外,p型半导体层和n型半导体层分别作为空穴传输层和电子传输层,加快了载流子的分离和传输,底部电极与顶部电极分别作为电池的负极与正极。
附图说明
图1是本发明的结构示意图。
图中,1-透明基底层,2-底部电极层,3- n型半导体层,4-单晶氧化亚铜层,5- p型半导体层,6-顶部电极层。
具体实施方式
为了加深对本发明的理解,下面将结合附图和实施例对本发明做进一步详细描述,该实施例仅用于解释本发明,并不对本发明的保护范围构成限定。
实施例:如图1所示,一种单晶氧化亚铜复合半导体纳米发电机,包括透明基底层1,透明基底层1上设置有底部电极层2,底部电极层2上设置有n型半导体层3,n型半导体层3上设置有单晶氧化亚铜层4,单晶氧化亚铜层4的上表面呈纳米立方体,单晶氧化亚铜层4的纳米立方体表面设置有p型半导体层5,p型半导体层5上设置有顶部电极层6。
在本实施中,透明基底层1由为玻璃、石英或塑料薄膜材料制成;底部电极层2为透明导电层,透明导电层为ITO层或FTO层;顶部电极层6由导体材料制成,导体材料为金属或导电类有机物、无机物或氧化物薄膜;单晶氧化亚铜层4为定向生长所得,其与n型半导体层3(3)接触部分为{111}晶面(A),且与p型半导体层5(5)接触部分为{100}晶面(B)。
在上述实施例中,透明基底层采用康宁玻璃,厚度1.1mm。依次采用去污粉、去离子水、异丙醇、乙醇盐酸、丙酮对衬底进行10min超声清洗,除去表面有机及无机杂质,最后用氮气吹干待用。采用射频磁控溅射法,在透明基底上生长FTO透明导电层,厚度300nm。将一定比例的四水醋酸镍,PEG6000溶于无水乙醇中,在60摄氏度下恒温磁力搅拌1h。采用匀胶旋涂法,将所得溶液滴涂在FTO导电层上,以3000rmp的速度匀胶1min。在马弗炉中以1摄氏度/min的升温速率升温至500摄氏度,并保持1h,获得p型NiO层,厚度50nm。将无水硫酸铜1.2g,溶解于40mL去离子水中,磁力搅拌直至充分溶解,得到澄清透明的淡蓝色溶液。加入10mL乳酸钠,磁力搅拌后得到澄清透明的深蓝色溶液。逐步滴加浓度为1M的NaOH溶液直至pH为12。以导电玻璃为负极,金属铂电极为正极,施加恒电压2V,使氧化亚铜在导电玻璃表面沉积,直至薄膜厚度生长到3000nm后切断电源。取出氧化亚铜单晶电极,用去离子水反复冲洗,并用氮气吹干。采用反应磁控溅射法,在氧化亚铜{100}晶面上生长一层n-TiO2层,厚度50nm。用掩模板遮挡暴露的FTO区域,在氧化亚铜单晶{100}面上蒸镀一层铜电极,厚度100nm。
本实施例的工作原理:将所得纳米发电机的导电玻璃端和铝电极分别与台式万用表的正极与负极连接。在黑暗状况(20℃)下,测得开路电压67.5mV,短路电流150.2μA/cm2。在标准光照条件(AM1.5,100mW/cm2,20℃)下,开路电压为0.97V,短路电流密度为6.13mA/cm2,填充因子为68%,光电转换效率为4.0%。
不仅如此,该纳米发电机还可以自发地将热能转换为电能。在200℃的黑暗状态下,单晶氧化亚铜纳米发电机可以产生的开路电压高达1.75V,短路电流密度达到了12.1mA/cm2
以上显示和描述了本发明的基本原理、主要特征及优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (8)

1.一种单晶氧化亚铜复合半导体纳米发电机,其特征在于,包括透明基底层,所述透明基底层上设置有底部电极层,所述底部电极层上设置有n型半导体层,所述n型半导体层上设置有单晶氧化亚铜层,所述单晶氧化亚铜层的上表面为完全暴露{100}晶面的纳米立方体,所述单晶氧化亚铜层的{100}晶面表面设置有p型半导体层,所述p型半导体层上设置有顶部电极层。
2.根据权利要求1所述的单晶氧化亚铜复合半导体纳米发电机,其特征在于,所述透明基底层由为玻璃、石英或塑料薄膜材料制成。
3.根据权利要求1所述的单晶氧化亚铜复合半导体纳米发电机,其特征在于,所述底部电极层为透明导电层。
4.根据权利要求3所述的单晶氧化亚铜复合半导体纳米发电机,其特征在于,所述透明导电层为ITO层或FTO层。
5.根据权利要求1所述的单晶氧化亚铜复合半导体纳米发电机,其特征在于,所述顶部电极层由导体材料制成。
6.根据权利要求5所述的单晶氧化亚铜复合半导体纳米发电机,其特征在于,所述导体材料为金属或导电类有机物、无机物或氧化物薄膜。
7.根据权利要求1-6任一项所述的单晶氧化亚铜复合半导体纳米发电机,其特征在于,所述的单晶氧化亚铜层为定向生长所得,其与n型半导体层(3)接触部分为{111}晶面(A),且与p型半导体层(5)接触部分为{100}晶面(B)。
8.一种如权利要求7所述的单晶氧化亚铜复合半导体纳米发电机的制造方法,其特征在于,包括以下步骤:步骤一:透明基底的清洗与底部电极层的制备:透明基底清洗吹干,利用磁控溅射法生长底部电极层;步骤二:n型半导体层的制备:采用旋涂法、刮涂法、浸渍提拉法、物理气相沉积法、化学气相沉积法生长n型半导体;步骤三:单晶氧化亚铜的制备:利用电沉积法生长氧化亚铜单晶薄膜;步骤四:p型半导体层的制备:采用旋涂法、刮涂法、浸渍提拉法、物理气相沉积法、化学气相沉积法生长p型半导体;步骤五:顶部电极层的制备:采用物理气相沉积法、匀胶法、刮涂法,在氧化亚铜{100}晶面上覆盖一层导体层。
CN201910982818.0A 2019-10-16 2019-10-16 一种单晶氧化亚铜复合半导体纳米发电机及其制造方法 Active CN111599881B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910982818.0A CN111599881B (zh) 2019-10-16 2019-10-16 一种单晶氧化亚铜复合半导体纳米发电机及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910982818.0A CN111599881B (zh) 2019-10-16 2019-10-16 一种单晶氧化亚铜复合半导体纳米发电机及其制造方法

Publications (2)

Publication Number Publication Date
CN111599881A true CN111599881A (zh) 2020-08-28
CN111599881B CN111599881B (zh) 2021-02-09

Family

ID=72190744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910982818.0A Active CN111599881B (zh) 2019-10-16 2019-10-16 一种单晶氧化亚铜复合半导体纳米发电机及其制造方法

Country Status (1)

Country Link
CN (1) CN111599881B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074108A (zh) * 2007-08-14 2007-11-21 北京科技大学 一种制备氧化亚铜纳米柱阵列的方法
US20150259305A1 (en) * 2014-03-11 2015-09-17 National Tsing Hua University Catalytic reaction
CN105762219A (zh) * 2016-05-11 2016-07-13 重庆大学 一种氧化亚铜基多叠层异质结太阳能电池及其制备方法
US20180038822A1 (en) * 2016-08-08 2018-02-08 Fujitsu Limited Gas sensor device, gas measuring equipment, and method for fabricating gas sensor device
CN108927157A (zh) * 2018-06-27 2018-12-04 重庆市畜牧科学院 Cu2O/{001}TiO2复合催化剂的制备方法及其对氨气动态净化的应用
US20180352661A1 (en) * 2017-05-30 2018-12-06 Jun Yang 15993351
CN109301034A (zh) * 2018-10-22 2019-02-01 西安电子科技大学 一种异质结薄膜光伏器件的制备方法
CN109616541A (zh) * 2018-10-29 2019-04-12 华中科技大学 过渡金属硫族化合物横向同质结太阳能电池及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074108A (zh) * 2007-08-14 2007-11-21 北京科技大学 一种制备氧化亚铜纳米柱阵列的方法
US20150259305A1 (en) * 2014-03-11 2015-09-17 National Tsing Hua University Catalytic reaction
CN105762219A (zh) * 2016-05-11 2016-07-13 重庆大学 一种氧化亚铜基多叠层异质结太阳能电池及其制备方法
US20180038822A1 (en) * 2016-08-08 2018-02-08 Fujitsu Limited Gas sensor device, gas measuring equipment, and method for fabricating gas sensor device
US20180352661A1 (en) * 2017-05-30 2018-12-06 Jun Yang 15993351
CN108927157A (zh) * 2018-06-27 2018-12-04 重庆市畜牧科学院 Cu2O/{001}TiO2复合催化剂的制备方法及其对氨气动态净化的应用
CN109301034A (zh) * 2018-10-22 2019-02-01 西安电子科技大学 一种异质结薄膜光伏器件的制备方法
CN109616541A (zh) * 2018-10-29 2019-04-12 华中科技大学 过渡金属硫族化合物横向同质结太阳能电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUNLEI WANG ET.AL.: ""Redox Properties of Cu2O(100) and(111)Surfaces"", 《PHYSICAL CHEMISTRY》 *
牛文哲: ""氧化亚铜的制备及其异质结光电、光电化学器件的研究"", 《工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN111599881B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN106057919B (zh) 具有通过电镀制造的金属栅的太阳能电池
Bhattacharya et al. Thin-film CuIn 1− x Ga x Se 2 photovoltaic cells from solution-based precursor layers
CN106898662B (zh) 一种p-i-n型硒化锑太阳电池
CN109273545B (zh) 一种碲化镉薄膜太阳能电池组件的制作方法
KR20090104304A (ko) 벌크 이종접합형 태양전지 및 그 제조방법
CN105070836A (zh) 一种介孔钙钛矿太阳能电池及其制备方法
US20120042952A1 (en) Silicon solar cell comprising a carbon nanotube layer
CN104332522B (zh) 一种石墨烯双结太阳能电池及其制备方法
CN106129146A (zh) 一种以黑磷烯作为导电材料的硒化锑薄膜太阳能电池及其制备方法
CN106653876A (zh) 一种太阳能电池
KR101012847B1 (ko) ZnO 나노막대를 이용한 화합물 태양전지의 제조방법 및 이에 의한 화합물 태양전지
CN105762219B (zh) 一种氧化亚铜基多叠层异质结太阳能电池及其制备方法
CN105355699B (zh) 一种多结多叠层碲化镉薄膜太阳能电池及其制备方法
CN108511606B (zh) 一种高短路电流、高转化效率的钙钛矿太阳能电池制备方法及产品
Lochtefeld et al. 15%, 20 Micron thin, silicon solar cells on steel
CN110165020B (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN102376783A (zh) 一种具有表面自织构结构的氧化亚铜太阳能电池及其制备方法
CN111599881B (zh) 一种单晶氧化亚铜复合半导体纳米发电机及其制造方法
CN102593198B (zh) 一种制备ii-vi族层叠集成纳米光伏器件的方法
CN101459206A (zh) 高效多结太阳能电池的制造方法
CN110556445A (zh) 一种叠层并联太阳能电池
CN111599878B (zh) 一种基于晶面结的单晶氧化亚铜纳米发电机及其制造方法
CN110534599A (zh) 一种柔性薄膜太阳能电池及其制备方法
CN102024858B (zh) 油墨、薄膜太阳能电池及其制造方法
CN112563118A (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Yang

Inventor after: Wang Zhiyong

Inventor after: Tao Ran

Inventor after: Luo Kai

Inventor before: Li Yang

Inventor before: Luo Kai

Inventor before: Wang Zhiyong

Inventor before: Tao Ran

GR01 Patent grant
GR01 Patent grant