CN111584847A - 一种二硫化钒与黑磷复合电极材料及其制备方法 - Google Patents

一种二硫化钒与黑磷复合电极材料及其制备方法 Download PDF

Info

Publication number
CN111584847A
CN111584847A CN202010434579.8A CN202010434579A CN111584847A CN 111584847 A CN111584847 A CN 111584847A CN 202010434579 A CN202010434579 A CN 202010434579A CN 111584847 A CN111584847 A CN 111584847A
Authority
CN
China
Prior art keywords
black phosphorus
vanadium disulfide
electrode material
composite electrode
black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010434579.8A
Other languages
English (en)
Other versions
CN111584847B (zh
Inventor
王晓君
刘治明
王旭辉
孙洪冉
徐常蒙
李海昌
魏晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202010434579.8A priority Critical patent/CN111584847B/zh
Publication of CN111584847A publication Critical patent/CN111584847A/zh
Application granted granted Critical
Publication of CN111584847B publication Critical patent/CN111584847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于电极材料制备技术领域,具体涉及一种二硫化钒与黑磷复合电极材料及其制备方法。首先对黑磷进行剥离;其次对二硫化钒进行剥离;最后将二硫化钒与黑磷进行复合得到二硫化钒与黑磷复合电极材料。该材料具有高比表面积、高活性位点、高比容量的特点,纳米片层之间的孔隙可以缓冲活性材料在充放电过程中的体积变化,并能提高与电解液的接触面积,减小了离子传输路径,有利于电子/离子的快速转移,从而提高了电极材料的循环稳定性和倍率性能。

Description

一种二硫化钒与黑磷复合电极材料及其制备方法
技术领域:
本发明属于电极材料制备技术领域,具体涉及一种二硫化钒与黑磷复合电极材料及其制备方法。
背景技术:
大量研究表明,由于各种因素的影响,钠离子基本不能插入到石墨片层中,这使得成本较低的石墨类材料不适合用作钠离子电池,导致低成本钠离子电池的发展受到一定限制,因此,研发更适用于钠离子电池的负极材料是很有必要的。二硫化钒作为过渡金属二硫化物材料中的一员,具有与石墨相似的层状结构,因其具有较高的理论比容量,较大的层间距,较高的电导率,很适合用作钠离子电池负极材料。同时,磷资源丰富,理论比容量高,黑磷的热力学形式稳定,化学反应性低,着火点高,从安全性考虑,成为最有前景的钠离子电池负极材料之一。但是,二硫化钒多为无规则片层结构,这种无规则结构在一定程度上限制了其电化学性能。此外,单一黑磷在嵌/脱钠过程中,容易出现团聚现象,使得结构坍塌,导致电极电导率降低,造成可逆容量和循环性能迅速衰减。基于上述问题,研究者近年来不断对纳米结构进行优化以及各种材料之间进行复合的策略来解决上述存在的问题。
发明内容:
本发明要解决的技术问题是由于二硫化钒多为无规则片层结构,这种无规则结构在一定程度上限制了其电化学性能。此外,单一黑磷在嵌/脱钠过程中,容易出现团聚现象,使得结构坍塌,导致电极电导率降低,造成可逆容量和循环性能迅速衰减。
为解决上述问题,本发明得到了一种二硫化钒与黑磷复合电极材料,该材料具有高比表面积、高活性位点、高比容量的特点,纳米片层之间的孔隙可以缓冲活性材料在充放电过程中的体积变化,并能提高与电解液的接触面积,减小了离子传输路径,有利于电子/离子的快速转移,从而提高了电极材料的循环稳定性和倍率性能。此外,黑磷具有较高的比容量,稳定的热力学形式,较低的化学反应性,使其与二硫化钒纳米薄片复合,可以充分发挥两者的优势,同时,两者都具有良好的导电性,进一步提高了电极材料的电化学性能,并能保证其安全性。
为达到上述目的,本发明通过以下技术方案实现,一种二硫化钒与黑磷复合电极材料的制备方法,首先对黑磷进行剥离;其次对二硫化钒进行剥离;最后将二硫化钒与黑磷进行复合得到二硫化钒与黑磷复合电极材料。
进一步的,对黑磷进行剥离的具体步骤为:将20mg黑磷加入到40ml的N-甲基吡咯烷酮(NMP)中,在冰浴中进行超声,然后1500r/min离心三次,分别取上清液,将得到的上清液合并并进行第四次10000r/min离心取沉淀。其中,超声是将团聚的纳米片层分离开、三次离心为取得已剥离出的黑磷纳米片,第四次高速离心时是将剥离出的黑磷纳米片进行收集。
进一步的,对二硫化钒进行剥离的具体步骤为:将钒酸盐(优选为3mmol Na3VO4·12H2O)和15mmol硫代乙酰胺(TAA)溶于40ml去离子水中,搅拌1小时形成均匀的溶液,然后转移到50ml聚四氟乙烯内衬的高压釜中,在160℃下保持24小时,之后冷却至室温;离心收集黑色沉淀VS2·NH3,用去离子水洗涤数次备用。其中,搅拌溶解将前驱体溶液混合均匀、高温反应发生化学反应生成VS2·NH3、离心是将得到的产物清洗除去杂质,得到纯净的VS2·NH3粉末,其结构演变为二维片层网络状结构。
进一步的,20mgVS2·NH3用30ml水分散于锥形瓶中,然后用氩气鼓泡将溶解氧从溶液中排出,避免V(IV)氧化为V(V);将上述弥散液在冰浴中超声处理3小时,合成的黑色悬浮液使用中速定性滤纸器进行过滤,去除溶液中未剥落的薄片,得到VS2纳米片的半透明溶液。
进一步的,复合的具体步骤为:将剥离的黑磷和二硫化钒按1:1得比例加入到20mlNMP中,然后转移到25ml聚四氟乙烯内衬的高压釜中,在160℃下保持5小时,之后冷却至室温。然后重复离心三次(每次离心(10000r/min)6分钟),将得到VS2与黑磷的复合材料。其中,溶解为使两种片层材料混合均匀、高温反应将两种片层材料实现分子间复合,使其形成异质结,复合材料结构更稳定、离心时将分离好的二维片层复合材料与未分离的二维片层材料进行区分,收集已分离的黑磷和二硫化钒复合物质。
一种上述方法制备的二硫化钒与黑磷复合电极材料,其具有二维片层结构,片层与片层之间紧密搭接,形成通畅的离子扩散通道,并具有较短的电子传输路径。
本发明的有益效果为:
(1)本发明采用一种独特的氨辅助策略,将大块VS2薄片剥落成超薄的VS2纳米薄片,并将其与黑磷复合,得到二硫化钒与黑磷复合材料。
(2)本发明的复合材料充分发挥了VS2纳米薄片高比表面积、高活性位点、高比容量的特点,纳米片层之间的孔隙可以缓冲活性材料在充放电过程中的体积变化,并能提高与电解液的接触面积,减小离子传输路径,有利于电子/离子的快速转移,从而提高了电极材料的循环稳定性和倍率性能。此外,黑磷具有较高的比容量,稳定的热力学形式,较低的化学反应性,使其与二硫化钒纳米薄片复合,可以充分发挥两者的优势,同时,两者都具有良好的导电性,进一步提高了电极材料的电化学性能,并能保证其安全性。
附图说明
图1是本发明的合成物质透射电镜图片;
图2是本发明的合成物质元素分布图片。
具体实施方式:
为使本发明实施例的目的、技术方案和优点更加清楚,下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种硫化钒与黑磷复合电极材料的制备方法,包括以下步骤:
S1:将20mg黑磷加入到40ml的NMP中,在冰浴中进行超声,然后离心(1500r/min)三次,分别取上清液,第四次离心(10000r/min)取沉淀;
S2:将3mmol Na3VO4·12H2O和15mmol硫代乙酰胺(TAA)溶于40ml去离子水中,搅拌1小时形成均匀的溶液,然后转移到50ml聚四氟乙烯内衬的高压釜中,在160℃下保持24小时,之后冷却至室温。通过离心收集黑色沉淀,用去离子水洗涤数次;
S3:20mgVS2·NH3用30ml水分散于锥形瓶中,然后用氩气鼓泡将溶解氧从溶液中排出,避免V(IV)氧化为V(V)。将上述弥散液在冰浴中超声处理3小时,合成的黑色悬浮液使用中速定性滤纸器进行过滤,去除溶液中未剥落的薄片,得到VS2纳米片的半透明溶液;
S4:将S1和S3中得到的产物按1:1得比例加入到20ml NMP中,然后转移到25ml聚四氟乙烯内衬的高压釜中,在160℃下保持5小时,之后冷却至室温。然后重复离心三次(每次离心(10000r/min)6分钟),将得到VS2与黑磷的复合材料。
注:S2中获得的前驱体应立即用于S3剥离过程而不需要干燥,否则VS2·NH3将分解成VS2薄片,导致剥离效率降低。

Claims (7)

1.一种二硫化钒与黑磷复合电极材料的制备方法,其特征在于:首先对黑磷进行剥离;其次对二硫化钒进行剥离;最后将二硫化钒与黑磷进行复合得到二硫化钒与黑磷复合电极材料。
2.如权利要求1所述的制备方法,其特征在于:将黑磷加入到N-甲基吡咯烷酮中,在冰浴中进行超声,然后低速离心三次,分别取上清液,合并上清液并将其高速离心后取沉淀。
3.如权利要求1所述的制备方法,其特征在于:对二硫化钒进行剥离的具体步骤为:将钒酸盐和硫代乙酰胺溶于去离子水中,搅拌至形成均匀的溶液,然后转移到聚四氟乙烯内衬的高压釜中,在160℃下保持24小时,之后冷却至室温;离心收集黑色沉淀VS2·NH3,用去离子水洗涤数次备用。
4.如权利要求3所述的制备方法,其特征在于:所述钒酸盐为Na3VO4·12H2O。
5.如权利要求3或4所述的制备方法,其特征在于:将VS2·NH3用水分散于锥形瓶中,然后用氩气鼓泡;将上述弥散液在冰浴中超声处理3小时,合成的黑色悬浮液使用中速定性滤纸器进行过滤,得到VS2纳米片的半透明溶液。
6.如权利要求1所述的制备方法,其特征在于:复合的具体步骤为:将剥离的黑磷和二硫化钒按1:1得比例加入到N-甲基吡咯烷酮中,然后转移到聚四氟乙烯内衬的高压釜中,在160℃下保持5小时,之后冷却至室温;然后重复高速离心三次,得到二硫化钒与黑磷复合电极材料。
7.一种权利要求1中的方法制备的二硫化钒与黑磷复合电极材料,其特征在于:复合材料呈现多孔纳米二维片层结构,片层与片层之间紧密搭接,具有较快的离子扩散与电子传输通道。
CN202010434579.8A 2020-05-21 2020-05-21 一种二硫化钒与黑磷复合电极材料及其制备方法 Active CN111584847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010434579.8A CN111584847B (zh) 2020-05-21 2020-05-21 一种二硫化钒与黑磷复合电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010434579.8A CN111584847B (zh) 2020-05-21 2020-05-21 一种二硫化钒与黑磷复合电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111584847A true CN111584847A (zh) 2020-08-25
CN111584847B CN111584847B (zh) 2021-07-06

Family

ID=72112278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010434579.8A Active CN111584847B (zh) 2020-05-21 2020-05-21 一种二硫化钒与黑磷复合电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111584847B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183830A (zh) * 2014-08-19 2014-12-03 中南大学 一种二维无机层状化合物/石墨烯复合材料的制备方法
CN106711408A (zh) * 2015-11-13 2017-05-24 中国科学院金属研究所 柔性锂离子电池黑磷纳米片-石墨烯复合薄膜负极及制备
CN108394879A (zh) * 2018-04-04 2018-08-14 青岛大学 一种黑磷烯及其制备方法和应用
CN110176580A (zh) * 2019-04-25 2019-08-27 浙江大学 一种Si基MAX制备MXenes及MXenes/P负极复合材料的方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183830A (zh) * 2014-08-19 2014-12-03 中南大学 一种二维无机层状化合物/石墨烯复合材料的制备方法
CN106711408A (zh) * 2015-11-13 2017-05-24 中国科学院金属研究所 柔性锂离子电池黑磷纳米片-石墨烯复合薄膜负极及制备
CN108394879A (zh) * 2018-04-04 2018-08-14 青岛大学 一种黑磷烯及其制备方法和应用
CN110176580A (zh) * 2019-04-25 2019-08-27 浙江大学 一种Si基MAX制备MXenes及MXenes/P负极复合材料的方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAYATREE BARIK等: ""Strain-engineered BlueP–MoS2 van der Waals heterostructure with improved lithiation/sodiation for LIBs and SIBs"", 《PHYS.CHEM.CHEM.PHYS.》 *
RUIJIN MENG等: ""Black Phosphorus Quantum Dot/Ti3C2 MXene Nanosheet Composites for Efficient Electrochemical Lithium/Sodium-Ion Storage"", 《ADV. ENERGY MATER.》 *

Also Published As

Publication number Publication date
CN111584847B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
CN103035890B (zh) 硅与石墨烯复合电极材料及其制备方法
WO2015188726A1 (zh) 氮掺杂石墨烯包覆纳米硫正极复合材料、其制备方法及应用
CN113346054B (zh) MXene-碳纳米笼-硫复合材料的制备方法及应用
CN105914369B (zh) 一种纳米级碳包覆硫化锂复合材料及其制备方法和应用
GB2620047A (en) Lithium ion battery pre-lithiation agent, preparation method therefore, and application
CN111082024B (zh) 一种包覆材料、其制备方法及用途
CN109950503B (zh) 一种CoMoOx/碳/硫复合纳米材料的制备方法、锂离子电池负极及锂离子半电池
CN105810918B (zh) 一种原位合成TiO2介晶‑碳‑石墨烯纳米复合材料的方法及其应用
CN108172760A (zh) 一种纸复合电极及其制备方法
CN114702022A (zh) 硬碳负极材料的制备方法和应用
Liu et al. Is there a demand of conducting agent of acetylene black for graphene-wrapped natural spherical graphite as anode material for lithium-ion batteries?
CN112510187A (zh) 一种静电自组装球状三氧化钼/MXene复合材料及其制备方法和应用
CN116960340A (zh) 高倍率银纳米粒子修饰rGO改性硬碳负极材料及其制备方法
CN111584847B (zh) 一种二硫化钒与黑磷复合电极材料及其制备方法
CN114784227B (zh) 一种石墨烯/金属氧化物复合纳米材料及其制备方法和应用、电极极片及其应用
CN111584894B (zh) 一种锂二氧化碳电池正极材料及其应用
CN108461746A (zh) 一种预掺杂稳定制备高镍三元锂电池电极材料的方法
CN111348685B (zh) 石墨烯基复合材料及其制备方法和应用
CN114614198A (zh) 一种用于锂硫电池的相变隔膜及其制备方法
CN110078060B (zh) 一种石墨烯纳米条带材料及其制备方法与应用
CN112038617A (zh) 一种微纳米双粒度多孔硅材料及其制备方法和应用
CN111740095A (zh) 一种碳微球包裹氧化锌纳米片材料及其制备方法和应用
Zhang et al. Simple Preparation of Co3O4 with a Controlled Shape and Excellent Lithium Storage Performance
CN117219758B (zh) MXene复合材料及其制备方法和应用、钠离子电池负极的制备方法
CN117374262B (zh) 内源异质结阳极材料及其制备方法、负极和锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant