CN111574244A - 一种固体氧化物电池阻隔层致密化的方法 - Google Patents
一种固体氧化物电池阻隔层致密化的方法 Download PDFInfo
- Publication number
- CN111574244A CN111574244A CN202010361004.8A CN202010361004A CN111574244A CN 111574244 A CN111574244 A CN 111574244A CN 202010361004 A CN202010361004 A CN 202010361004A CN 111574244 A CN111574244 A CN 111574244A
- Authority
- CN
- China
- Prior art keywords
- gdc
- barrier layer
- solid oxide
- layer
- hydrothermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/126—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/128—Fuel cells with solid halide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
本发明公开了一种固体氧化物电池阻隔层致密化的方法,固体氧化物电池常用电解质材料为YSZ(8%molY2O3稳定ZrO2,化学式为:Zr0.84Y0.16O2‑x),YSZ与很多高活性阴、阳极钙钛矿材料的化学兼容性较差,在高温制备以及长期运行过程中容易发生反应。氧化铈基电解质材料多与YSZ等电解质组成双电解质层,或作为隔离层以防止在高温制备和长期运行过程中电极材料与电解质之间发生反应。致密的GDC隔离层可以有效降低燃料电池的欧姆阻抗,提高电池的导电率和催化性能。Ge(NO3)3·6H2O与Ce(NO3)3·6H2O按0.1:0.9的摩尔比例(Ce0.9Gd0.1O2‑m)配成水热溶液,将丝印过GDC阻隔层的电池通过水热的方法,在180℃下反应24h,之后制备成完整的电池。从而得到的电池具有更高的导电性能和催化活性以及较低的欧姆阻抗。
Description
技术领域
本发明涉及一种固体氧化物电池阻隔层致密化的方法,用于固体氧化物燃料电池领域。
背景技术
固体氧化物燃料电池是一种全固态的能量转换装置,能将化学能直接转化为电能,具有能量转化率高、环境友好、噪音低和可靠性强等优点,而且能够直接利用现有的各种含碳燃料,被认为是目前最有应用前景的发电系统。氧化锆基陶瓷薄膜作为常用的电解质仍存在一定缺点,氧化锆基陶瓷薄膜易与钙钛矿型阴极材料反应生成绝缘相La2Zr2O7和SrZrO3,使得电池性能与稳定性降低。目前解决此问题常用的方法是在氧化锆基陶瓷材料电解质与钙钛矿阴极之间加入一层氧化铈基陶瓷薄膜作隔层来阻挡氧化锆基电解质与钙钛矿阴极的反应。
CeO2基隔离层(如GDC,Gd0.1Ce0.9O2)可以防止YSZ电解质与LSCF等阴极在高温制备和长时间运行过程中发生反应。但GDC与YSZ薄膜很难实现共烧结,而且在~1200℃以上也会发生反应。除先进镀膜工艺外,大多单电池通过丝网印刷在致密YSZ表面制备GDC,但只能获得多孔隔离层。致密的GDC隔离层可以有效降低燃料电池的欧姆阻抗,提高电池的导电率和催化性能。通过传统方法烧结的氧化钆掺杂氧化铈(GDC)在1550℃才能获得95%以上的致密度。DTU、韩国KIER等开展了GDC隔离层的致密化修饰工作,通过在多孔GDC中浸渍GDC前驱体溶液或助烧剂的盐溶液显著提高了隔离层致密度,但需要重复多次且仍需高温下烧结(1150-1275℃)才能获得高致密度,过程繁琐。
发明内容
为了使隔离层GDC能够在低温下致密化,本发明提供了一种固体氧化物电池阻隔层致密化的方法,采用GDC同组分的硝酸水合物溶液,通过水热法以原位析出的方式在多孔的GDC表面上析出晶体,使GDC阻隔层致密化。
本发明解决现有技术问题所提出来的技术方案如下:
首先在致密YSZ(8%molY2O3稳定ZrO2,化学式为:Zr0.84Y0.16O2-x)电解质片上丝网印刷上隔离层GDC,之后在马弗炉中1250℃下煅烧3h。
然后配置水热溶液,在100ml反应釜中加入60ml去离子水,再加入0.1354gGe(NO3)3·6H2O(0.005mol/L)和1.1724g Ce(NO3)3·6H2O(0.045mol/L)晶体,连同反应釜一起超声溶解几分钟。
之后将丝网印刷上GDC的电解质片用酒精浸泡十分钟,之后擦拭干净。电解质片放入加了水热溶液的反应釜中,将反应釜放在烘箱中,180℃下反应24h。
最后将电解质片取出,在电解质片的GDC上丝网印刷上LSCF,面积为0.5cm,在1075℃下煅烧2h。之后在两侧加上银网和银丝集电,做成对称电池。
该方法与传统氧化铈基隔离层(GDC)的制备相比,其优势是:
(1)采用水热法将电池在反应釜中高压反应,使水热溶质原位析出在隔离层GDC的多孔处,再通过1075℃的煅烧形成致密的隔离层。有效降低了隔离层致密化煅烧温度。
(2)该方法在较低温度下获得致密的氧化铈基隔离层,避免了氧化锆基电解质与氧化铈基隔离层之间的相互反应,从而提高了电池性能。
附图说明
图1是本发明的工作流程图。
图2是水热反应后对称电池的断面扫描图,a图为GDC未水热处理的断面扫描电镜图,b图为GDC水热24h处理的断面扫描电镜图。
图3是水热反应后对称电池的断面扫描图,a图为GDC水热处理的断面扫描电镜图,b图为GDC醇热处理的断面扫描电镜图。
具体实施方式
实施例1
不同溶质比使电池阻隔层致密化的差异
首先在致密YSZ电解质片上丝网印刷上隔离层GDC,之后在马弗炉中1250℃下煅烧3h。
然后配置两份水热溶液,在100ml反应釜中加入60ml去离子水,再把Ge(NO3)3·6H2O与Ce(NO3)3·6H2O按0.1:0.9的摩尔比例(Ce0.9Gd0.1O2-m)配成的溶液,即与GDC同组分的硝酸水合物溶液晶体;第二份水热溶液Ge(NO3)3·6H2O与Ce(NO3)3·6H2O按0.1:1的摩尔比例(CeGd0.1O2-m)配成的溶液。电池片分别在两份水热溶液中反应24h。
之后将丝网印刷上GDC的电解质片用酒精浸泡十分钟,之后擦拭干净。电解质片放入加了水热溶液的反应釜中,将反应釜放在烘箱中,180℃下反应24h。
最后将电解质片取出,在电解质片的GDC上丝网印刷上LSCF,面积为0.5cm,在1075℃下煅烧2h。之后在两侧加上银网和银丝集电,做成对称电池。
0.1:0.9的摩尔比例的水热溶液反应过的电池在750℃下的欧姆阻抗为0.55Ω·cm2,0.1:0.9的摩尔比例的水热溶液反应过的电池在750℃下的欧姆阻抗为0.9Ω·cm2,欧姆阻抗越小,表明阻隔层GDC越致密,说明0.1:0.9的摩尔比例是最适合的水热比例。
实施例2
不同水热溶剂对电池致密化的影响
Ge(NO3)3·6H2O与Ce(NO3)3·6H2O按0.1:0.9的摩尔比例(Ce0.9Gd0.1O2-m),分别以去离子水和无水乙醇为溶剂,即与GDC同组分的硝酸水合物溶液晶体。电解质片放入加了水热溶液的反应釜中,将反应釜放在烘箱中,180℃下反应24h。
最后将电解质片取出,在电解质片的GDC上丝网印刷上LSCF,面积为0.5cm,在1075℃下煅烧2h。之后在两侧加上银网和银丝集电,做成对称电池。
最终结果如图3可以看出,以乙醇为溶剂的电池,其隔离层的致密度更高,相比较水热反应,醇热反应的孔隙更小。
Claims (6)
1.一种固体氧化物电池阻隔层致密化的方法,其特征在于,将阻隔层为GDC,为Gd2O3掺杂CeO2,通式为Ce0.9Gd0.1O2-m,0﹤m≤0.5;
加入用于水热的溶质为Ge(NO3)3·6H2O与Ce(NO3)3·6H2O按0.1:0.9的摩尔比例(Ce0.9Gd0.1O2-m)配成的溶液,即与GDC同组分的硝酸水合物溶液,将丝网印刷的多孔隔离层通过水热法以原位析出的形式在的在具有多孔的GDC表面上析出晶体,使GDC阻隔层致密化。
2.根据权利要求1所述的固体氧化物电池阻隔层致密化的方法,其特征在于,通过丝网印刷在致密YSZ电解质片上丝网印刷上隔离层GDC,丝网印刷的隔离层为多孔结构。
3.根据权利要求1所述的固体氧化物电池阻隔层致密化的方法,其特征在于,多孔隔离层在1250℃下煅烧3h。
4.根据权利要求1所述的固体氧化物电池阻隔层致密化的方法,其特征在于,水热溶液成分为Ge(NO3)3·6H2O(0.005mol/L):Ce(NO3)3·6H2O=0.1:0.9。
5.根据权利要求1所述的固体氧化物电池阻隔层致密化的方法,其特征在于,多孔GDC隔离层放入加了水热溶液的反应釜中,在180℃下反应24h。
6.根据权利要求1所述的固体氧化物电池阻隔层致密化的方法,其特征在于,水热后致密的隔离层GDC上丝网印刷上LSCF,面积为0.5cm,在1075℃下煅烧2h,之后在两侧加上银网和银丝集电,做成对称电池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010361004.8A CN111574244B (zh) | 2020-04-30 | 2020-04-30 | 一种固体氧化物电池阻隔层致密化的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010361004.8A CN111574244B (zh) | 2020-04-30 | 2020-04-30 | 一种固体氧化物电池阻隔层致密化的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111574244A true CN111574244A (zh) | 2020-08-25 |
CN111574244B CN111574244B (zh) | 2022-05-13 |
Family
ID=72117016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010361004.8A Active CN111574244B (zh) | 2020-04-30 | 2020-04-30 | 一种固体氧化物电池阻隔层致密化的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111574244B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112687928A (zh) * | 2020-12-25 | 2021-04-20 | 中国科学院上海应用物理研究所 | 一种固体氧化物电池的制备方法以及由此得到的固体氧化物电池 |
CN113871675A (zh) * | 2021-08-25 | 2021-12-31 | 南京理工大学 | 一种修复固体氧化物电池薄膜电解质的方法 |
CN113929498A (zh) * | 2021-09-16 | 2022-01-14 | 山东工业陶瓷研究设计院有限公司 | 一种用于制备阻隔层的涂料、阻隔层的制备方法及阻隔层 |
CN115966713A (zh) * | 2023-01-13 | 2023-04-14 | 华北电力大学 | 一种固体氧化物电池及其制备方法 |
CN116063084A (zh) * | 2023-04-04 | 2023-05-05 | 江苏富乐华功率半导体研究院有限公司 | 一种氮化硼印刷浆料的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103447042A (zh) * | 2013-01-10 | 2013-12-18 | 上海大学 | 抗积碳和抗烧结整体式甲烷干重整催化剂的制备方法 |
CN105742646A (zh) * | 2014-12-08 | 2016-07-06 | 中国科学院大连化学物理研究所 | 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备 |
CN105789636A (zh) * | 2016-03-22 | 2016-07-20 | 山西师范大学 | 一步水热合成制备固体氧化物燃料电池复合阴极材料方法 |
US20160351916A1 (en) * | 2015-05-28 | 2016-12-01 | Uti Limited Partnership | High performance oxygen and fuel electrode for reversible solid oxide fuel cell applications |
CN108390071A (zh) * | 2018-02-07 | 2018-08-10 | 华南理工大学 | 一种固体氧化物燃料电池阴极表面修饰方法 |
CN109836154A (zh) * | 2018-12-29 | 2019-06-04 | 清华大学 | 一种低温烧结致密化燃料电池中氧化铈基隔离层的方法 |
CN109867521A (zh) * | 2018-10-30 | 2019-06-11 | 清华大学 | 一种氧化物陶瓷薄膜二次修饰致密化的方法 |
US20200075960A1 (en) * | 2015-11-30 | 2020-03-05 | University Of Maryland, College Park | Solid-State Li-S Batteries and Methods of Making Same |
-
2020
- 2020-04-30 CN CN202010361004.8A patent/CN111574244B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103447042A (zh) * | 2013-01-10 | 2013-12-18 | 上海大学 | 抗积碳和抗烧结整体式甲烷干重整催化剂的制备方法 |
CN105742646A (zh) * | 2014-12-08 | 2016-07-06 | 中国科学院大连化学物理研究所 | 具有石榴果实结构的固体氧化物燃料电池阴极材料及制备 |
US20160351916A1 (en) * | 2015-05-28 | 2016-12-01 | Uti Limited Partnership | High performance oxygen and fuel electrode for reversible solid oxide fuel cell applications |
US20200075960A1 (en) * | 2015-11-30 | 2020-03-05 | University Of Maryland, College Park | Solid-State Li-S Batteries and Methods of Making Same |
CN105789636A (zh) * | 2016-03-22 | 2016-07-20 | 山西师范大学 | 一步水热合成制备固体氧化物燃料电池复合阴极材料方法 |
CN108390071A (zh) * | 2018-02-07 | 2018-08-10 | 华南理工大学 | 一种固体氧化物燃料电池阴极表面修饰方法 |
CN109867521A (zh) * | 2018-10-30 | 2019-06-11 | 清华大学 | 一种氧化物陶瓷薄膜二次修饰致密化的方法 |
CN109836154A (zh) * | 2018-12-29 | 2019-06-04 | 清华大学 | 一种低温烧结致密化燃料电池中氧化铈基隔离层的方法 |
Non-Patent Citations (6)
Title |
---|
ALIYE ARABACI ET.AL: "Preparation and characterization of 10mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications", 《CERAMICS INTERNATIONAL》 * |
SOONWOOK HONG ET.AL: "Direct hydrothermal growth of GDC nanorods for low temperature solid oxide fuel cells", 《APPLIED SURFACE SCIENCE》 * |
TENGLONG ZHU ET.AL: "Structural and electrochemical property evolutions of perovskite SOFC anodes: Role of fuel atmosphere in (La0.4Sr0.6)1-xCo0.2Fe0.7Nb0.1O3-d", 《I N T E RNA T I ONAL JOURNAL O F HYDROGEN ENERGY》 * |
武卫明 等: "中低温固体氧化物燃料电池中CeO2基电解质隔层制备技术的研究进展", 《中国稀土学报》 * |
燕萍 等: "CeO2基固体氧化物燃料电池电解质研究", 《材料与冶金学报》 * |
马征 等: "固体氧化物电解池阴极材料的发展现状", 《陶瓷学报》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112687928A (zh) * | 2020-12-25 | 2021-04-20 | 中国科学院上海应用物理研究所 | 一种固体氧化物电池的制备方法以及由此得到的固体氧化物电池 |
CN113871675A (zh) * | 2021-08-25 | 2021-12-31 | 南京理工大学 | 一种修复固体氧化物电池薄膜电解质的方法 |
CN113929498A (zh) * | 2021-09-16 | 2022-01-14 | 山东工业陶瓷研究设计院有限公司 | 一种用于制备阻隔层的涂料、阻隔层的制备方法及阻隔层 |
CN115966713A (zh) * | 2023-01-13 | 2023-04-14 | 华北电力大学 | 一种固体氧化物电池及其制备方法 |
CN116063084A (zh) * | 2023-04-04 | 2023-05-05 | 江苏富乐华功率半导体研究院有限公司 | 一种氮化硼印刷浆料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111574244B (zh) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111574244B (zh) | 一种固体氧化物电池阻隔层致密化的方法 | |
Rajendran et al. | Tri-doped BaCeO3–BaZrO3 as a chemically stable electrolyte with high proton-conductivity for intermediate temperature solid oxide electrolysis cells (SOECs) | |
Fabbri et al. | Towards the next generation of solid oxide fuel cells operating below 600 C with chemically stable proton‐conducting electrolytes | |
Liu et al. | Improving the performance of the Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for proton-conducting SOFCs by microwave sintering | |
Nguyen et al. | Preparation and evaluation of BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ (BZCYYb) electrolyte and BZCYYb-based solid oxide fuel cells | |
Rasaki et al. | A review of current performance of rare earth metal-doped barium zirconate perovskite: The promising electrode and electrolyte material for the protonic ceramic fuel cells | |
Liu et al. | Enhancing sinterability and electrochemical properties of Ba (Zr0. 1Ce0. 7Y0. 2) O3-δ proton conducting electrolyte for solid oxide fuel cells by addition of NiO | |
Liu et al. | A new neodymium-doped BaZr0. 8Y0. 2O3− δ as potential electrolyte for proton-conducting solid oxide fuel cells | |
CN104916850B (zh) | 固体氧化物燃料电池阴极用材料及具其复合阴极材料及其制备方法和电池复合阴极制备方法 | |
Liu et al. | A novel approach for substantially improving the sinterability of BaZr0. 4Ce0. 4Y0. 2O3− δ electrolyte for fuel cells by impregnating the green membrane with zinc nitrate as a sintering aid | |
US10305116B2 (en) | Cost-effective solid state reactive sintering method for protonic ceramic fuel cells | |
Zhao et al. | Performance of solid oxide fuel cells based on proton-conducting BaCe0. 7In0. 3-xYxO3-δ electrolyte | |
CN103811789A (zh) | 一种具有对称电极的固体氧化物燃料电池及其制备方法和应用 | |
WO2008048225A2 (en) | Novel cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes | |
Wang et al. | Assessment of co-sintering as a fabrication approach for metal-supported proton-conducting solid oxide cells | |
JP5552222B2 (ja) | セラミック層の加工法及び加工物品 | |
JP3786402B2 (ja) | 固体電解質型燃料電池用空気極への電極活性酸化物の導入方法 | |
WO2015054024A1 (en) | Gas phase modification of solid oxide fuel cells | |
CN114628753B (zh) | 一种具有负极阻隔层的质子导体固体氧化物电池 | |
WO2015054065A1 (en) | Liquid phase modification of electrodes of solid oxide fuel cells | |
Cao et al. | Novel reduction-resistant Ba (Ce, Zr) 1− xGdxO3− δ electron-blocking layer for Gd0. 1Ce0. 9O2− δ electrolyte in IT-SOFCs | |
CN111416138A (zh) | 一种质子陶瓷膜燃料电池及其制备方法 | |
JP2020129433A (ja) | 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法 | |
JP3871903B2 (ja) | 固体電解質型燃料電池用燃料極への電極活性酸化物の導入方法 | |
CN116137334A (zh) | 一种固体氧化物电池隔离层及单电池和制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |