CN111569928B - 一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用 - Google Patents

一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用 Download PDF

Info

Publication number
CN111569928B
CN111569928B CN202010396265.3A CN202010396265A CN111569928B CN 111569928 B CN111569928 B CN 111569928B CN 202010396265 A CN202010396265 A CN 202010396265A CN 111569928 B CN111569928 B CN 111569928B
Authority
CN
China
Prior art keywords
based material
mofs
metal
derived carbon
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010396265.3A
Other languages
English (en)
Other versions
CN111569928A (zh
Inventor
章嵩
董缘
阳晓宇
应杰
肖宇轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202010396265.3A priority Critical patent/CN111569928B/zh
Publication of CN111569928A publication Critical patent/CN111569928A/zh
Application granted granted Critical
Publication of CN111569928B publication Critical patent/CN111569928B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用。其中Pt纳米团簇平均粒径为1~2nm,MOFs衍生碳基材料为掺氮MOFs衍生碳基材料,Pt纳米团簇均匀布设在MOFs衍生碳基材料中。其制备为:将负载高分散金属Zn的掺氮MOFs衍生碳基材料溶解于铂的前驱体溶液中,搅拌进行原位置换反应,金属Zn将金属Pt从前驱体溶液中还原出来,反应结束后后处理即得MOFs衍生碳基材料锚定高分散金属Pt纳米团簇。制备方法简单,所得Pt纳米团簇纳米尺寸小,高分散,活性中心高度暴露,催化HER性能优异,且电化学稳定性良好。

Description

一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备 方法和应用
技术领域
本发明涉及Pt基材料技术领域,具体涉及一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用。
背景技术
氢作为一种清洁和可持续的能源载体,被称为化石燃料的有效替代品。析氢反应(HER)是电解水制氢中阴极重要的一步反应,Pt基材料作为目前性能最优异的HER催化剂有着价格昂贵、地壳储量少等缺点,提高Pt的活性、稳定性以及利用率对电解水制氢至关重要。
目前常用的解决办法是构筑铂基纳米合金、控制铂基纳米材料的形貌来暴露更多催化的活性位点。但是这样的处理方法通常会增加合成过程的难度,而且产品中副产物较多。有些合成过程还需要表面活性剂来防止纳米材料团聚,而表面活性剂又是一种极难去除的物质。
发明内容
本发明提供了一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用。制备方法简单,所得Pt纳米团簇纳米尺寸小,高分散,活性中心高度暴露,催化HER性能优异,且电化学稳定性良好。
为解决上述目的,采用的技术方案是:
提供一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇,所述Pt纳米团簇平均粒径为1~2nm,所述MOFs衍生碳基材料为掺氮MOFs衍生碳基材料,其中所述Pt纳米团簇均匀布设在所述MOFs衍生碳基材料中。
按上述方案,所述MOFs衍生碳基材料为尺寸为80~120nm的菱形十二面体,具有小于1nm的微孔结构。
提供一种上述MOFs衍生碳基材料锚定高分散金属Pt纳米团簇的制备方法,具体步骤为:将负载高分散金属Zn的掺氮MOFs衍生碳基材料溶解于铂的前驱体溶液中,搅拌进行原位置换反应,金属Zn将金属Pt从前驱体溶液中还原出来,反应结束后后处理即得MOFs衍生碳基材料锚定高分散金属Pt纳米团簇(Pt@NC)。
按上述方案,所述负载高分散金属Zn的掺氮MOFs衍生碳基材料为ZIF-8碳化后得到的。
按上述方案,所述碳化条件为:碳化温度为800~900℃,碳化时间为3~6h。
按上述方案,碳化过程中升温速率为2~5℃/s。
按上述方案,所述ZIF-8的制备为:将六水合硝酸锌和2-甲基咪唑溶解于甲醇中,均匀搅拌后得到乳白色的混合溶液,静置12~24h后用离心分离并用甲醇洗涤,干燥后研磨成白色粉末状固体ZIF-8,其中六水合硝酸锌与2-甲基咪唑的质量比为1:(1~5),六水合硝酸锌与甲醇的质量比为1:(20~100)。
按上述方案,所述铂的前驱体溶液中的铂源与负载高分散金属Zn的掺氮MOFs衍生碳基材料质量比为1:(1~10)。
按上述方案,所述铂的前驱体溶液为四氯铂酸钾或氯铂酸钠水溶液,浓度为0.2~2g/L。
按上述方案,所述搅拌时间为6~12h。
按上述方案,所述后处理为通过水离心洗涤,然后50~70℃真空干燥4~8h。
提供一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇在析氢反应中的应用。
本发明以含锌MOF:ZIF-8作为牺牲模板,高温碳化之后衍生成负载锌的氮掺杂碳基微孔材料。由于锌的沸点低(906℃),高温碳化中大部分锌都蒸发掉,载体上仅剩余极少量高分散的锌纳米颗粒。负载的锌纳米颗粒可直接作为还原剂去原位置换铂的前驱体溶液,高分散的锌纳米颗粒有利于在置换反应后形成小尺寸和高分散的铂纳米团簇。并且微孔碳载体富含氮掺杂,可进一步分散金属纳米颗粒和缩小金属纳米颗粒的尺寸。由于原位置换的作用,铂纳米团簇被锚定在载体上面,和载体之间结合更紧密,铂纳米团簇与载体的强相互作用进一步提升了其催化活性和稳定性。
本发明的有益效果:
1.本发明提供的MOFs衍生碳基材料锚定高分散金属Pt纳米团簇,Pt纳米团簇纳米尺寸小,且在MOFs衍生碳基材料中高分散,活性中心高度暴露,在碱性HER中展现出优异的催化性能,在过电位为-70mV时,质量活性为商业Pt/C的6.13倍;Pt纳米团簇与MOFs衍生碳基材料结合紧密,化学稳定性良好。
2.MOFs衍生碳基材料本身具有均匀的微孔结构、比表面积高,有利于催化过程中的物质传输,使催化活性更加优异。
3.本发明巧妙地运用了ZIF-8材料自身的特性,在不需要额外的还原剂和表面活性剂的条件下,直接原位置换,合成了高分散、纳米尺寸小的Pt纳米团簇,平均尺寸仅为1~2nm,在HER中催化性能优异;同时,因为MOFs衍生碳基材料中的锌原位置换金属Pt,铂纳米团簇被锚定在MOFs衍生碳基材料载体上,结合紧密,化学稳定性良好。
附图说明
图1为实施例所制备的Pt@NC透射电镜照片:(a)低分辨透射图,(b)高分辨透射图;
图2为实施例所制备的Pt@NC(a)高角环形暗场像-扫描透射电子显微镜图像,(b~e)a图方框区域所选部分的能谱分布图;
图3为根据图2(a)选取的Pt@NC的Pt纳米颗粒尺寸分布柱状图;
图4为实施例所制备的Pt@NC微孔氮气吸附脱附比表面积测试;
图5(a)为实施例所制备的Pt@NC和商业Pt/C的析氢线性伏安曲线图,图5(b)为根据图5(a)所得催化剂析氢性能对比柱状图;
图6为实施例所制备的Pt@NC和商业Pt/C的计时电压曲线稳定性对比图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和实施例对本发明作进一步详细描述。
实施例
本实施例提供一种MOFs衍生碳基材料锚定的高分散金属Pt纳米团簇的制备方法,包括如下步骤:
1)将4g 2-甲基咪唑和3.36g六水合硝酸锌分别溶入到80ml甲醇溶液中,磁力搅拌30min后在室温下静置24h,然后用甲醇洗涤离心,60℃真空干燥箱中干燥8h得到白色粉末ZIF-8;
2)称取0.5g上述ZIF-8在研钵中研磨10min成细小粉末状,然后在10%氢氩混合气的条件下以5℃/min的升温速率升温至800℃碳化4h,得到黑色粉末,即为负载高分散金属Zn的掺氮MOFs衍生碳基材料。
3)将上述黑色粉末在研钵中研磨10min成细小粉末状,称取50mg到30ml 1.5mM/L四氯铂酸钾中,在30℃油浴锅磁力搅拌下反应10h后用水离心洗涤,在60℃真空干燥箱中干燥6h得到MOFs衍生的氮掺杂多孔碳锚定的Pt纳米团簇(Pt@NC)。
本实施所制备的Pt@NC透射电镜照片如图1所示,由图1a可以看出,本实施例制备的Pt@NC为尺寸为100nm左右的菱形十二面体形貌,由图1b可以测到金属纳米粒子晶格条纹为0.227nm,对应于铂的(111)晶面。
图2为所制备的Pt@NC高角环形暗场像-扫描透射电子显微镜图像,可以观察到Pt@NC颗粒里面有很多金属团簇,根据图3测量计算的金属团簇尺寸的柱状图得知Pt纳米团簇平均尺寸为1.39nm,图2(b~e)为图a的方框所选部分区域元素能谱分布图,可以观察到Pt@NC中丰富的氮掺杂和均匀分散的金属铂。
所制备的Pt@NC微孔氮气吸附脱附比表面积测试如图4所示,根据结果得知Pt@NC有着711m2g-1的高比表面积,由孔径分布图可知Pt@NC富含尺寸为0.63nm左右的微孔结构。
本实施的电催化析氢反应性能测试,包括如下步骤:
(1)电催化剂墨水的制备。首先,用880μl异丙醇、100μl去离子水、20μl 5wt%Nafion溶液和5.5mg所制得的Pt@NC和商业Pt/C混合制备成两份墨水。然后,超声混合催化剂制备的墨水30min,确认得到均匀分散的催化剂墨水。
(2)分别将5μl和15μl超声均匀的墨水溶液滴在两个旋转圆盘电极上,待自然烘干后分别用于线性扫描伏安曲线和循环伏安曲线测试。
(3)电催化析氢反应性能测试。本实验在Autolab PG302N电化学分析仪上进行了电化学测试,所有的电化学性能表征均在三电极体系下完成,以Ag/AgCl电极为参比电极,碳棒为对电极,工作电极是选择圆盘电极。首先,在充入饱和氮气的1mol/L的KOH中测试循环伏安曲线,扫速为100mV/s,待曲线稳定后在扫速为50mV/s下测试线性扫描伏安图。图5a是测试催化剂的线性伏安曲线图,图5(b)是根据图5(a)在固定的电流密度和过电位下比较的催化剂性能。我们可以看出,Pt@NC展现出了比商业Pt/C更加优异的析氢性能,在电流密度为10mAcm-2时Pt@NC的过电位仅为10mV,而商业Pt/C达到了89mV。在过电位为-70mV时,Pt@NC的电流密度为46.5mAcm-2,达到了商业Pt/C的6.13倍。
采用计时电位曲线,在电流密度为10mAcm-2的条件下对比了过电位随时间的变化,如图6中Pt@NC展现出了比商业Pt/C更加优异的稳定性。在24h的测试之后,Pt@NC的过电位仅有轻微的上升,而商业Pt/C过电位有着大幅度的上升。
显然,上述实施例仅仅是为清楚地说明所作的实例,而并非对实施方式的限制。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而因此所引申的显而易见的变化或变动仍处于本发明创造的保护范围之内。

Claims (5)

1.一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇的制备方法,其特征在于,具体步骤为:将负载高分散金属Zn的掺氮MOFs衍生碳基材料溶解于铂的前驱体溶液中,搅拌进行原位置换反应,金属Zn将金属Pt从前驱体溶液中还原出来,反应结束后后处理即得MOFs衍生碳基材料锚定高分散金属Pt纳米团簇,其中所述负载高分散金属Zn的掺氮MOFs衍生碳基材料为ZIF-8碳化后得到的,所述碳化条件为:碳化温度为800~900℃,碳化时间为3~6h。
2.根据权利要求1所述的制备方法,其特征在于,所述ZIF-8的制备为:将六水合硝酸锌和2-甲基咪唑溶解于甲醇中,均匀搅拌后得到乳白色的混合溶液,静置12~24h后用离心分离并用甲醇洗涤,干燥后研磨成白色粉末状固体ZIF-8,其中六水合硝酸锌与2-甲基咪唑的质量比为1:(1~5),六水合硝酸锌与甲醇的质量比为1:(20~100)。
3.根据权利要求1所述的制备方法,其特征在于,所述铂的前驱体溶液中的铂源与负载高分散金属Zn的掺氮MOFs衍生碳基材料质量比为1:(1~10)。
4.根据权利要求1所述的制备方法,其特征在于,所述铂的前驱体溶液为四氯铂酸钾或氯铂酸钠水溶液,浓度为0.2~2g/L。
5.根据权利要求1所述的制备方法,其特征在于,搅拌时间为6~12h。
CN202010396265.3A 2020-05-12 2020-05-12 一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用 Active CN111569928B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010396265.3A CN111569928B (zh) 2020-05-12 2020-05-12 一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010396265.3A CN111569928B (zh) 2020-05-12 2020-05-12 一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111569928A CN111569928A (zh) 2020-08-25
CN111569928B true CN111569928B (zh) 2021-07-20

Family

ID=72120813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010396265.3A Active CN111569928B (zh) 2020-05-12 2020-05-12 一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111569928B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112108146B (zh) * 2020-09-29 2023-08-22 武汉理工大学 一种物相转变的氧化钌及其制备方法、在电解海水制氢中的应用
CN114082435A (zh) * 2021-11-26 2022-02-25 复旦大学 一种单分散金属型催化剂及其通用温和超组装制备方法
CN114134532A (zh) * 2021-11-26 2022-03-04 复旦大学 一种铂单原子析氢电催化剂及其制备方法
CN114318362B (zh) * 2021-12-24 2023-08-29 复旦大学 一种钌纳米团簇析氢电催化剂及其超组装方法
CN114618550A (zh) * 2022-03-01 2022-06-14 西北工业大学 一种贵金属单原子催化剂及制备方法
CN116371442A (zh) * 2023-03-13 2023-07-04 安徽大学 一种类卟啉金属中心氮掺杂碳和金纳米团簇复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106916110A (zh) * 2017-03-10 2017-07-04 国家纳米科学中心 一种负载型贵金属纳米粒子复合材料及其制备方法
US9825308B1 (en) * 2016-07-06 2017-11-21 Uchicago Argonne, Llc Low platinum catalyst and method of preparation
CN107930697A (zh) * 2017-11-18 2018-04-20 桂林电子科技大学 一种用于催化氨硼烷水解制氢的Pt/ZIF‑67复合材料
CN110015650A (zh) * 2019-05-10 2019-07-16 安徽师范大学 高比表面积和高孔容的分级多孔氮掺杂碳材料及其制备方法
CN110918090A (zh) * 2019-11-11 2020-03-27 中国科学院上海硅酸盐研究所 一种非晶Pt纳米催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9825308B1 (en) * 2016-07-06 2017-11-21 Uchicago Argonne, Llc Low platinum catalyst and method of preparation
CN106916110A (zh) * 2017-03-10 2017-07-04 国家纳米科学中心 一种负载型贵金属纳米粒子复合材料及其制备方法
CN107930697A (zh) * 2017-11-18 2018-04-20 桂林电子科技大学 一种用于催化氨硼烷水解制氢的Pt/ZIF‑67复合材料
CN110015650A (zh) * 2019-05-10 2019-07-16 安徽师范大学 高比表面积和高孔容的分级多孔氮掺杂碳材料及其制备方法
CN110918090A (zh) * 2019-11-11 2020-03-27 中国科学院上海硅酸盐研究所 一种非晶Pt纳米催化剂及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chao Wang et.al.Pt Nanoparticles Supported on N‑Doped Porous Carbon Derived from Metal−Organic Frameworks for Oxygen Reduction.《ACS Applied Nano Materials》.2020,第3卷(第6期),5698−5705. *
Pt Nanoparticles Supported on N‑Doped Porous Carbon Derived from Metal−Organic Frameworks for Oxygen Reduction;Chao Wang et.al;《ACS Applied Nano Materials》;20200511;第3卷(第6期);5698-5705 *
以MOFs衍生材料为模板制备单原子Pt催化剂及其加氢性能研究;邹欣伟;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20190115(第12期);28-43 *

Also Published As

Publication number Publication date
CN111569928A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
CN111569928B (zh) 一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用
Hanif et al. ZIF derived PtNiCo/NC cathode catalyst for proton exchange membrane fuel cell
CN109841854A (zh) 一种氮掺杂碳载单原子氧还原催化剂及其制备方法
CN107749483B (zh) 一种用于氢空燃料电池阴极材料的催化剂及其制备方法
CN111001428B (zh) 一种无金属碳基电催化剂及制备方法和应用
CN110993968B (zh) 一种碳气凝胶单金属原子催化剂的制备方法及电催化应用
CN113363514A (zh) 金属空气电池用碳气凝胶负载钴单原子催化剂、制备方法及其应用
CN113437314B (zh) 氮掺杂碳负载低含量钌和Co2P纳米粒子的三功能电催化剂及其制备方法和应用
CN113270597B (zh) 一种C3N4包覆的碳纳米管负载NiFe双功能氧气电催化剂及其制备方法
CN113611881B (zh) 一种原子级分散Fe/氮掺杂介孔碳球及其制备方法和应用
Nishanth et al. Carbon-supported Pt encapsulated Pd nanostructure as methanol-tolerant oxygen reduction electro-catalyst
Li et al. Nano-manufacturing of Co (OH) 2@ NC for efficient oxygen evolution/reduction reactions
CN112820886B (zh) 一种三维分级多孔非金属碳基材料及其制备方法和应用
CN112002915B (zh) 一种氧电极双功能催化剂、制备方法及应用
CN114892202B (zh) 一种MOFs衍生多孔碳电催化剂及其制备方法和应用
CN111129510B (zh) 一种碳材料修饰石墨相氮化碳纳米片负载铂纳米电催化剂的制备方法及其应用
Kasturi et al. Bio-derived carbon as an efficient supporting electrocatalyst for the oxygen reduction reaction
CN111326745A (zh) 一种二维锌单原子/碳氮复合材料及其制备方法和应用
CN114300693A (zh) 一种碳载体活化提高燃料电池碳载铂基催化剂稳定性的方法
CN115704097A (zh) 一种m1m2-载体结构的双原子催化剂的制备方法及用途
Pan et al. Cu–Ni alloy decorating N-doped carbon nanosheets toward high-performance electrocatalysis of mildly acidic CO 2 reduction
CN114497583B (zh) 一种燃料电池用PtRu/CN催化剂的制备方法
Zhang et al. FeZrRu Trimetallic bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
CN112510217B (zh) 一种碳负载铂钇催化剂及其制备方法和应用
Luan et al. Pt-decorated MOF-derived Ni–N–C materials as efficient electrocatalysts for methanol oxidation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant