CN110918090A - 一种非晶Pt纳米催化剂及其制备方法和应用 - Google Patents

一种非晶Pt纳米催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN110918090A
CN110918090A CN201911094660.XA CN201911094660A CN110918090A CN 110918090 A CN110918090 A CN 110918090A CN 201911094660 A CN201911094660 A CN 201911094660A CN 110918090 A CN110918090 A CN 110918090A
Authority
CN
China
Prior art keywords
amorphous
ion precursor
nano catalyst
preparation
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911094660.XA
Other languages
English (en)
Inventor
崔香枝
施剑林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201911094660.XA priority Critical patent/CN110918090A/zh
Publication of CN110918090A publication Critical patent/CN110918090A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种非晶Pt纳米催化剂及其制备方法和应用,所述非晶Pt纳米催化剂的制备方法包括:在Pt离子前驱体水溶液中加入含碳有机物,在25~40℃下反应10~16小时,使得Pt离子前驱体中Pt离子被还原的同时形成非晶态结构,得到非晶Pt纳米催化剂;所述含碳有机物选自吡咯、聚吡咯中的至少一种。

Description

一种非晶Pt纳米催化剂及其制备方法和应用
技术领域
本发明涉及一种非晶Pt纳米催化剂及其制备方法和应用,属于无机纳米材料技术领域。
背景技术
贵金属Pt在电解水产氢(HER)以及燃料电池电极催化等反应中表现出优越的催化活性,然而其高昂的价格和有限的储备使其推广应用较困难,如何有效利用Pt催化剂,充分发挥其催化活性优势尤为重要。非晶Pt是一种亚稳态结构材料,晶格呈现短程有序、长程无序的特点,由于原子间的相互关联作用,使其在小于几个原子间距的小区间内(1-1.5nm),仍然保持其形貌和组分的物质。非晶Pt材料的特点是其表面含有许多配位高度不饱和的原子,具有高的表面活性中心密度;特别是,非晶态Pt的局部原子结构、氧化状态以及化学组成在静止和催化过程中具有明显的差异,会在催化反应过程中形成活性体,因而表现出明显优于晶态Pt材料的催化活性和选择性。
然而,非晶态Pt的制备方法较为苛刻,传统采用快速凝固技术或近快速凝固技术制备非晶材料,该类方法需要首先将金属或金属前体材料高温熔融然后快速冷却,使金属原子呈现液体状态,来不及排列而呈现混乱状态,形成非晶结构。该制备方法,对仪器要求较高,实验条件苛刻。
发明内容
针对上述问题,本发明的目的在于提供一种温和条件下制备非晶Pt纳米催化剂的方法,在Pt离子前驱体水溶液中加入含碳有机物,在25~40℃下反应10~16小时,使得Pt离子前驱体中Pt离子被还原的同时形成非晶态结构,得到非晶Pt纳米催化剂;所述含碳有机物选自吡咯、聚吡咯中的至少一种。
在本公开中,在Pt离子前驱体水溶液中加入具有还原性的含碳有机物(如吡咯、聚吡咯等),同时通过含碳有机物与Pt的络合作用,形成Pt结晶过程中的能垒障碍,从而使得Pt在25~40℃下被还原的同时形成非晶状态,得到非晶Pt纳米催化剂材料。该方法中,含碳有机物(例如,吡咯、聚吡)咯具有还原性,同时易聚合生成碳基体或本身作为导电碳基体;当加入Pt离子前驱液中时,Pt基离子被含碳有机物如吡咯、聚吡咯中的N官能团捕获并被还原,同时吡咯单体聚合生成聚吡咯有机大分子的形成成为Pt晶粒长大的空间障碍,增大了Pt物种结晶长大的势垒,使得Pt以原子簇的形式分散在聚吡咯碳基体上,形成非晶Pt的原子簇。
较佳的,所述Pt离子前驱体选自氯铂酸、硝酸铂、氯铂酸钾和氯铂酸钠中的至少一种。
较佳的,所述Pt离子前驱体和含碳有机物(吡咯、聚吡咯)的用量摩尔比为1:3~1:9。
较佳的,所述Pt离子前驱体水溶液的制备方法包括:将1~10ml质量浓度为1~5wt%的Pt离子前驱体水溶液溶于20~80ml的水中进行稀释后得到。
较佳的,在反应过程中,进行磁力搅拌;所述磁力搅拌的转速为300~500转/分钟。
另一方面,本发明提供了一种根据上述的制备方法制备的非晶Pt纳米催化剂,所述非晶Pt纳米催化剂为非晶状态,形貌为颗粒片状,颗粒尺寸为20~100nm。
再一方面,本发明提供了一种上述非晶Pt纳米催化剂在电解水产氢中的应用。
该非晶Pt纳米催化剂(非晶态的Pt纳米材料、或非晶Pt),因其局部原子结构和化学组成在静止和HER催化过程中具有明显的差异,会在HER催化反应过程中形成活性体,表现出明显优于晶态Pt材料的HER催化活性和稳定性。同时,该非晶态Pt表面含有许多配位高度不饱和的原子,具有高的表面活性中心密度,在低使用量时表现出优良的HER电催化活性和稳定性,降低催化剂成本,具有较高的经济效益。
有益效果:
(1)本发明利用含碳有机物(例如,吡咯、聚吡咯)与Pt离子前驱体的络合作用,以及含碳有机物(例如,吡咯、聚吡咯)的还原性,将Pt离子前驱体还原,并限制Pt的结晶从而形成非晶结构,该方法简单易行,制备条件温和,节省能源;
(2)该方法制备的非晶Pt,相较于晶态Pt颗粒,暴露更多的活性位点,更有利于电解水产氢的催化剂;
(3)本发明的非晶Pt的HER活性高、稳定性好。
附图说明
图1为本发明实施例1制备的非晶Pt(2)和和对比例1制备的结晶Pt(1)的XRD图;
图2为本发明制备的非晶Pt的SEM照片,其中A和C为实施例4,B和D为实施例5;
图3为本发明制备的非晶Pt的TEM照片,其中A(标尺100nm)和D(标尺20nm)为实施例1中制备的非晶Pt的TEM照片,D中插图为选取电子衍射图;B(标尺200nm)和E(标尺10nm)为实施例2制备的非晶Pt的TEM照片;C(标尺200nm)和F(标尺5nm)为实施例3中制备的非晶Pt的TEM照片;
图4为本发明对比例2制备的结晶Pt的TEM照片,其中B和C分别为A中框图的放大图;
图5为本发明实施例1中制备的非晶Pt和对比例1中制备的结晶Pt的电解水产氢LSV曲线,其中“1”为非晶Pt-C材料的氢气析出电催化曲线、“2”为300℃热处理形成的结晶Pt-C材料的氢气析出电催化曲线、“3”为非晶Pt-C材料在恒电位-0.09V下运行20小时后的氢气析出电催化曲线(表明析氢电催化稳定性);
图6为本发明对比例3和4中制备材料的电镜图,其中A和B为对比例3中的TEM照片,C和D为对比例4中的TEM照片。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
为了克服现有非晶态材料在制备方法方面的缺陷以充分发挥Pt的活性位点,本发明提供了一种非晶态Pt纳米催化材料及其制备方法和在电解水产氢中的应用。
本发明中,非晶Pt纳米催化剂为非晶态结构,形貌为均匀分散的颗粒片状,颗粒尺寸为20-100nm;电解水产氢催化活性优于晶态的Pt催化剂,并具有良好的HER电催化稳定性,优于结晶态Pt的HER催化活性和稳定性。
在本发明中,选用含碳有机物(例如,吡咯、聚吡咯等)作为还原剂和络合剂,最终实现温和条件下非晶Pt的制备。本方法制备条件温和,易于操作。以下示例性地说明非晶Pt纳米催化剂的制备方法。
制备含有一定Pt离子的Pt离子前驱体水溶液,使Pt离子均匀分散。其中,Pt离子前驱体可为氯铂酸、硝酸铂、氯铂酸钾和氯铂酸钠中的至少一种。具体来说,先将Pt离子前驱体和蒸馏水配制质量浓度为1-3wt%的Pt前驱体液。然后取1-10ml Pt前驱体液,溶于20-80ml的水以进行进一步的稀释,降低Pt离子的浓度,得到Pt离子前驱体水溶液。
在Pt离子前驱体水溶液中加入还原剂,同时Pt离子发生络合,在25~40℃下缓慢反应后,使得Pt离子被还原的同时形成非晶态结构。其中,采用的还原剂和络合剂可为吡咯、聚吡咯。其中,Pt离子前驱体和吡咯的用量比可为1:3~1:9(摩尔比)。作为一个示例,在Pt离子前驱体水溶液中加入还原剂和络合剂后,在室温下磁力搅拌缓慢反应10~16小时,得到非晶Pt纳米催化剂材料。其中,磁力搅拌的转速可为200~400转/分钟。
作为一个非晶Pt纳米催化剂的制备方案,包括如下步骤:
(1)在室温下,将H2PtCl6·6H2O溶解于水,磁力搅拌,制备成质量浓度为1~5wt%的Pt前驱体溶液;
(2)取1~10ml Pt前驱体溶液溶于20~80ml的水,稀释成淡黄色的Pt的透明溶液或溶胶;
(3)在步骤(2)中淡黄色的Pt透明溶液或溶胶中,缓慢滴加摩尔量为3~9倍(优选为0.01-0.03ml)于Pt离子前驱液的络合剂(即,含碳有机物,选自吡咯、聚吡咯等),磁力搅拌形成均匀的混合液;
(4)将步骤(3)制备的混合液,25~40℃下磁力搅拌缓慢反应10-16小时;
(5)将步骤4)所得的悬浊液离心分离多次,随后在冷冻干燥机中干燥,得到非晶Pt纳米材料。按照以上工艺流程制备的非晶Pt纳米材料的特点为:Pt为非晶态结构;电解水产氢催化活性优于晶态的Pt催化剂;该非晶Pt纳米催化剂的HER电催化稳定性良好。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
按照本发明上述技术方案和工艺流程,首先制备Pt的前驱体溶液,取1g的氯铂酸室温下溶于50毫升水,制备质量浓度为2wt%的氯铂酸水溶液,磁力搅拌均匀,形成黄色透明溶液。然后,取2ml该Pt的前驱体溶液,溶于30ml水以稀释成淡黄色的Pt的透明前驱液。取0.02ml的吡咯(摩尔量为Pt离子前驱体的3.8倍),在磁力搅拌下缓慢滴加到上述的Pt的透明前驱液,并在室温(25℃)下继续磁力搅拌(转速为300转/分钟),缓慢反应12小时,形成溶胶悬浊液。将该悬浊液离心分离洗涤多次,随后在冷冻干燥机中干燥,获得具有非晶态结构的Pt纳米材料;
所制备的材料为非晶态,如图1的XRD图谱(黑色线)所示;没有Pt晶粒出现,如TEM照片(图3中A),并且选取电子衍射(图3中D)表现为非晶光环。其在电流密度为10mA/cm2时的HER电催化的过电位为95mV(如图5中的黑色LSV曲线所示);并且,在-0.09V进行恒电位测试20小时后,其HER电催化的过电位为92mV,没有明显降低,反而略有抬升(如图5中的蓝色LSV曲线所示),说明该非晶Pt纳米材料不仅具有良好的HER电催化活性,还具有良好的电催化稳定性。
实施例2
按照实施例1中工艺流程所述,取0.02ml的吡咯缓慢滴加到Pt的透明前驱液,在室温(25℃)下继续磁力搅拌(转速为200转/分钟),缓慢反应10小时形成溶胶悬浊液,其他操作条件同实施例1,获得具有非晶态结构的Pt纳米材料,期形貌为分散均匀的片状(如图3中B所示),并且未发现结晶条纹和结晶晶粒(如图3中高分辨TEM照片E所示)。
实施例3
按照工艺流程所述(同实施例1),取0.02ml的吡咯缓慢滴加到所得的Pt的透明前驱液中,在室温(30℃)下继续磁力搅拌,缓慢反应16小时形成溶胶悬浊液,其他操作条件同实施例1,获得的Pt纳米材料呈现相互连接的片状颗粒,没有明显的团聚和结晶条纹,如图3中TEM照片C以及图3中高分辨率TEM照片F所示。
实施例4
按照工艺流程所述(同实施例1),取1g的氯铂酸溶于20毫升水,制备质量浓度为5wt%的氯铂酸水溶液,磁力搅拌均匀,形成黄色透明溶液。然后,取1ml该Pt的前驱体溶液,溶于50ml水以稀释成淡黄色的Pt的透明前驱液。取0.06ml的吡咯(摩尔量为Pt离子前驱体的9倍),在磁力搅拌下(转速为400转/分钟)缓慢滴加到上述的Pt的透明前驱液,并在40℃下继续磁力搅拌,缓慢反应15小时,形成溶胶悬浊液。其他操作条件同实施例1,获得具有非晶态结构的Pt纳米材料,形貌为分散均匀的颗粒状,颗粒尺寸为100nm,如图2中SEM照片A和C所示。
实施例5
按照工艺流程所述,取1g的氯铂酸溶于30毫升水,制备质量浓度为3.5wt%的氯铂酸水溶液,磁力搅拌均匀,形成黄色透明溶液。然后,取3ml该Pt的前驱体溶液,溶于80ml水以稀释成淡黄色的Pt的透明前驱液。取0.1ml的吡咯(摩尔量为Pt离子前驱体的7倍),在磁力搅拌下缓慢滴加到上述的Pt的透明前驱液,并在室温(25℃)下继续磁力搅拌,缓慢反应13小时,形成溶胶悬浊液。其他操作条件同实施例1,获得Pt纳米材料,其形貌为分散均匀的颗粒状,颗粒尺寸为30nm,如图2中SEM照片B和D所示。
对比例1
按照工艺流程所述(同实施例1),对所得材料进行300℃氩气氛下热处理1小时,其他操作同实施例1,所制备的材料为结晶性的Pt,如图1中的XRD图谱(红色线)所示,其HER电催化活性较实施例1中制备的非晶Pt的差,在电流密度为10mA/cm2时的过电位为104mV(如图5中的红色LSV曲线所示)。
对比例2
按照工艺流程所述(同实施例4),对所得材料进行400℃氩气氛下热处理3小时,其他操作同实施例4,所制备材料中可看出具有明显的结晶条纹,该结晶条纹对于为Pt的晶格间距,所得Pt纳米晶粒的粒径为3-8nm,如图4中的TEM照片以及高分辨TEM照片所示。
对比例3
按照工艺流程所述(同实施例1),取0.02ml的吡咯(摩尔量为Pt离子前驱体的3.8倍)缓慢滴加所得的Pt的透明前驱液,在较高温度60℃下继续磁力搅拌,缓慢反应16小时形成溶胶悬浊液,再经离心和干燥,得到纳米材料中Pt物种呈现粒径为~2nm的纳米晶(如图6中A和B所示),呈弱晶化状态,表明提高反应温度将会促进Pt物种的结晶。
对比例4
首先制备Pt的前驱体溶液,取1g的氯铂酸溶于50毫升水,制备质量浓度为2wt%的氯铂酸水溶液,磁力搅拌均匀,形成黄色透明溶液。然后,取2ml该Pt的前驱体溶液,溶于30ml水以稀释成淡黄色的Pt的透明前驱液。取0.2ml的硼氢化钠(摩尔量为Pt前驱体的3.8倍),在磁力搅拌下缓慢滴加到上述的Pt的透明前驱液,并在室温(25℃)下继续磁力搅拌(转速为300转/分钟),反应12小时,形成悬浊液。将该悬浊液离心分离洗涤多次,随后在冷冻干燥机中干燥,获得纳米材料中Pt物种呈现明显的团聚(如图6中C),并显示结晶条纹(图6中D),Pt物种呈现尺寸较大的结晶颗粒状态。表明以无机盐硼氢化钠为还原剂,还原反应较为剧烈,易导致Pt物种的结晶和Pt晶粒的长大。

Claims (7)

1.一种非晶Pt纳米催化剂的制备方法,其特征在于,在Pt离子前驱体水溶液中加入含碳有机物,在25~40℃下反应10~16小时,使得Pt离子前驱体中Pt离子被还原的同时形成非晶态结构,得到非晶Pt纳米催化剂;所述含碳有机物选自吡咯、聚吡咯中的至少一种。
2.根据权利要求1所述的制备方法,其特征在于,所述Pt离子前驱体选自氯铂酸、硝酸铂、氯铂酸钾和氯铂酸钠中的至少一种。
3.根据权利要求1或2所述的制备方法,其特征在于,所述Pt离子前驱体和含碳有机物的用量摩尔比为1:3~1:9。
4.根据权利要求1-3中任一项所述的制备方法,其特征在于,所述Pt离子前驱体水溶液的制备方法包括:将1~10ml质量浓度为1~5wt%的Pt离子前驱体水溶液溶于20~80ml的水中进行稀释后得到。
5.根据权利要求1-4中任一项所述的制备方法,其特征在于,在反应过程中,进行磁力搅拌;所述磁力搅拌的转速为200~400转/分钟。
6.一种根据权利要求1-5中任一项所述的制备方法制备的非晶Pt纳米催化剂,其特征在于,所述非晶Pt纳米催化剂为非晶状态,形貌为颗粒片状,颗粒尺寸为20~100 nm。
7.一种权利要求6所述的非晶Pt纳米催化剂在电解水产氢中的应用。
CN201911094660.XA 2019-11-11 2019-11-11 一种非晶Pt纳米催化剂及其制备方法和应用 Pending CN110918090A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911094660.XA CN110918090A (zh) 2019-11-11 2019-11-11 一种非晶Pt纳米催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911094660.XA CN110918090A (zh) 2019-11-11 2019-11-11 一种非晶Pt纳米催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110918090A true CN110918090A (zh) 2020-03-27

Family

ID=69853743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911094660.XA Pending CN110918090A (zh) 2019-11-11 2019-11-11 一种非晶Pt纳米催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110918090A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569928A (zh) * 2020-05-12 2020-08-25 武汉理工大学 一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101020145A (zh) * 2007-03-02 2007-08-22 厦门大学 一种纳米级铂/聚吡咯复合材料的简易制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101020145A (zh) * 2007-03-02 2007-08-22 厦门大学 一种纳米级铂/聚吡咯复合材料的简易制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIMING ZENG ET AL.: "A facile strategy for ultrasmall Pt NPs being partiallyembedded in N-doped carbon nanosheet structure for efficient electrocatalysis", 《SCIENCE CHINA MATERIALS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569928A (zh) * 2020-05-12 2020-08-25 武汉理工大学 一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用
CN111569928B (zh) * 2020-05-12 2021-07-20 武汉理工大学 一种MOFs衍生碳基材料锚定高分散金属Pt纳米团簇及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106876728B (zh) 高密度过渡金属单原子负载石墨烯基催化剂及其制备方法
Han et al. Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution
CN108837838B (zh) 一种超小碳化钒嵌入碳纳米管材料、制备方法及其在水裂解产氢方面的应用
CN111584889B (zh) 一种含锌单原子催化剂及其制备方法与应用
Sun et al. Fe/IRMOF-3 derived porous carbons as non-precious metal electrocatalysts with high activity and stability towards oxygen reduction reaction
Yang et al. Core-shell CdSe@ Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect
Alekseenko et al. Application of CO atmosphere in the liquid phase synthesis as a universal way to control the microstructure and electrochemical performance of Pt/C electrocatalysts
EP1758678A1 (en) Platinum catalysts obtained by reducing in-situ formed platinum dioxide
CN108745373A (zh) 一种贵金属合金/碳材料负载型催化剂的制备方法
CN110578069B (zh) 一种金属及合金纳米晶的制备方法
CN111054418B (zh) 一种析氧/析氢二维一氧化钴@二硒化钴@氮掺杂碳纳米管/石墨烯双功能复合催化剂
CN113151856B (zh) 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用
CN110292939B (zh) 一种双碳限域的铱纳米团簇及其制备方法和应用
JP2007123195A (ja) 触媒の製造方法
CN111437864A (zh) 一种高分散Cu/NC纳米簇催化剂及其制备方法
Sun et al. Controllable fabrication of platinum nanospheres with a polyoxometalate-assisted process
CN110918090A (zh) 一种非晶Pt纳米催化剂及其制备方法和应用
KR101338534B1 (ko) 연료전지 촉매용 백금-니켈 합금 나노수지상입자
CN116459855A (zh) 一种高负载量的金属单原子催化剂及其制备方法
Wang et al. Graphene oxide-assisted facile synthesis of platinum–tellurium nanocubes with enhanced catalytic activity for formic acid electro-oxidation
CN110787794B (zh) 一种碳负载贵金属纳米颗粒复合材料及其制备方法和应用
WO2011123067A1 (en) Nanocomposites
CN116422342B (zh) 一种多原子掺杂的表面富铂的催化剂及其制备方法
Fu et al. A simple and controlled synthesis of net-like Pd nanostructure and their electrocatalytic properties toward the oxidization of formic acid
CN114588915B (zh) 一种担载型铂基催化剂及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200327

WD01 Invention patent application deemed withdrawn after publication