CN111560583B - 一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法 - Google Patents

一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法 Download PDF

Info

Publication number
CN111560583B
CN111560583B CN202010369584.5A CN202010369584A CN111560583B CN 111560583 B CN111560583 B CN 111560583B CN 202010369584 A CN202010369584 A CN 202010369584A CN 111560583 B CN111560583 B CN 111560583B
Authority
CN
China
Prior art keywords
film
substrate film
antimony selenide
molecular chain
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010369584.5A
Other languages
English (en)
Other versions
CN111560583A (zh
Inventor
曹宇
周静
张鑫童
孟丹
唐喆庆
蒋家豪
刘超颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202010369584.5A priority Critical patent/CN111560583B/zh
Publication of CN111560583A publication Critical patent/CN111560583A/zh
Application granted granted Critical
Publication of CN111560583B publication Critical patent/CN111560583B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明是一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法,包括衬底薄膜,其特点是,还包括掺杂剂,在衬底薄膜与掺杂剂制备出掺杂的衬底薄膜之后,使得(Sb4Se6)n分子链能够与衬底薄膜形成共价键,(Sb4Se6)n分子链沿着垂直于衬底薄膜方向的纵向生长,最终诱导出纵向择优的硒化锑光电薄膜。通过对衬底薄膜掺杂能够有效提高制品的电学特性,使得衬底薄膜和硒化锑薄膜的特性同步提高,最终使得硒化锑光电器件的载流子传输性能有效提升,光电性能显著提高。具有方法科学合理,制备流程简单实用,适于产业化生产,成本低,应用价值高等优点。

Description

一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备 方法
技术领域
本发明属于光电薄膜材料及器件制备领域,是一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法。
背景技术
硒化锑是一种很有潜力的光电材料,它不仅具有较窄的禁带宽度1 ~ 1 .2eV,能够有效吸收波长小于1100nm的太阳光谱,还具有较高吸收系数,非常适宜作为太阳电池和可见光-近红外光探测器的光吸收层。硒化锑是一种一维链状结构,其中一维(Sb4Se6)n分子链以范德华力结合在一起,载流子沿(Sb4Se6)n分子链的迁移能力远远大于链间的传输速率,因此保证硒化锑光电薄膜的纵向生长是高性能太阳电池和光电探测器的关键。现有技术一般通过对硒化锑制备条件的调控以获得纵向生长的(Sb4Se6)n分子链,但这种方法工艺窗口较窄,不适用于产业化生产。
发明内容
针对现有技术存在的不足,以及对硒化锑光电器件性能提高的需求,本发明的目的是,提供一种科学合理,制备流程简单实用,适于产业化生产,成本低,且能够明显提高制备成品电学特性的诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法。
本发明的目的是通过以下技术方案来实现的:一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法,它包括衬底薄膜,其特征是,还包括掺杂剂,在衬底薄膜与掺杂剂制备出掺杂的衬底薄膜之后,使得(Sb4Se6)n分子链能够与衬底薄膜形成共价键,(Sb4Se6)n分子链沿着垂直于衬底薄膜方向的纵向生长,最终诱导出纵向择优的硒化锑光电薄膜。
采用一步法制备硒化锑光电薄膜:将掺杂剂直接掺入衬底薄膜之中,掺杂剂为化合物CdCl2、SnCl3和ZnCl2中至少一种,或者单质元素Cd、Zn和B中至少一种,掺杂浓度为0.01%-20%制备得到所述掺杂的衬底薄膜;应用制备得到所述掺杂的衬底薄膜,采用热蒸发法,真空度为0.1-10 Pa,衬底薄膜温度为200-400℃,蒸发源温度为400-600℃;蒸发时间为30-120s,制备得到(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜。
采用二步法制备硒化锑光电薄膜:将掺杂剂旋涂在衬底薄膜表面,所述掺杂剂为化合物CdCl2、SnCl3和ZnCl2中的至少一种,或者单质元素如Cd、Zn和B中的至少一种,掺杂浓度为0.01%-20%,通过退火处理完成掺杂过程形成掺杂的衬底薄膜,退火温度为300-600℃,退火时间为2-100 min;应用制备得到所述掺杂的衬底薄膜,采用热蒸发法,真空度为0.1-10Pa;衬底薄膜温度为200-400℃,蒸发源温度为400-600℃,蒸发时间为30-120s,制备得到(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜。
本发明的一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法是利用掺杂技术调节衬底薄膜表面化学键,使硒化锑的(Sb4Se6)n分子链能够与掺杂元素形成共价键,并沿垂直与衬底薄膜表面的方向生长。此外,通过对衬底薄膜掺杂还能够有效提高制品的电学特性,使得衬底薄膜和硒化锑薄膜的特性同步提高,达到一举两得的效果。最终使得硒化锑光电器件的载流子传输性能有效提升,光电性能显著提高。本发明的方法科学合理,制备流程简单实用,适于产业化生产,成本低,具有较高的应用价值。
附图说明
图1是不同掺杂衬底薄膜上生长硒化锑光电薄膜的XRD图;
图2是掺杂前与掺杂后SnO2电子传输层的电导率示意图;
图3是掺杂前与掺杂后硒化锑薄膜的XRD图;
图4是未掺杂衬底薄膜上生长硒化锑薄膜的表面形貌示意图;
图5是掺杂衬底薄膜上生长硒化锑薄膜的表面形貌示意图;
图6是衬底薄膜掺杂对硒化锑薄太阳电池性能的影响示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例及附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明的一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法,它包括衬底薄膜,还包括掺杂剂,在衬底薄膜与掺杂剂制备出掺杂的衬底薄膜之后,使得(Sb4Se6)n分子链能够与衬底薄膜形成共价键,形成沿着垂直于衬底薄膜方向的纵向生长,最终诱导出纵向择优的硒化锑光电薄膜。
采用一步法制备硒化锑光电薄膜:将掺杂剂直接掺入衬底薄膜之中,掺杂剂为化合物CdCl2、SnCl3和ZnCl2中至少一种,或者单质元素Cd、Zn和B中至少一种,掺杂浓度为0.01%-20%制备得到所述掺杂的衬底薄膜;应用制备得到所述掺杂的衬底薄膜,采用热蒸发法,真空度为0.1-10Pa,衬底薄膜温度为200-400℃,蒸发源温度为400-600℃;蒸发时间为30-120s,制备得到(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜。
采用二步法制备硒化锑光电薄膜:将掺杂剂旋涂在衬底薄膜表面,所述掺杂剂为化合物CdCl2、SnCl3和ZnCl2中的至少一种,或者单质元素如Cd、Zn和B中的至少一种,掺杂浓度为0.01%-20%,通过退火处理完成掺杂过程形成掺杂的衬底薄膜,退火温度为300-600℃,退火时间为2-100min;应用制备得到所述掺杂的衬底薄膜,采用热蒸发法,真空度为0.1-10Pa;衬底薄膜温度为200-400℃,蒸发源温度为400-600℃,蒸发时间为30-120s,制备得到(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜。
所述的衬底薄膜是电子传输层和空穴传输层,电子传输层为ZnO、TiO2、SnO2、Sb2O3和CdS中至少一种;空穴传输层为NiO、CuO、聚乙撑二氧噻吩-聚(苯乙烯磺酸盐) (PEDOT:PSS)、聚-3 已基噻吩(P3HT)和硫氰酸亚铜(CuSCN)中至少一种;
所述的一步法是指在衬底薄膜的制备过程中进行掺杂,采用的方法可以为低压化学气相沉积技术、热蒸发技术、磁控溅射技术、超声喷雾技术或旋涂技术。
所述的二步法是指在制备衬底薄膜的以后通过后处理进行掺杂,采用的方法可以为超声喷雾技术或旋涂技术,然后通过退火处理完成掺杂过程。
制备得到(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜可制作硒化锑光电器件,例如:太阳电池或光电探测器。
硒化锑光电器件结构可以为玻璃/透明导电膜/电子传输层/硒化锑/空穴传输层/金属电极、玻璃/透明导电膜/空穴传输层/硒化锑/电子传输层/金属电极、玻璃/透明导电膜/硒化锑/电子传输层/金属电极、玻璃/透明导电膜/硒化锑/空穴传输层/金属电极。
实施例1:采用一步法制备硒化锑光电薄膜:
(1)通过低压化学气相沉积技术在制备氧化锌薄膜,其中二乙基锌和水的流量分别为300sccm 和 350sccm,采用氢气稀释的硼烷(B2H6)做掺杂源,流量为150sccm,沉积温度为200℃,沉积压力为150 Pa,沉积时间为800s,形成氧化锌掺硼(BZO)衬底薄膜;
(2)采用快速热蒸发法在BZO衬底薄膜上制备硒化锑薄膜,真空度为5Pa;衬底薄膜温度为300℃;蒸发源温度为450℃;蒸发时间为90s,制备厚度为1000 nm的硒化锑光吸收层;
(3)在硒化锑层之上,采用2500rpm,持续时间60s,旋涂PEDOT:PSS薄膜以制备空穴传输层;
(4)在空穴传输层之上通过刮涂制备碳电极,获得了肖特基结硒化锑薄膜太阳电池;
(5)将在BZO衬底薄膜之上生长的硒化锑薄膜与市售的氧化铟锡(ITO)衬底薄膜和二氧化锡掺氟(FTO)衬底薄膜上生长硒化锑薄膜的生长取向进行对比,结果如图1所示。ITO衬底薄膜上生长的硒化锑薄膜以(141)和(061)等横向择优峰为主,说明(Sb4Se6)n分子链是以横向生长为主;而FTO上生长的硒化锑薄膜以(211)和(221)等纵向择优峰为主,说明(Sb4Se6)n分子链纵向生长的比例增加。而BZO衬底薄膜上生长的硒化锑薄膜显示单(002)择优取向,表明(Sb4Se6)n分子链都是垂直于衬底薄膜生长,这时硒化锑薄膜具有最高的纵向载流子迁移能力。以上实例说明通过掺杂能够有效调节硒化锑薄膜(Sb4Se6)n分子链的生长取向,采用掺杂BZO衬底薄膜能够有效诱导出单(002)择优峰的硒化锑薄膜。
采用低压化学气相沉积技术、热蒸发技术、磁控溅射技术、超声喷雾技术或旋涂技术均可以通过一步法制备掺杂的衬底薄膜,并在此基础上制备出(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜。
实施例2:采用两步法制备硒化锑光电薄膜:
(1)将FTO导电玻璃依次用洗涤剂、丙酮、异丙醇、乙醇和去离子水浸泡超声各30分钟,然后用氮气吹干;
(2)在FTO导电玻璃上采用旋涂技术,转速为2500rpm,持续时间30s,旋涂商用SnO2纳米颗粒溶液, 之后放在加热台上150℃加热干燥,制备20nm厚SnO2电子传输层作为衬底薄膜;
(3)在SnO2电子传输层上采用旋涂技术,转速为2500 rpm,持续时间60s,旋涂20mg/ml的CdCl2甲醇溶液进行掺杂处理,之后在加热台上400℃退火60min已完成衬底薄膜的掺杂处理;
(4)采用快速热蒸发法制备硒化锑薄膜,真空度为0.1Pa;衬底薄膜温度为200℃;蒸发源温度为400℃;蒸发时间为120s,制备厚度为800 nm的硒化锑光吸收层;
(5)在硒化锑光吸收层上采用旋涂技术,转速为2000rpm,持续时间60s,制备P3HT衬底薄膜作为空穴传输层;
(6)在P3HT空穴传输层之上通过刮涂制备碳电极,获得硒化锑薄膜太阳电池,并对其进行标准太阳光下光电性能测试。
图2为SnO2电子传输层的电导率测试,CdCl2掺杂以后衬底薄膜的导电能力有效提高。图3为掺杂前与掺杂后硒化锑薄膜的XRD图,掺杂前硒化锑薄膜的生长为(Sb4Se6)n分子链纯横向生长模式。掺杂后硒化锑薄膜的横向择优峰基本消失,转而变为(211)、(221)与(002)为主的纵向择优峰,说明掺杂有效的调制了(Sb4Se6)n分子链的纵向生长。图4和图5为掺杂前与掺杂后硒化锑薄膜的SEM图,表面形貌的变化也表明经过处理后硒化锑的生长取向从横向转为纵向,使得硒化锑传输载流子能力增强。通过图6掺杂前与掺杂后的硒化锑太阳电池的电流-电压曲线可以看到,通过(Sb4Se6)n分子链纵向生长的调制,使得硒化锑太阳电池的光电性能得到了显著提高。
实施例3:采用两步法制备硒化锑光电薄膜:
(1)将ITO导电玻璃依次用洗涤剂、丙酮、异丙醇、乙醇和去离子水浸泡超声各30分钟,然后用氮气吹干;
(2)在ITO导电玻璃上应用超声喷雾技术,采用SnCl3溶液进行喷涂,喷液距离为15cm,衬底薄膜温度为400℃,生长时间为20min,制备出厚度为30nm的SnO2电子传输层作为衬底薄膜;
(3)在SnO2电子传输层上采用旋涂技术,转速3000 rpm,持续时间50s,旋涂15 mg/ml的ZnCl2溶液,之后在加热板上进行600℃退火10 min已完成衬底薄膜掺杂处理;
(4)采用快速热蒸发法制备硒化锑薄膜,真空度为10Pa;衬底薄膜温度为400℃;蒸发源温度为600℃;蒸发时间为30s,制备厚度为1200 nm的硒化锑光吸收层;
(5)在硒化锑光吸收层上,通过高真空热蒸发制备金电极,获得硒化锑近红外光电探测器。
以上所述仅是本发明的优选方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应该视为本发明的保护范围。

Claims (3)

1.一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法,它包括衬底薄膜,其特征是,还包括掺杂剂,在衬底薄膜与掺杂剂制备出掺杂的衬底薄膜之后,使得(Sb4Se6)n分子链能够与衬底薄膜形成共价键,形成沿着垂直于衬底薄膜方向的纵向生长,最终诱导出纵向择优的硒化锑光电薄膜,
(1)通过低压化学气相沉积技术在制备氧化锌薄膜,其中二乙基锌和水的流量分别为300sccm 和 350sccm,采用氢气稀释的硼烷(B2H6)做掺杂源,流量为150sccm,沉积温度为200℃,沉积压力为150 Pa,沉积时间为800s,形成氧化锌掺硼(BZO)衬底薄膜;
(2)采用快速热蒸发法在BZO衬底薄膜上制备硒化锑薄膜;真空度为0.1-10Pa,衬底薄膜温度为200-400℃,蒸发源温度为400-600℃,蒸发时间为30-120s;所制备的硒化锑薄膜具有沿单一(002)方向择优生长的特点,表明硒化锑薄膜内部的(Sb4Se6)n分子链形成了沿垂直于衬底薄膜方向的纵向排列结构,最终诱导出强纵向择优的硒化锑光电薄膜。
2.一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法,它包括衬底薄膜,其特征是,还包括掺杂剂,在衬底薄膜与掺杂剂制备出掺杂的衬底薄膜之后,使得(Sb4Se6)n分子链能够与衬底薄膜形成共价键,形成沿着垂直于衬底薄膜方向的纵向生长,最终诱导出纵向择优的硒化锑光电薄膜,
(1)将FTO导电玻璃依次用洗涤剂、丙酮、异丙醇、乙醇和去离子水浸泡超声各30分钟,然后用氮气吹干;
(2)在FTO导电玻璃上采用旋涂技术,转速为2500rpm,持续时间30s,旋涂商用SnO2纳米颗粒溶液, 之后放在加热台上150℃加热干燥,制备20nm厚SnO2电子传输层作为衬底薄膜;
(3)在SnO2电子传输层上采用旋涂技术,转速为2500 rpm,持续时间60s,旋涂20 mg/ml的CdCl2甲醇溶液进行掺杂处理,之后在加热台上400℃退火60min已完成衬底薄膜的掺杂处理;
(4)采用快速热蒸发法制备硒化锑薄膜,真空度为0.1-10Pa,衬底薄膜温度为200-400℃,蒸发源温度为400-600℃,蒸发时间为30-120s;所制备的硒化锑薄膜相比于未掺杂的SnO2电子传输层上制备的硒化锑薄膜,代表(Sb4Se6)n分子链横向生长的(hk0)择优取向得到有效抑制,代表(Sb4Se6)n分子链纵向生长的(002)择优取向得到显著增强,通过衬底掺杂有效的诱导出纵向生长的硒化锑光电薄膜。
3.一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法,它包括衬底薄膜,其特征是,还包括掺杂剂,在衬底薄膜与掺杂剂制备出掺杂的衬底薄膜之后,使得(Sb4Se6)n分子链能够与衬底薄膜形成共价键,形成沿着垂直于衬底薄膜方向的纵向生长,最终诱导出纵向择优的硒化锑光电薄膜,
(1)将ITO导电玻璃依次用洗涤剂、丙酮、异丙醇、乙醇和去离子水浸泡超声各30分钟,然后用氮气吹干;
(2)在ITO导电玻璃上应用超声喷雾技术,采用SnCl3溶液进行喷涂,喷液距离为15cm,衬底薄膜温度为400℃,生长时间为20min,制备出厚度为30nm的SnO2电子传输层作为衬底薄膜;
(3)在SnO2电子传输层上采用旋涂技术,转速3000 rpm,持续时间50s,旋涂15 mg/ml的ZnCl2溶液,之后在加热板上进行600℃退火10 min已完成衬底薄膜掺杂处理;
(4)采用快速热蒸发法制备硒化锑薄膜,真空度为0.1-10Pa,衬底薄膜温度为200-400℃,蒸发源温度为400-600℃,蒸发时间为30-120s;所制备的硒化锑薄膜相比于未掺杂的SnO2电子传输层上制备的硒化锑薄膜,代表(Sb4Se6)n分子链横向生长的(hk0)择优取向得到有效抑制,代表(Sb4Se6)n分子链纵向生长的(002)择优取向得到显著增强,通过衬底掺杂有效的诱导出纵向生长的硒化锑光电薄膜。
CN202010369584.5A 2020-05-05 2020-05-05 一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法 Active CN111560583B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010369584.5A CN111560583B (zh) 2020-05-05 2020-05-05 一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010369584.5A CN111560583B (zh) 2020-05-05 2020-05-05 一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法

Publications (2)

Publication Number Publication Date
CN111560583A CN111560583A (zh) 2020-08-21
CN111560583B true CN111560583B (zh) 2022-08-05

Family

ID=72071933

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010369584.5A Active CN111560583B (zh) 2020-05-05 2020-05-05 一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法

Country Status (1)

Country Link
CN (1) CN111560583B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635593B (zh) * 2020-12-22 2022-05-24 东北电力大学 一种全锑基薄膜太阳电池及其制备方法
CN113013286A (zh) * 2021-01-27 2021-06-22 西北工业大学深圳研究院 高(hk1)晶面丰度的硒化锑薄膜、硒化锑薄膜太阳能电池及其制备方法
CN114164399B (zh) * 2021-11-08 2022-09-20 华中科技大学 一维链状晶体结构硒化锑薄膜及提高其空穴浓度的方法
CN114975655B (zh) * 2022-05-17 2023-12-22 东北电力大学 一种锑基纳米棒阵列异质结的光电探测器及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324863A (zh) * 2013-12-11 2016-02-10 积水化学工业株式会社 薄膜太阳能电池及薄膜太阳能电池的制造方法
CN106129143A (zh) * 2016-07-01 2016-11-16 武汉光电工业技术研究院有限公司 一种高取向性硒化锑薄膜及其制备方法
CN106910797A (zh) * 2017-03-23 2017-06-30 华中科技大学 氧化锌基底诱导取向生长硒化锑薄膜的方法
CN107275441A (zh) * 2017-06-20 2017-10-20 湖南商学院 一种光电探测器的制备方法
CN108123000A (zh) * 2017-12-08 2018-06-05 河北大学 一种纳米棒型硒化锑太阳电池及其制备方法
CN110165020A (zh) * 2019-05-29 2019-08-23 常州大学 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN110534591A (zh) * 2019-08-21 2019-12-03 西北工业大学 一种硒化锑薄膜太阳能电池及制备方法
CN110828602A (zh) * 2019-10-28 2020-02-21 暨南大学 一种硒化锑薄膜太阳电池及其制备方法
CN111020487A (zh) * 2019-11-21 2020-04-17 华中科技大学 一种取向可控的准一维结构材料的薄膜制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846489B2 (en) * 2005-07-22 2010-12-07 State of Oregon acting by and though the State Board of Higher Education on behalf of Oregon State University Method and apparatus for chemical deposition
US20190296168A1 (en) * 2018-03-21 2019-09-26 The Board Of Trustees Of The University Of Alabama Thin film solar cells and methods of making thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105324863A (zh) * 2013-12-11 2016-02-10 积水化学工业株式会社 薄膜太阳能电池及薄膜太阳能电池的制造方法
CN106129143A (zh) * 2016-07-01 2016-11-16 武汉光电工业技术研究院有限公司 一种高取向性硒化锑薄膜及其制备方法
CN106910797A (zh) * 2017-03-23 2017-06-30 华中科技大学 氧化锌基底诱导取向生长硒化锑薄膜的方法
CN107275441A (zh) * 2017-06-20 2017-10-20 湖南商学院 一种光电探测器的制备方法
CN108123000A (zh) * 2017-12-08 2018-06-05 河北大学 一种纳米棒型硒化锑太阳电池及其制备方法
CN110165020A (zh) * 2019-05-29 2019-08-23 常州大学 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN110534591A (zh) * 2019-08-21 2019-12-03 西北工业大学 一种硒化锑薄膜太阳能电池及制备方法
CN110828602A (zh) * 2019-10-28 2020-02-21 暨南大学 一种硒化锑薄膜太阳电池及其制备方法
CN111020487A (zh) * 2019-11-21 2020-04-17 华中科技大学 一种取向可控的准一维结构材料的薄膜制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Liang Wang et al..Stable 6%-efficient Sb2Se3 solar cells with a ZnO.《NATURE ENERGY》.2017,第2卷第1-9页. *
Preparation and characterization of belt-like Sb2Se3 crystals;Qiaofeng Han et al.;《Materials Letters》;20071113;第62卷;第2050-2052页 *
Self‐Oriented Sb2Se3 Nanoneedle Photocathodes for Water;Jimin Kim et al.;《Journal of Materials Chemistry A》;20131231;第1-8页 *
硒化锑薄膜太阳电池的模拟与结构优化研究;曹宇等;《物理学报》;20181129;第67卷(第24期);第1-8页 *
硒化锑薄膜太阳能电池:N型缓冲层和背场研究;第10期;《中国优秀博硕士学位论文全文数据库(博士)工程科技Ⅱ辑》;20181015;第C042-72页 *

Also Published As

Publication number Publication date
CN111560583A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
CN111560583B (zh) 一种诱导(Sb4Se6)n分子链纵向生长的硒化锑光电薄膜制备方法
Pang et al. Boosting performance of perovskite solar cells with Graphene quantum dots decorated SnO2 electron transport layers
Park et al. Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics
Zhou et al. Dual-function of CdCl2 treated SnO2 in Sb2Se3 solar cells
CN105024013A (zh) 一种新型的低温溶液法制备的高效率长寿命的平面异质结钙钛矿太阳能电池
US8962378B2 (en) Photodiode and method for making the same
CN105470400A (zh) 一种钙钛矿膜的制备方法和应用
CN115117247B (zh) 一种钙钛矿太阳能电池及其制备方法
Im et al. Near-infrared responsive PbS-sensitized photovoltaic photodetectors fabricated by the spin-assisted successive ionic layer adsorption and reaction method
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
CN109360892B (zh) 一种宽光谱探测器件及其制备方法
CN109935652B (zh) 一种CdTe纳米晶太阳电池及其制备方法
Chakaroun et al. ITO/Au/ITO multilayer electrodes for CuPc/C60 solar cells
CN111540791A (zh) 太阳电池及其制作方法
CN116847670A (zh) 一种钝化复合空穴传输层的钙钛矿太阳能电池
KR102467983B1 (ko) 고투과도 비정형 산화물 상부 전극을 갖는 반투명 페로브스카이트 태양전지 및 이의 제조 방법
KR101655012B1 (ko) 이테르븀층과 버퍼층을 구비하는 스마트 윈도우용 투명 유기 태양전지
CN108428753B (zh) 半透明薄膜太阳电池及其制备方法
CN110690351A (zh) 一种制造钙钛矿太阳能电池的方法
CN116171053A (zh) 一种全钙钛矿叠层太阳能电池及其制备方法
CN111162178A (zh) 一种具有复合钙钛矿吸光层的钙钛矿太阳能电池
Thangavel et al. Light sensitivity and electrical properties of two-dimensional nanoleaf CuO/ITO thin films
Park et al. Inorganic charge transport materials for high reliable perovskite solar cells
CN111211231A (zh) 一种基于半透明量子点太阳能电池及其制备方法
CN111162180A (zh) 一种大面积钙钛矿太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant