CN111533552B - 一种TiO2基NTC热敏电阻材料及其制备方法 - Google Patents

一种TiO2基NTC热敏电阻材料及其制备方法 Download PDF

Info

Publication number
CN111533552B
CN111533552B CN202010397332.3A CN202010397332A CN111533552B CN 111533552 B CN111533552 B CN 111533552B CN 202010397332 A CN202010397332 A CN 202010397332A CN 111533552 B CN111533552 B CN 111533552B
Authority
CN
China
Prior art keywords
equal
tio
ntc
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010397332.3A
Other languages
English (en)
Other versions
CN111533552A (zh
Inventor
李志成
夏婧怡
张树艳
韩钰
谢昕格
张鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010397332.3A priority Critical patent/CN111533552B/zh
Publication of CN111533552A publication Critical patent/CN111533552A/zh
Application granted granted Critical
Publication of CN111533552B publication Critical patent/CN111533552B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate, hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

本发明提供了一种TiO2基NTC热敏电阻材料及其制备方法,该材料的组分为Ti1‑x‑y‑ zSbxByPzO2,其中0.001≤x≤0.003,0.009≤y≤0.03,0≤z≤0.03。其制备方法包括以下步骤:步骤1:称量、球磨混合及干燥;步骤2:煅烧;步骤3:造粒、压制成型;步骤4:烧结。本发明材料成分简单,原料丰富、无毒,环境友好,性能稳定,使用寿命长;适用于陶瓷、厚膜、薄膜NTC热敏电阻元件的生产;通过调整掺杂元素的含量可以大范围地调节热敏电阻元件的室温电阻值、材料常数与温度系数;原材料价格便宜,制备流程简单,生产成本低,可实现批量化生产。

Description

一种TiO2基NTC热敏电阻材料及其制备方法
技术领域
本发明涉及NTC热敏材料技术,特别涉及一种TiO2基NTC热敏电阻材料及其制备方法。
背景技术
NTC热敏陶瓷材料是电子材料的重要组成部分,对温度测量、温度补偿与控制、抑制浪涌电流等具有关键的作用,该类电子元件在汽车、电子、通讯、输变电工程、空调暖风机工程、低能耗安全型家用电器以及消磁、过流保护、过热保护、近红外检测、航空航天等领域具有广泛的应用。
目前实际应用的NTC热敏陶瓷主要是由过渡金属氧化物组成的尖晶石结构的锰酸盐系NTC材料。由于Mn、Co在试样烧结中易挥发而难于控制产品质量,同时此类材料在工作过程中,其四面体和八面体中的阳离子可进行缓慢的重新分布而引起结构驰豫,这种驰豫现象造成了NTC热敏电阻电学性能的不稳定和老化。此外,锰酸盐系(化学分子式为AB2O4型)NTC材料的电子导电是尖晶石结构的八面体间隙阳离子即AB2O4型中的B晶格位置的不同价态阳离子之间的电荷跃迁实现的,即所谓的电子跃迁(hopping)导电模型。B晶格位置的过渡金属离子的价态分配受制备工艺、烧结环境工艺的影响,因此,材料的电子电导率、室温电阻和温度系数难于协调控制,因而约束了材料的应用范围。热敏电阻一般是由过渡金属氧化物粉末烧结而成。热敏电阻的材料特性常数B值即受金属氧化物粉末配方的影响,同时也与热敏电阻的电阻率有关。现有技术锰、钴、铜系配方,B值若做到3600~3800K,则电阻率只能做到20~80kΩ·mm,测温范围比较窄,且线性关系有限,稳定性不高。目前,NTC 热敏电阻采用现有的配方和技术只能做到低阻值、低B值,很难实现高阻值、低B值之配方组合。低阻低B,因阻值较小,无法在低、高温段同时使用,因高温时阻值非常小,因NTC特性是随温度升高阻值变小,反之则变大。在高温使用时信号较弱,无法满足特殊客户之要求。
随着电冰箱、空调、微波设备、汽车、通讯与航空航天等产业对NTC热敏电阻器的稳定性要求越来越高,改善现有成分体系或开发新型成分体系就显得十分重要。
TiO2是典型的半导体氧化物,通过元素掺杂能大范围地调节其室温电阻率。TiO2材料研究和应用的领域很多,如中国发明专利CN201110237413.8、 CN201410230962.6涉及光催化降解有机物;中国发明专利CN201611155302.1 涉及光催化抗菌;中国发明专利CN201720789889.5、CN201510974495.2涉及的催化氧化有害气体;中国发明专利CN201611198399.4研究的亲水材料等。但是,TiO2为主要组成成分的材料在NTC热敏电阻方面的应用尚未见报道。通过适当的杂质元素固溶处理可以很好的调节半导体室温电阻率,也有可能调节材料的电阻-温度特性。因此,开发TiO2基NTC热敏电阻材料具有创新性和实际应用价值。
发明内容
本发明提供了一种TiO2基NTC热敏电阻材料及其制备方法,其目的是为了改善传统尖晶石结构NTC材料电学性能不够稳定、易产生性能老化而影响其性能和使用寿命的问题,获得一种基于TiO2简单氧化物的NTC热敏陶瓷材料及其制备工艺技术。
为了达到上述目的,本发明的实施例提供了一种TiO2基NTC热敏电阻材料,包括以下组分:Ti1-x-y-zSbxByPzO2
其中0.001≤x≤0.003,0.009≤y≤0.03,0≤z≤0.03。
本发明的实施例还提供了一种TiO2基NTC热敏电阻材料的制备方法,包括以下步骤:
步骤1:按照Ti1-x-y-zSbxByPzO2,其中0.001≤x≤0.003,0.009≤y≤0.03, 0≤z≤0.03,分别称取TiO2以及含Sb、B、P元素的原料进行球磨混合,干燥,得到干燥粉体;
步骤2:将步骤1得到的干燥粉体进行煅烧;
步骤3:在煅烧后的粉体中加入粘结剂进行造粒,然后压制成型,得到坯体;
步骤4:将坯体进行烧结,温度控制如下:首先升温至700℃,保温60min,然后升温至900℃,保温330min,最后升温至1270℃,保温1h。升温速率为 5℃/min,烧结完成后随炉冷却,即得TiO2基NTC热敏电阻材料。
优选地,所述含Sb、B、P元素的原料为单质或氧化物或无机盐或有机盐。
优选地,所述步骤1中,干燥温度为120℃。
优选地,所述步骤2中,煅烧在空气气氛下进行,升温速度为5℃/min,煅烧温度为800℃,保温5小时。
优选地,所述步骤3中,粘结剂为PVA水溶液,成型压力为6~8MPa。
本发明的上述方案有如下的有益效果:
本发明以二氧化钛为主要成分,通过锑、硼、磷元素掺杂,得到了具有良好NTC效应的高温度敏感性的热敏电阻材料体系,材料成分简单,原材料丰富、无毒,环境友好,且性能稳定,可靠性高;
本发明的材料成分体系中,可以通过改变锑、硼、磷掺杂元素的含量以调节热敏电阻元件的室温电阻率和体现温度敏感特性的材料常数。锑、硼、磷掺杂元素均具有半导化作用、调整热敏电阻元件的室温电阻率,锑、磷元素起到施主掺杂作用,而硼元素为受主掺杂元素。磷、硼元素同时也有助烧剂的作用,能降低烧结温度、提高材料的烧结性,同时磷、硼元素也能调节局部晶格畸变和改善晶界特征,从而起到调节材料的温度敏感性能;
本发明的TiO2基NTC热敏电阻材料可制备成热敏陶瓷元件、薄膜热敏元件及低温共烧叠层热敏元器件,广泛应用于温度测量、温度控制、抑制浪涌、线路补偿和红外探测等领域。
本发明的制备方法所选原材料价格便宜,制备流程简单,生产成本低,可实现批量化生产。
附图说明
图1为本发明TiO2基NTC热敏电阻材料的电阻率随温度变化的特征图。
【附图标记说明】
1-实施例1;2-实施例2;3-实施例3。
具体实施方式
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
实施例1
本发明的实施例提供了一种TiO2基NTC热敏电阻材料的制备方法,包括以下步骤:
步骤1:按化学成分组成为Ti0.9542Sb0.0029B0.0191P0.0238O2进行配料,原料为 TiO2、Sb2O3、H3BO3、NH4H2PO4,用分析天平称取31.9600g的TiO2、0.1772g 的Sb2O3、0.4951g的H3BO3、1.1476g的NH4H2PO4,放入行星球磨机中球磨1 小时,将原料混合均匀,然后在120℃下干燥;
步骤2:将步骤1得到的干燥粉体在空气环境中进行煅烧,升温速率为 5℃/min,煅烧温度为800℃,保温5小时。
步骤3:在煅烧后的粉体中加入PVA水溶液作粘结剂进行造粒,然后压制成直径11mm、厚度2~3mm的圆柱状坯体。
步骤4:将坯体进行烧结,温度控制如下:首先,升温至700℃,保温60min;然后,升温至900℃,保温330min;最后升温至烧结温度1270℃,保温1h。升温速率均为每分钟5℃,烧结完成后随炉冷却,获得TiO2基NTC热敏陶瓷片。
将获得的TiO2基NTC热敏陶瓷片用砂纸磨去两面表层,并两面磨平,涂以银浆并经600℃烧结固化制作欧姆电极,然后进行电阻-温度特性测量,获得热敏电阻元件的室温电阻和电阻随温度变化的数据,
如图1所示,图中1为本实施例制备的TiO2基NTC热敏陶瓷片的电阻率对数-温度倒数的电阻-温度特性,室温电阻为5.47MΩ,材料常数B值为6585K。
实施例2
本发明的实施例提供了一种TiO2基NTC热敏电阻材料的制备方法,包括以下步骤:
步骤1:按化学成分组成为Ti0.9775Sb0.0029B0.0196O2进行配料,原料为TiO2、 Sb2O3、H3BO3,用分析天平称取31.9600g的TiO2、0.1730g的Sb2O3、0.4959g 的H3BO3,放入行星球磨机中球磨1小时,将原料混合均匀,然后在120℃下干燥;
步骤2:将步骤1得到的干燥粉体在空气环境中进行煅烧,升温速率为 5℃/min,煅烧温度为800℃,保温5小时。
步骤3:在煅烧后的粉体中加入PVA水溶液作粘结剂进行造粒,然后压制成直径11mm、厚度2~3mm的圆柱状坯体。
步骤4:将坯体进行烧结,温度控制如下:首先,升温至700℃,保温60min;然后,升温至900℃,保温330min;最后升温至烧结温度1270℃,保温1h。升温速率均为每分钟5℃,烧结完成后随炉冷却,获得TiO2基NTC热敏陶瓷片。
将获得的TiO2基NTC热敏陶瓷片用砂纸磨去两面表层,并两面磨平,涂以银浆并经600℃烧结固化制作欧姆电极,然后进行电阻-温度特性测量,获得热敏电阻元件的室温电阻和电阻随温度变化的数据,
如图1所示,图中2为本实施例制备的TiO2基NTC热敏陶瓷片的电阻率对数-温度倒数的电阻-温度特性室温电阻为2.38MΩ,材料常数B值为6262K。
实施例3
本发明的实施例提供了一种TiO2基NTC热敏电阻材料的制备方法,包括以下步骤:
步骤1:按化学成分组成为Ti0.9461Sb0.0019B0.0237P0.0283O2进行配料,原料为 TiO2、Sb2O3、H3BO3、NH4H2PO4,用分析天平称取31.9600g的TiO2、0.1171g 的Sb2O3、0.6195g的H3BO3、1.3763g的NH4H2PO4,放入行星球磨机中球磨1 小时,将原料混合均匀,然后在120℃下干燥;
步骤2:将步骤1得到的干燥粉体在空气环境中进行煅烧,升温速率为 5℃/min,煅烧温度为800℃,保温5小时。
步骤3:在煅烧后的粉体中加入PVA水溶液作粘结剂进行造粒,然后压制成直径11mm、厚度2~3mm的圆柱状坯体。
步骤4:将坯体进行烧结,温度控制如下:首先,升温至700℃,保温60min;然后,升温至900℃,保温330min;最后升温至烧结温度1270℃,保温1h。升温速率均为每分钟5℃,烧结完成后随炉冷却,获得TiO2基NTC热敏陶瓷片。
将获得的TiO2基NTC热敏陶瓷片用砂纸磨去两面表层,并两面磨平,涂以银浆并经600℃烧结固化制作欧姆电极,然后进行电阻-温度特性测量,获得热敏电阻元件的室温电阻和电阻随温度变化的数据,
如图1所示,图中3为本实施例制备的TiO2基NTC热敏陶瓷片的电阻率对数-温度倒数的电阻-温度特性,室温电阻为1.50MΩ,材料常数B值为5366K。
本发明实施例获得的TiO2基NTC热敏电阻材料主要为四方晶系金红石物相。由于烧结陶瓷中含有硼磷组成的玻璃相,能够在温度服役过程中协调晶粒热膨胀和约束元素扩散,因此,所制备的TiO2基NTC热敏电阻材料电阻性能稳定、可靠性高,且本发明TiO2基NTC热敏电阻材料均呈现典型的NTC特性,且可满足以下参数要求:室温电阻率100kΩ·cm≤ρ25≤100MΩ·cm,材料常数3000K≤B≤7000K。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

1.一种TiO2基NTC热敏电阻材料,其特征在于,包括以下组分:Ti1-x-y-zSbxByPzO2
其中0.001≤x≤0.003,0.009≤y≤0.03,0≤z≤0.03。
2.一种如权利要求1所述的TiO2基NTC热敏电阻材料的制备方法,其特征在于,包括以下步骤:
步骤1:按照Ti1-x-y-zSbxByPzO2,其中0.001≤x≤0.003,0.009≤y≤0.03,0≤z≤0.03,分别称取TiO2以及含Sb、B、P元素的原料进行球磨混合,干燥,得到干燥粉体;
步骤2:将步骤1得到的干燥粉体进行煅烧;
步骤3:在煅烧后的粉体中加入粘结剂进行造粒,然后压制成型,得到坯体;
步骤4:将坯体进行烧结,温度控制如下:首先,升温至700℃,保温60min,然后,升温至900℃,保温330min,最后升温至1270℃,保温1h,升温速率为5℃/min,烧结完成后随炉冷却,即得TiO2基NTC热敏电阻材料。
3.根据权利要求2所述的一种TiO2基NTC热敏电阻材料的制备方法,其特征在于,所述含Sb、B、P元素的原料为单质或氧化物或无机盐或有机盐。
4.根据权利要求3所述的一种TiO2基NTC热敏电阻材料的制备方法,其特征在于,所述步骤1中,干燥温度为120℃。
5.根据权利要求4所述的一种TiO2基NTC热敏电阻材料的制备方法,其特征在于,所述步骤2中,煅烧在空气气氛下进行,升温速度为5℃/min,煅烧温度为800℃,保温5小时。
6.根据权利要求5所述的一种TiO2基NTC热敏电阻材料的制备方法,其特征在于,所述步骤3中,粘结剂为PVA水溶液,成型压力为6~8MPa。
CN202010397332.3A 2020-05-12 2020-05-12 一种TiO2基NTC热敏电阻材料及其制备方法 Active CN111533552B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010397332.3A CN111533552B (zh) 2020-05-12 2020-05-12 一种TiO2基NTC热敏电阻材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010397332.3A CN111533552B (zh) 2020-05-12 2020-05-12 一种TiO2基NTC热敏电阻材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111533552A CN111533552A (zh) 2020-08-14
CN111533552B true CN111533552B (zh) 2021-02-23

Family

ID=71971860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010397332.3A Active CN111533552B (zh) 2020-05-12 2020-05-12 一种TiO2基NTC热敏电阻材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111533552B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993227A (zh) * 2019-12-17 2020-04-10 广西新未来信息产业股份有限公司 一种正温度系数型压敏电阻

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB628491A (en) * 1946-12-10 1949-08-30 Erich Hermann Schaefer Improvements in or relating to the treatment of titanium oxide
JPS5326677B2 (zh) * 1973-09-24 1978-08-03
JP2736919B2 (ja) * 1989-04-11 1998-04-08 工業技術院長 酸化物焼結体
JP3353043B2 (ja) * 1995-03-27 2002-12-03 勉 福田 低次酸化チタンセラミックスの製造方法
CN1304335C (zh) * 2005-06-20 2007-03-14 清华大学 一种低温共烧陶瓷及其制备方法
CN101127266B (zh) * 2007-09-12 2010-06-02 山东中厦电子科技有限公司 高均匀性负温度系数热敏电阻材料及其制备方法
CN103011811B (zh) * 2012-12-07 2013-12-25 华中科技大学 一种高温负温度系数热敏电阻材料的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993227A (zh) * 2019-12-17 2020-04-10 广西新未来信息产业股份有限公司 一种正温度系数型压敏电阻

Also Published As

Publication number Publication date
CN111533552A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
CN107056279B (zh) 单施主掺杂正温度系数热敏陶瓷及其制备方法
CN105967656B (zh) 一种基于氧化镍的新型ntc热敏电阻材料
CN105967655B (zh) 一种锂铁掺杂氧化镍负温度系数热敏电阻材料
CN106866135B (zh) 一种无铅高居里温度BaTiO3基正温度系数热敏陶瓷的制备方法
CN110903087B (zh) 一种低b高阻型宽温区高温热敏电阻材料及其制备方法和应用
CN100527290C (zh) 微波烧结氧化锌压敏电阻的方法
CN108395217B (zh) 一种铌掺杂锰镍基负温度系数热敏电阻及其制备方法
Zhang et al. Effect of Al 2 O 3 addition on the microstructure and electrical properties of LaMnO 3-based NTC thermistors
CN112876232A (zh) 一种高温ntc热敏陶瓷材料及其放电等离子烧结方法
CN108329015B (zh) 一种掺杂改性氧化镍基ntc热敏电阻材料及其制备方法
CN111410529A (zh) 添加CeO2改善PTC加热陶瓷功率老化的方法
CN111620689A (zh) 一种不同a位元素的类钙钛矿型高温热敏电阻材料及其制备方法
CN111533552B (zh) 一种TiO2基NTC热敏电阻材料及其制备方法
CN108546114A (zh) 一种宽温区负温度系数热敏陶瓷材料及其制备方法
CN110423110B (zh) 一种超高非线性ZnO-Bi2O3基压敏陶瓷及其制备方法
Varghese et al. Ni–Mn–Fe–Cr–O negative temperature coefficient thermistor compositions: correlation between processing conditions and electrical characteristics
CN104310984A (zh) 一种热敏陶瓷材料及其制备方法
CN101402522A (zh) 一种新型锡酸钡基导电陶瓷及其制备方法
CN101959829A (zh) 制造半导体陶瓷组成物的工艺以及采用半导体陶瓷组成物的加热器
CN104496467A (zh) 高居里温度bt-bkt体系无铅ptcr陶瓷材料及制备和应用
CN107903042A (zh) 一种ntc热敏电阻的制备方法
CN108585854A (zh) 一种铁掺杂钙钛矿型负温度系数热敏陶瓷材料及其制备
CN112759391A (zh) 一种镱掺杂ntc型高温热敏电阻陶瓷材料及其制备方法和应用
CN108863350B (zh) 一种钛酸铋基钙钛矿相热敏陶瓷复合材料及其制备方法和用途
CN114031394A (zh) 一种改善ptcr热敏陶瓷耐还原性能的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant