CN111517800B - 一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法 - Google Patents

一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法 Download PDF

Info

Publication number
CN111517800B
CN111517800B CN202010313815.0A CN202010313815A CN111517800B CN 111517800 B CN111517800 B CN 111517800B CN 202010313815 A CN202010313815 A CN 202010313815A CN 111517800 B CN111517800 B CN 111517800B
Authority
CN
China
Prior art keywords
zirconium boride
temperature
powder
grinding aid
superfine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010313815.0A
Other languages
English (en)
Other versions
CN111517800A (zh
Inventor
陈本松
胡晨光
黄竹林
胡小晔
李昕扬
李越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN202010313815.0A priority Critical patent/CN111517800B/zh
Publication of CN111517800A publication Critical patent/CN111517800A/zh
Application granted granted Critical
Publication of CN111517800B publication Critical patent/CN111517800B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/6325Organic additives based on organo-metallic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,将乙酸、硼酸、山梨醇混合在一起,并恒温搅拌溶解,得到澄清溶液;将澄清溶液冷却至室温,匀速滴入正丙醇锆,制得硼化锆前驱体溶胶;将硼化锆前驱体溶胶密封,使其充分凝胶化,制得硼化锆前驱体凝胶;将硼化锆前驱体凝胶干燥,并研磨成粉末,然后放入排胶炉中煅烧,制得无机干粉;将无机干粉与助磨剂配成悬浊液,然后倒入砂磨机中进行砂磨,制得超细无机干粉浆料;将超细无机干粉浆料干燥,然后放入高温管式炉中进行高温煅烧,制得高纯超细硼化锆粉体。本发明制备的硼化锆粉体具有较高的纯度、较细的粒径和良好的微观形貌,能够在后续成型过程中增强烧结体的力学性能和烧结驱动力。

Description

一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法
技术领域
本发明涉及硼化锆粉体制备技术领域,尤其涉及一种助磨剂辅助砂磨制备高纯超细(本文所述超细均是指粒度直径为100nm~1000nm)硼化锆粉体的方法。
背景技术
硼化锆(ZrB2)具有高熔点(3245℃)、高热传导率(57.9W·m-1·K-1)、低热膨胀系数(5.9×10-6/℃)以及在极端环境下具有很好的稳定性等特点,因此硼化锆是一种重要的战略性超高温陶瓷材料。硼化锆具有较强的共价性,这使其具备优异的机械性能(如高硬度、高弯曲强度)以及良好的抗热震和抗氧化性能,因此硼化锆陶瓷成为超音速飞机、返回式飞行器、火箭推进器的潜在备选材料。有报道指出:由于硼化锆在等离子弧中具有极好的稳定性,因此硼化锆适用于等离子领域中的高温电极。由于硼化锆具有良好的导电性,因此硼化锆可用作铝电解槽电极。
目前,硼化锆粉体的制备方法主要有碳/碳化硼热还原法、硼热还原法、高温自蔓延法(包括元素直接合成和金属热还原)等。但是这些制备方法一般是在比较苛刻的条件下完成,而且生产周期长,产出的硼化锆粉体的颗粒尺寸、纯度、产量无法满足科研和生产的需要。
发明内容
针对现有技术中的上述不足之处,本发明提供了一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,不仅制备过程简单、反应过程易控制、生产周期短、成本低廉,而且所制备的硼化锆粉体具有较高的纯度、较细的粒径和良好的微观形貌,能够在后续成型过程中增强烧结体的力学性能和烧结驱动力。
本发明的目的是通过以下技术方案实现的:
一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,包括以下步骤:
步骤A、将乙酸、硼酸、山梨醇混合在一起,并恒温搅拌,使硼酸和山梨醇完全溶于乙酸,从而得到澄清溶液;向所述澄清溶液中加入油酸,并冷却至室温,然后匀速滴入正丙醇锆,从而制得硼化锆前驱体溶胶;
步骤B、将步骤A所述硼化锆前驱体溶胶密封,并在恒温条件下放置一定时间,使其充分凝胶化,从而制得硼化锆前驱体凝胶;
步骤C、将步骤B所述硼化锆前驱体凝胶干燥,并研磨成粉末,然后放入排胶炉中煅烧,从而制得无机干粉;
步骤D、将步骤C所述无机干粉与助磨剂混合,配成悬浊液,然后倒入砂磨机中进行砂磨,从而制得超细无机干粉浆料;
步骤E、将步骤D所述超细无机干粉浆料干燥,然后放入高温管式炉中进行高温煅烧,从而制得高纯超细硼化锆粉体。
优选地,在步骤A中,所述油酸的用量为所述澄清溶液总体积的1~20%。
优选地,在步骤A中,正丙醇锆的滴入速率为0.5~10mL/min。
优选地,在步骤B中,将步骤A所述硼化锆前驱体溶胶密封,并在10~90℃的恒温条件下放置4~48h,使其充分凝胶化。
优选地,在步骤C中,所述煅烧是以高纯氩气作为保护气,对所述排胶炉以1~5℃/min的速率从室温升温至400~600℃,保温10~120min,之后以1~5℃/min的速率升温至600~800℃,保温10~120min,再自然冷却至室温。
优选地,在步骤D中,所述助磨剂是满足以下条件的含氯有机物:(1)所述助磨剂为无色透明液体,易挥发;(2)所述助磨剂的黏度为0.2~0.6cP;(3)所述助磨剂不与所述无机干粉反应,且所述无机干粉的任一成分均不溶于所述助磨剂。
优选地,在步骤D中,所述悬浊液中无机干粉的含量至多为20wt%。
优选地,在步骤D中,所述砂磨机工作时保持匀速,并且所述砂磨机的速率为2000~4000r/min,砂磨时长为1~10h。
优选地,在步骤E中,将步骤D所述超细无机干粉浆料在30~120℃下干燥0.5~24h。
优选地,在步骤E中,所述高温煅烧是以高纯氩气作为保护气,对所述高温管式炉以1~5℃/min的速率由室温升温至1000℃,然后以0.5~2℃/min的速率升温至1500~1800℃,并保温10~120min,再以0.5~2℃/min的速率降温至1000℃,之后以1~5℃/min的速率降温至300℃,最后自然降温至室温。
由上述本发明提供的技术方案可以看出,本发明所提供的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法采用溶胶-凝胶法,以硼酸、山梨醇、正丙醇锆为原料在乙酸体系中形成溶胶,凝胶化后充分干燥并研磨成粉末,然后通过煅烧排出其中的有机杂质,并在助磨剂中进行湿法砂磨,再放入高温管式炉中煅烧,从而即可制得高纯超细硼化锆粉体。该硼化锆粉体纯度高、粒径小、微观形貌呈球形颗粒,能够在后续成型过程中增强烧结体的力学性能和烧结驱动力,而且制备过程简单、不需要特殊仪器和药品、反应过程易控制、生产周期短、成本低廉、适合大批量生产,十分适合用作在超高温条件下服役的陶瓷材料。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为X射线衍射分析仪分别对本发明实施例1~3及对比例1、对比例2所制备出的硼化锆粉体进行物质检测,从而得到的XRD图谱。
图2为采用扫描电镜分别对本发明实施例1~3及对比例1所制备出的硼化锆粉体在20k放大倍率下进行形貌检测,从而得到的扫描电镜照片。
图3为采用扫描电镜分别对本发明实施例1~3及对比例1所制备出的硼化锆粉体在60k放大倍率下进行形貌检测,从而得到的扫描电镜照片。
图4为采用扫描电镜分别对本发明实施例1~3及对比例1中所制备出的硼化锆粉体进行形貌检测,从而得到的粒径分布图。
具体实施方式
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
下面对本发明所提供的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法进行详细描述。本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。
一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,包括以下步骤:
步骤A、将乙酸(分析纯)倒入硼酸和山梨醇混合粉末中,并以20~90℃(最好是60℃)进行恒温搅拌(例如:磁力搅拌),使硼酸和山梨醇完全溶于乙酸,从而得到澄清溶液;向所述澄清溶液中加入油酸,并冷却至室温,然后在持续搅拌状态下,以0.5~10mL/min的速率匀速缓慢滴入正丙醇锆,从而制得硼化锆前驱体溶胶。
步骤B、将步骤A所述硼化锆前驱体溶胶密封,并在10~90℃(最好是70℃)的恒温条件下放置4~48h(最好是9h),使其充分凝胶化,从而制得硼化锆前驱体凝胶。
步骤C、将步骤B所述硼化锆前驱体凝胶放入100~150℃(最好是120℃)的恒温干燥箱中,烘干4~24h,烘干至完全干燥,然后研磨成粉末,并放入排胶炉中煅烧,从而制得无机干粉。
步骤D、将步骤C所述无机干粉与助磨剂混合,配成悬浊液,然后倒入砂磨机中进行砂磨,从而制得超细无机干粉浆料。
步骤E、将步骤D所述超细无机干粉浆料放入30~120℃(最好是45℃)的恒温干燥箱中,烘干0.5~24h,烘干至完全干燥,然后放入高温管式炉中进行高温煅烧,从而制得高纯超细硼化锆粉体。
具体地,该助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法可包括以下实施方案:
(1)在步骤A中,所述油酸的用量为所述澄清溶液总体积的1~20%。
(2)在步骤C中,所述研磨成粉末是将干燥后的硼化锆前驱体凝胶进行球磨处理,球磨转速为50~400rpm,球磨时间为0.5~4h,从而使干燥后的硼化锆前驱体凝胶由块状变成粉末。
(3)在步骤C中,所述煅烧是以高纯氩气(Ar≥99.999%)作为保护气,对所述排胶炉以1~5℃/min的速率从室温升温至400~600℃,保温10~120min,之后以1~5℃/min的速率升温至600~800℃,保温10~120min,再自然冷却至室温。这一煅烧过程可以除去硼化锆前驱体凝胶粉末中的有机物,使后续高温煅烧产物更加均匀。
(4)在步骤D中,所述助磨剂是满足以下条件的含氯有机物:①所述助磨剂为无色透明液体,易挥发;②所述助磨剂的黏度为0.2~0.6cP;③所述助磨剂不与所述无机干粉反应,且所述无机干粉的任一成分均不溶于所述助磨剂。在实际应用中,所述助磨剂可以采用二氯甲烷、二氯乙烷、三氯甲烷等。
(5)在步骤D中,所述悬浊液中无机干粉的含量至多为20wt%。
(6)在步骤D中,所述砂磨机工作时保持匀速,并且所述砂磨机的速率为2000~4000r/min,砂磨时长为1~10h。
(7)在步骤E中,所述高温煅烧是以高纯氩气(Ar≥99.999%)作为保护气,对所述高温管式炉以1~5℃/min的速率由室温升温至1000℃,然后以0.5~2℃/min的速率升温至1500~1800℃,并保温10~120min,再以0.5~2℃/min的速率降温至1000℃,之后以1~5℃/min的速率降温至300℃,最后自然降温至室温。这一高温煅烧过程可以使碳热还原反应充分进行,从而得到高纯硼化锆粉体。
进一步地,本发明所提供的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法至少具有以下优点:
(1)本发明提供的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法所制备的高纯超细硼化锆粉体具有较高的纯度,可以直接使用,在XRD图谱中不显示任何杂质峰,无需再进行除杂处理。
(2)本发明提供的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法所制备的高纯超细硼化锆粉体具有超细的粒径和较好的微观形貌,其粒径多在100~200nm,微观形貌为球形颗粒,具有较高的烧结活性。
(3)本发明提供的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法简单易操作,工艺过程易控制。
(4)本发明提供的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法可以大批量生产,十分适合相关陶瓷材料的宏量、低成本、规模化生产制备。
综上可见,本发明实施例不仅制备过程简单、反应过程易控制、生产周期短、成本低廉,而且所制备的硼化锆粉体具有较高的纯度、较细的粒径和良好的微观形貌,能够在后续成型过程中增强烧结体的力学性能和烧结驱动力。
为了更加清晰地展现出本发明所提供的技术方案及所产生的技术效果,下面以具体实施例对本发明提供的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法进行详细描述。
实施例1
一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,可以包括以下步骤:
步骤a1、称取3.875g硼酸和6.875g山梨醇,放入同一烧杯中混合,然后向其中倒入30mL乙酸(分析纯),并利用油浴磁力搅拌器使其逐渐升温至60℃,恒温搅拌,直到硼酸和山梨醇完全溶于乙酸,溶液完全澄清,从而得到澄清溶液。向所述澄清溶液中加入0.6mL油酸,并停止加热,持续搅拌直到冷却至室温,然后在持续搅拌状态下,以0.5~10mL/min的速率匀速缓慢滴入9.375mL正丙醇锆(用时10min),从而制得硼化锆前驱体溶胶。
步骤b1、将所述硼化锆前驱体溶胶密封,并放入恒温箱中,在70℃的恒温条件下放置9h,使其充分凝胶化,从而制得硼化锆前驱体凝胶。
步骤c1、将所述硼化锆前驱体凝胶放入恒温干燥箱中,在120℃下烘干12h,使其完全干燥,从而制得硼化锆前驱体干凝胶。利用行星球磨机将所述硼化锆前驱体干凝胶研磨至粉末状,再装进石墨坩埚中,放入排胶炉内,以高纯氩气(Ar≥99.999%)作为保护气,以5℃/min的速率从室温升温至500℃,保温30min,之后以5℃/min的速率升温至700℃,保温30min,再自然冷却至室温,从而制得无机干粉。
步骤d1、将所述无机干粉与二氯甲烷混合,配成悬浊液,使所述悬浊液中无机干粉的含量为15wt%,并搅拌均匀,然后倒入砂磨机中持续搅拌,使用直径为0.3mm的氧化锆研磨珠,以2500r/min的转速砂磨2h,从而制得超细无机干粉浆料。
步骤e1、将所述超细无机干粉浆料放入恒温干燥箱中,在45℃下烘干8h,使其完全干燥,然后装进石墨坩埚中,放入高温管式炉内,以高纯氩气(Ar≥99.999%)作为保护气,以5℃/min的速率从室温升温至1000℃,然后以2℃/min的速率升温至1550℃,并保温30min,然后以2℃/min的速率降温至1000℃,再以5℃/min的速率降至300℃,最后自然冷却至室温,从而制得高纯超细硼化锆粉体。
实施例2
一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,可以包括以下步骤:
步骤a2、称取3.875g硼酸和6.875g山梨醇,放入同一烧杯中混合,然后向其中倒入30mL乙酸(分析纯),并利用油浴磁力搅拌器使其逐渐升温至60℃,恒温搅拌,直到硼酸和山梨醇完全溶于乙酸,溶液完全澄清,从而得到澄清溶液。向所述澄清溶液中加入0.6mL油酸,并停止加热,持续搅拌直到冷却至室温,然后在持续搅拌状态下,以0.5~10mL/min的速率匀速缓慢滴入9.375mL正丙醇锆(用时10min),从而制得硼化锆前驱体溶胶。
步骤b2、将所述硼化锆前驱体溶胶密封,并放入恒温箱中,在70℃的恒温条件下放置9h,使其充分凝胶化,从而制得硼化锆前驱体凝胶。
步骤c2、将所述硼化锆前驱体凝胶放入恒温干燥箱中,在120℃下烘干12h,使其完全干燥,从而制得硼化锆前驱体干凝胶。利用行星球磨机将所述硼化锆前驱体干凝胶研磨至粉末状,再装进石墨坩埚中,放入排胶炉内,以高纯氩气(Ar≥99.999%)作为保护气,以5℃/min的速率从室温升温至500℃,保温30min,之后以5℃/min的速率升温至700℃,保温30min,再自然冷却至室温,从而制得无机干粉。
步骤d2、将所述无机干粉与二氯甲烷混合,配成悬浊液,使所述悬浊液中无机干粉的含量为7.5wt%,并搅拌均匀,然后倒入砂磨机中持续搅拌,使用直径为0.3mm的氧化锆研磨珠,以2500r/min的转速砂磨2h,从而制得超细无机干粉浆料。
步骤e2、将所述超细无机干粉浆料放入恒温干燥箱中,在45℃下烘干8h,使其完全干燥,然后装进石墨坩埚中,放入高温管式炉内,以高纯氩气(Ar≥99.999%)作为保护气,以5℃/min的速率从室温升温至1000℃,然后以2℃/min的速率升温至1550℃,并保温30min,然后以2℃/min的速率降温至1000℃,再以5℃/min的速率降至300℃,最后自然冷却至室温,从而制得高纯超细硼化锆粉体。
实施例3
一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,可以包括以下步骤:
步骤a3、称取3.875g硼酸和6.875g山梨醇,放入同一烧杯中混合,然后向其中倒入30mL乙酸(分析纯),并利用油浴磁力搅拌器使其逐渐升温至60℃,恒温搅拌,直到硼酸和山梨醇完全溶于乙酸,溶液完全澄清,从而得到澄清溶液。向所述澄清溶液中加入0.6mL油酸,并停止加热,持续搅拌直到冷却至室温,然后在持续搅拌状态下,以0.5~10mL/min的速率匀速缓慢滴入9.375mL正丙醇锆(用时10min),从而制得硼化锆前驱体溶胶。
步骤b3、将所述硼化锆前驱体溶胶密封,并放入恒温箱中,在70℃的恒温条件下放置9h,使其充分凝胶化,从而制得硼化锆前驱体凝胶。
步骤c3、将所述硼化锆前驱体凝胶放入恒温干燥箱中,在120℃下烘干12h,使其完全干燥,从而制得硼化锆前驱体干凝胶。利用行星球磨机将所述硼化锆前驱体干凝胶研磨至粉末状,再装进石墨坩埚中,放入排胶炉内,以高纯氩气(Ar≥99.999%)作为保护气,以5℃/min的速率从室温升温至500℃,保温30min,之后以5℃/min的速率升温至700℃,保温30min,再自然冷却至室温,从而制得无机干粉。
步骤d3、将所述无机干粉与二氯甲烷混合,配成悬浊液,使所述悬浊液中无机干粉的含量为3.75wt%,并搅拌均匀,然后倒入砂磨机中持续搅拌,使用直径为0.3mm的氧化锆研磨珠,以2500r/min的转速砂磨2h,从而制得超细无机干粉浆料。
步骤e3、将所述超细无机干粉浆料放入恒温干燥箱中,在45℃下烘干8h,使其完全干燥,然后装进石墨坩埚中,放入高温管式炉内,以高纯氩气(Ar≥99.999%)作为保护气,以5℃/min的速率从室温升温至1000℃,然后以2℃/min的速率升温至1550℃,并保温30min,然后以2℃/min的速率降温至1000℃,再以5℃/min的速率降至300℃,最后自然冷却至室温,从而制得高纯超细硼化锆粉体。
对比例1
一种制备硼化锆粉体的方法,可以包括以下步骤:
步骤a4、称取3.875g硼酸和6.875g山梨醇,放入同一烧杯中混合,然后向其中倒入30mL乙酸(分析纯),并利用油浴磁力搅拌器使其逐渐升温至60℃,恒温搅拌,直到硼酸和山梨醇完全溶于乙酸,溶液完全澄清,从而得到澄清溶液。向所述澄清溶液中加入0.6mL油酸,并停止加热,持续搅拌直到冷却至室温,然后在持续搅拌状态下,以0.5~10mL/min的速率匀速缓慢滴入9.375mL正丙醇锆(用时10min),从而制得硼化锆前驱体溶胶。
步骤b4、将所述硼化锆前驱体溶胶密封,并放入恒温箱中,在70℃的恒温条件下放置9h,使其充分凝胶化,从而制得硼化锆前驱体凝胶。
步骤c4、将所述硼化锆前驱体凝胶放入恒温干燥箱中,在120℃下烘干12h,使其完全干燥,从而制得硼化锆前驱体干凝胶。利用行星球磨机将所述硼化锆前驱体干凝胶研磨至粉末状,再装进石墨坩埚中,放入排胶炉内,以高纯氩气(Ar≥99.999%)作为保护气,以5℃/min的速率从室温升温至500℃,保温30min,之后以5℃/min的速率升温至700℃,保温30min,再自然冷却至室温,从而制得无机干粉。
步骤d4、将所述无机干粉装进石墨坩埚中,放入高温管式炉内,以高纯氩气(Ar≥99.999%)作为保护气,以5℃/min的速率从室温升温至1000℃,然后以2℃/min的速率升温至1550℃,并保温30min,然后以2℃/min的速率降温至1000℃,再以5℃/min的速率降至300℃,最后自然冷却至室温,从而制得硼化锆粉体。
对比例2
一种制备硼化锆粉体的方法,可以包括以下步骤:
步骤a5、称取3.875g硼酸和6.875g山梨醇,放入同一烧杯中混合,然后向其中倒入30mL乙酸(分析纯),并利用油浴磁力搅拌器使其逐渐升温至60℃,恒温搅拌,直到硼酸和山梨醇完全溶于乙酸,溶液完全澄清,从而得到澄清溶液。向所述澄清溶液中加入0.6mL油酸,并停止加热,持续搅拌直到冷却至室温,然后在持续搅拌状态下,以0.5~10mL/min的速率匀速缓慢滴入9.375mL正丙醇锆(用时10min),从而制得硼化锆前驱体溶胶。
步骤b5、将所述硼化锆前驱体溶胶密封,并放入恒温箱中,在70℃的恒温条件下放置9h,使其充分凝胶化,从而制得硼化锆前驱体凝胶。
步骤c5、将所述硼化锆前驱体凝胶放入恒温干燥箱中,在120℃下烘干12h,使其完全干燥,从而制得硼化锆前驱体干凝胶。利用行星球磨机将所述硼化锆前驱体干凝胶研磨至粉末状,再装进石墨坩埚中,放入排胶炉内,以高纯氩气(Ar≥99.999%)作为保护气,以5℃/min的速率从室温升温至500℃,保温30min,之后以5℃/min的速率升温至700℃,保温30min,再自然冷却至室温,从而制得无机干粉。
步骤d5、将所述无机干粉与水混合,配成悬浊液,使所述悬浊液中无机干粉的含量为15wt%,并搅拌均匀,然后倒入砂磨机中持续搅拌,使用直径为0.3mm的氧化锆研磨珠,以2500r/min的转速砂磨2h,从而制得超细无机干粉浆料。
步骤e5、将所述超细无机干粉浆料放入恒温干燥箱中,在45℃下烘干8h,使其完全干燥,然后装进石墨坩埚中,放入高温管式炉内,以高纯氩气(Ar≥99.999%)作为保护气,以5℃/min的速率从室温升温至1000℃,然后以2℃/min的速率升温至1550℃,并保温30min,然后以2℃/min的速率降温至1000℃,再以5℃/min的速率降至300℃,最后自然冷却至室温,从而制得硼化锆粉体。
纯度检测及形貌观察
对本发明实施例1~3及对比例1、对比例2所制得的硼化锆粉体进行纯度检测和形貌观察,从而得到以下结果:
(1)采用X射线衍射分析仪分别对本发明实施例1~3和对比例1、对比例2所制得的硼化锆粉体进行物质检测,从而得到如图1所示的X射线衍射图谱;其中,图1a为本发明实施例1所制得的硼化锆粉体的XRD图谱,图1b为本发明实施例2所制得的硼化锆粉体的XRD图谱,图1c为本发明实施例3所制得的硼化锆粉体的XRD图谱,图1d为对比例1所制得的硼化锆粉体的XRD图谱,图1e为对比例2所制得的硼化锆粉体的XRD图谱。由图1可以看出:本发明实施例1~3和对比例1所制得的硼化锆粉体在XRD图谱上都表现为高纯,无任何杂质峰;而对比例2所制备的硼化锆粉体则含有大量的ZrC和少量的ZrO2杂质。
(2)采用扫描电镜分别对本发明实施例1~3及对比例1所制得的硼化锆粉体进行形貌检测,从而得到如图2和图3所示的扫描电镜照片。其中,图2a为本发明实施例1所制得的硼化锆粉体在放大倍率为20k下的FESEM照片;图2b为本发明实施例2所制得的硼化锆粉体在放大倍率为20k下的FESEM照片;图2c为本发明实施例3所制得的硼化锆粉体在放大倍率为20k下的FESEM照片;图2d为对比例1所制得的硼化锆粉体在放大倍率为20k下的FESEM照片;图3a为本发明实施例1所制得的硼化锆粉体在放大倍率为60k下的FESEM照片;图3b为本发明实施例2所制得的硼化锆粉体在放大倍率为60k下的FESEM照片;图3c为本发明实施例3所制得的硼化锆粉体在放大倍率为60k下的FESEM照片;图3d为对比例1所制得的硼化锆粉体在放大倍率为60k下的FESEM照片。结合图2和图3可以看出:未进行砂磨的对比例1所制得的硼化锆粉体的微观形貌多呈不均匀、不规则的柱状和块状,而本发明实施例3所制得的硼化锆粉体的微观形貌多呈大块不规则柱状,本发明实施例1所制得的硼化锆粉体的微观形貌多呈小块状,本发明实施例2所制得的硼化锆粉体的微观形貌基本呈均匀的球形颗粒。
(3)采用扫描电镜分别对本发明实施例1~3及对比例1所制得的硼化锆粉体进行形貌检测,从而得到如图4所示的粒径分布图。图4中a为本发明实施例1所制备的硼化锆粉体的粒径大小,b为本发明实施例2所制备的硼化锆粉体的粒径大小,c为本发明实施例3所制备的硼化锆粉体的粒径大小,d为对比例1所制备的硼化锆粉体的粒径大小。由图4可以看出:未进行砂磨的对比例1所制得的硼化锆粉体,其粒径约为1000nm,而本发明实施例1所制得的硼化锆粉体的粒径约为500nm,本发明实施例2所制得的硼化锆粉体的粒径约为300nm,本发明实施例3所制得的硼化锆粉体粒径最佳,约为200nm。
综上可见,本发明实施例不仅制备过程简单、反应过程易控制、生产周期短、成本低廉,而且所制备的硼化锆粉体具有较高的纯度、较细的粒径和良好的微观形貌,能够在后续成型过程中增强烧结体的力学性能和烧结驱动力。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (8)

1.一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,其特征在于,包括以下步骤:
步骤A、将乙酸、硼酸、山梨醇混合在一起,并恒温搅拌,使硼酸和山梨醇完全溶于乙酸,从而得到澄清溶液;向所述澄清溶液中加入油酸,并冷却至室温,然后匀速滴入正丙醇锆,从而制得硼化锆前驱体溶胶;
步骤B、将步骤A所述硼化锆前驱体溶胶密封,并在恒温条件下放置一定时间,使其充分凝胶化,从而制得硼化锆前驱体凝胶;
步骤C、将步骤B所述硼化锆前驱体凝胶干燥,并研磨成粉末,然后放入排胶炉中煅烧,从而制得无机干粉;
步骤D、将步骤C所述无机干粉与助磨剂混合,配成悬浊液,所述悬浊液中无机干粉的含量至多为20wt%,然后倒入砂磨机中进行砂磨,从而制得超细无机干粉浆料;
步骤E、将步骤D所述超细无机干粉浆料干燥,然后放入高温管式炉中进行高温煅烧,从而制得高纯超细硼化锆粉体;
在步骤D中,所述助磨剂是满足以下条件的含氯有机物:
(1)所述助磨剂为无色透明液体,易挥发;
(2)所述助磨剂的黏度为0.2~0.6cP;
(3)所述助磨剂不与所述无机干粉反应,且所述无机干粉的任一成分均不溶于所述助磨剂。
2.根据权利要求1所述的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,其特征在于,在步骤A中,所述油酸的用量为所述澄清溶液总体积的1~20%。
3.根据权利要求1或2所述的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,其特征在于,在步骤A中,正丙醇锆的滴入速率为0.5~10mL/min。
4.根据权利要求1或2所述的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,其特征在于,在步骤B中,将步骤A所述硼化锆前驱体溶胶密封,并在10~90℃的恒温条件下放置4~48h,使其充分凝胶化。
5.根据权利要求1或2所述的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,其特征在于,在步骤C中,所述煅烧是以高纯氩气作为保护气,对所述排胶炉以1~5℃/min的速率从室温升温至400~600℃,保温10~120min,之后以1~5℃/min的速率升温至600~800℃,保温10~120min,再自然冷却至室温。
6.根据权利要求1或2所述的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,其特征在于,在步骤D中,所述砂磨机工作时保持匀速,并且所述砂磨机的速率为2000~4000r/min,砂磨时长为1~10h。
7.根据权利要求1或2所述的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,其特征在于,在步骤E中,将步骤D所述超细无机干粉浆料在30~120℃下干燥0.5~24h。
8.根据权利要求1或2所述的助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法,其特征在于,在步骤E中,所述高温煅烧是以高纯氩气作为保护气,对所述高温管式炉以1~5℃/min的速率由室温升温至1000℃,然后以0.5~2℃/min的速率升温至1500~1800℃,并保温10~120min,再以0.5~2℃/min的速率降温至1000℃,之后以1~5℃/min的速率降温至300℃,最后自然降温至室温。
CN202010313815.0A 2020-04-20 2020-04-20 一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法 Active CN111517800B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010313815.0A CN111517800B (zh) 2020-04-20 2020-04-20 一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010313815.0A CN111517800B (zh) 2020-04-20 2020-04-20 一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法

Publications (2)

Publication Number Publication Date
CN111517800A CN111517800A (zh) 2020-08-11
CN111517800B true CN111517800B (zh) 2022-04-01

Family

ID=71904171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010313815.0A Active CN111517800B (zh) 2020-04-20 2020-04-20 一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法

Country Status (1)

Country Link
CN (1) CN111517800B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113816379B (zh) * 2021-07-27 2022-07-01 中国科学院合肥物质科学研究院 一种纳米硼化铪粉体的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1125211A (zh) * 1995-09-07 1996-06-26 华东理工大学 大块体致密纳米陶瓷材料及其制备方法
DE10219706A1 (de) * 2002-05-02 2003-11-20 Dronco Ag Stoff und Verwendung des Stoffes sowie Verfahren zur Herstellung des Stoffs
DE102006024511A1 (de) * 2006-05-23 2007-11-29 Ruag Ammotec Gmbh Anzündsatz
JP2013014487A (ja) * 2011-07-06 2013-01-24 Miyagawa Kasei Ind Co Ltd 導電性セラミックスの製造方法
CN103992102A (zh) * 2014-05-13 2014-08-20 陕西师范大学 一种采用溶胶凝胶法制备钛酸铜钇巨介电陶瓷材料的方法
CN105753486A (zh) * 2016-05-09 2016-07-13 陈建峰 一种复合二硼化镁超导体的制备方法
CN106115748A (zh) * 2016-06-16 2016-11-16 东升新材料(山东)有限公司 一种湿法制备超细氢氧化镁浆料的方法
CN106699160A (zh) * 2016-12-25 2017-05-24 常州创索新材料科技有限公司 一种锰锌软磁铁氧体材料的制备方法
CN107215851A (zh) * 2016-03-22 2017-09-29 纳琳威纳米科技(上海)有限公司 一种高隔热纳米陶瓷粉体及其制备方法和用途
CN109686965A (zh) * 2018-12-12 2019-04-26 无锡晶石新型能源股份有限公司 一种钛酸锰锂的湿法生产工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1125211A (zh) * 1995-09-07 1996-06-26 华东理工大学 大块体致密纳米陶瓷材料及其制备方法
DE10219706A1 (de) * 2002-05-02 2003-11-20 Dronco Ag Stoff und Verwendung des Stoffes sowie Verfahren zur Herstellung des Stoffs
DE102006024511A1 (de) * 2006-05-23 2007-11-29 Ruag Ammotec Gmbh Anzündsatz
JP2013014487A (ja) * 2011-07-06 2013-01-24 Miyagawa Kasei Ind Co Ltd 導電性セラミックスの製造方法
CN103992102A (zh) * 2014-05-13 2014-08-20 陕西师范大学 一种采用溶胶凝胶法制备钛酸铜钇巨介电陶瓷材料的方法
CN107215851A (zh) * 2016-03-22 2017-09-29 纳琳威纳米科技(上海)有限公司 一种高隔热纳米陶瓷粉体及其制备方法和用途
CN105753486A (zh) * 2016-05-09 2016-07-13 陈建峰 一种复合二硼化镁超导体的制备方法
CN106115748A (zh) * 2016-06-16 2016-11-16 东升新材料(山东)有限公司 一种湿法制备超细氢氧化镁浆料的方法
CN106699160A (zh) * 2016-12-25 2017-05-24 常州创索新材料科技有限公司 一种锰锌软磁铁氧体材料的制备方法
CN109686965A (zh) * 2018-12-12 2019-04-26 无锡晶石新型能源股份有限公司 一种钛酸锰锂的湿法生产工艺

Also Published As

Publication number Publication date
CN111517800A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2017016079A1 (zh) 高纯超细ZrC-SiC复合粉体的合成方法
Cao et al. Preparation and characterization of ultrafine ZrB2–SiC composite powders by a combined sol–gel and microwave boro/carbothermal reduction method
Li et al. High-purity disperse α-Al2O3 nanoparticles synthesized by high-energy ball milling
CN102659149B (zh) 单分散高纯α-Al2O3粉的制备方法
CN113816379B (zh) 一种纳米硼化铪粉体的制备方法
CN112125686A (zh) 一种熔盐隔离制备碳化硅包覆石墨的方法
CN102674381A (zh) 一种利用煤系高岭土制备纳米莫来石粉体的方法
CN111517800B (zh) 一种助磨剂辅助砂磨制备高纯超细硼化锆粉体的方法
Wu et al. Synthesis of tungsten carbide nanopowders by direct carbonization of tungsten oxide and carbon: Effects of tungsten oxide source on phase structure and morphology evolution
Xiao et al. Hydrothermal synthesis of nanoplates assembled hierarchical h-WO3 microspheres and phase evolution in preparing cubic Zr (Y) O2-doped tungsten powders
CN103624269B (zh) 一种纳米钨粉及其采用溶胶凝胶氢还原法制备纳米钨粉的方法
CN111517801B (zh) 一种油酸辅助制备硼化锆粉体的方法
CN111470867B (zh) 一种碳化锆陶瓷空心微球及其制备方法
CN114477200A (zh) 一种制备硼化铪粉体的方法
Shan et al. One-step carbothermal reduction and nitridation (CRN) for fast fabrication of fine and single phase AlON powder by using hydrothermal synthesized α-Al2O3/C mixture
CN108017057B (zh) 锡铟合金包覆硅镁颗粒制备泡沫状硅粉的方法及硅粉
CN107999781B (zh) 锌铋合金包覆镁硅铁颗粒制备硅铁粉的方法及硅铁复合粉
CN105439162B (zh) 一种粗粒径mo2粉体合成细mb2粉体的制备方法
CN108622911B (zh) 一种超细二硼化锆-碳化硅复合粉体及其制备方法
CN103318964B (zh) 一种六方相氧化钨球的制备方法
CN114751752B (zh) 一种高纯TiB2陶瓷纳米片及其制备方法
CN108039485B (zh) 泡沫状硅粉与其制备方法以及应用其的锂离子电池
CN111573688A (zh) 一种溶剂热处理辅助制备超细硼化锆粉体的方法
CN101318639A (zh) 一种介孔有机-无机复合前驱体制备纳米氮化钛的方法
CN108002389A (zh) 锌铋合金包覆硅镁颗粒制备泡沫状硅粉的方法及硅粉

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant