CN111509059A - 多层背电极、光伏薄层太阳能电池和模块及制造方法 - Google Patents

多层背电极、光伏薄层太阳能电池和模块及制造方法 Download PDF

Info

Publication number
CN111509059A
CN111509059A CN202010310061.3A CN202010310061A CN111509059A CN 111509059 A CN111509059 A CN 111509059A CN 202010310061 A CN202010310061 A CN 202010310061A CN 111509059 A CN111509059 A CN 111509059A
Authority
CN
China
Prior art keywords
layer
back electrode
film solar
thin
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010310061.3A
Other languages
English (en)
Inventor
V.普罗布斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nice Solar Energy GmbH
Original Assignee
Nice Solar Energy GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nice Solar Energy GmbH filed Critical Nice Solar Energy GmbH
Publication of CN111509059A publication Critical patent/CN111509059A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

用于光伏薄层太阳能电池的多层背电极,按顺序地包括:至少一个块背电极层;至少一个导电阻挡层;至少一个尤其是欧姆的接触层,包含Mo、W、Ta、Nb,Zr和/或Co或者基本上由Mo、W、Ta、Nb,Zr和/或Co构成,和/或包含至少一种金属硫族化物或基本上由至少一种金属硫族化物构成,和/或包含至少一个与阻挡层相邻的第一覆层,包含Mo、W、Ta、Nb,Zr和/或Co或者基本上由Mo、W、Ta、Nb,Zr和/或Co构成,以及至少一个不与阻挡层相邻的第二覆层,包含至少一种金属硫族化物或基本上由至少一种金属硫族化物构成。还公开了光伏薄层太阳能电池和模块及其制造方法。

Description

多层背电极、光伏薄层太阳能电池和模块及制造方法
技术领域
本发明涉及用于光伏薄层太阳能电池的多层背电极、用于制造薄层太阳能电池和薄层太阳能模块的多层背电极的应用、包含按照本发明多层背电极的光伏薄层太阳能电池和模块以及用于制造光伏薄层太阳能电池和模块的方法。
背景技术
合适的光伏太阳能电池一方面包括晶体的以及无定形的硅太阳能模块并且另一方面包括所谓的薄层太阳能模块。在后者情况下一般利用IB-IIIA-VIA-化合物半导体层、即所谓的黄铜矿-半导体吸收层。在这些薄层太阳能模块中在玻璃衬底上通常施加钼背电极层。在一种方法变型方案中,该钼背电极层设置有铜和铟以及必要时设置有包含镓的先导金属薄层并且接着在提高的温度下在存在硫化氢和/或硒化氢的情况下转化成所谓的CIS或CIGS系统。
为了能够可靠地实现可接受的效率,通常在选择和制造背电极层时就已经要求特别注意。例如,背电极层具有高的横向导电性,以便保证损耗少的串联布线。从衬底和/或半导体吸收层中迁移的物质也应当不对背电极层的质量和功能范围产生影响。此外,背电极层的材料必须具有对衬底以及处于衬底上的层的热伸展特性的良好适应,以避免微裂纹。最后,在衬底表面上的粘附性也应当满足所有常见的使用要求。
虽然可能通过使用特别纯的背电极材料来达到良好的效率,但是伴随而来的是通常不成比例地高的生产成本。此外,前述的迁移或者尤其是扩散现象在通常的生产条件下很少不导致背电极材料的明显污染。
按照DE 44 42 824 C1,应当通过如下方式来实现带有形态良好构造的吸收层和高效率的太阳能电池:黄铜矿-半导体吸收层被选自钠、钾和锂的组中的元素以1014至1016原子/cm2的剂量来掺杂并且同时在衬底和半导体吸收层之间设置扩散阻挡层。代替地,如果应当放弃扩散阻挡层,则建议使用无碱的衬底。
Blösch等人(Thin Solid Films 2011)建议:在使用聚酰亚胺衬底膜时使用由钛、氮化钛和钼构成的层系统,以便获得良好的粘附特性和令人满意的热特性概况。Blösch等人(IEEE,2011,第1卷,第2号,第194至199页)为了使用柔性的薄层太阳能电池还建议使用不锈钢衬底膜,在该不锈钢衬底膜上首先为改善粘附性而施加薄的钛层。利用这种装备有钛/钼/钼三重覆层的CIGS薄层太阳能电池来实现令人满意的结果。也利用WO 2011/123869A2的技术教导来力求改善的薄层太阳能电池。在该文献中公开的太阳能电池包括钠玻璃衬底、钼背电极层、CIGS层、缓冲层、由固有的氧化锌构成的层和由用铝掺杂的氧化锌构成的层。第一分离沟槽在钼层、CIGS层和粉末层上延伸,第二分离沟槽在钼层上方开始。绝缘材料在第一分离沟槽中或上被淀积,并且前电极层被倾斜地淀积到太阳能电池(包括第一分离沟槽)上。通过这种方式应当获得带有改善的光吞吐量的薄层太阳能电池。US 2004/014419A1力求提供一种薄层太阳能电池,其钼背电极层拥有改善的效率。这应当通过如下方式来实现,设置带有由钼构成的背电极层的玻璃衬底,该背电极层的厚度应当不超过500nm。
在Orgassa等人那里(Thin Solid Films,2003,第431-432卷,第1987至1993页)就已经发现,考虑极为不同的金属如钨、钼、铬、钽、铌、钒、钛和锰来作为薄层太阳能电池的合适的背电极材料。
发明内容
因此,本发明所基于的任务是,提供用于薄层太阳能电池或薄层太阳能模块的背电极系统,其不再具有现有技术的缺点并且尤其是以低成本并且可靠的方式可再生产地导致带有高效率的薄层太阳能模块。
因此,找到一种用于光伏薄层太阳能电池或薄层太阳能模块的多层背电极,按顺序地包括:
至少一个块背电极层(Bulk-Rückelektrodenschicht),包含V、Mn、Cr、Mo、Co、Zr、Ta、Nb和/或W或者基本上由V、Mn、Cr、Mo、Co、Zr、Ta、Nb和/或W构成,和/或包含含有V、Mn、Cr、Mo、Co、Zr、Fe、Ni、Al、Ta、Nb和/或W的合金和/或基本上由含有V、Mn、Cr、Mo、Co、Zr、Fe、Ni、Al、Ta、Nb和/或W的合金构成;
至少一个导电阻挡层;
至少一个尤其是欧姆的接触层,
包含Mo、W、Ta、Nb,Zr和/或Co或者基本上由Mo、W、Ta、Nb,Zr和/或Co构成,尤其是包含Mo和/或W或者基本上由Mo和/或W构成,
和/或
包含至少一种金属硫族化物或基本上由至少一种金属硫族化物构成,
和/或
包含至少一个与阻挡层相邻的第一覆层,包含Mo、W、Ta、Nb,Zr和/或Co或者基本上由Mo、W、Ta、Nb,Zr和/或Co构成,尤其是包含Mo和/或W或者基本上由Mo和/或W构成,以及至少一个第二覆层,其不与阻挡层相邻,也即总是通过第一覆层与阻挡层分离,包含至少一种金属硫族化物或基本上由至少一种金属硫族化物构成。
在此,在一种优选的扩展方案中规定,块背电极和接触层包含钼或钨或钼合金或钨合金、尤其是钼或钼合金,或者基本上由钼或钨或钼合金或钨合金构成,尤其是基本上由钼或钼合金构成。
此外可以规定:阻挡层是针对从块背电极层迁移、尤其是扩散或可扩散的成分和/或经过块背电极层迁移、尤其是扩散或可扩散的成分的阻挡,和/或是针对从接触层迁移、尤其是扩散或可扩散的成分和/或经过接触层迁移、尤其是扩散或可扩散的成分的阻挡。该阻挡层因此优选是双向作用的阻挡。在该背景下有利地也规定:阻挡层是针对碱离子、尤其是钠离子、硒或硒化合物、硫或硫化合物、金属、尤其是Cu、In、Ga、Fe、Ni、Ti、Zr、Hf、V、Nb、Ta、Al和/或W、和/或含碱离子例如钠离子的化合物的阻挡。在特别合乎目的的扩展方案中规定:阻挡层包含至少一种金属氮化物尤其是TiN、MoN、TaN、ZrN和/或WN、至少一种金属碳化物、至少一种金属硼化物和/或至少一种金属硅氮化物尤其是TiSiN、TaSiN和/或WSiN或者基本上由至少一种金属氮化物尤其是TiN、MoN、TaN、ZrN和/或WN、至少一种金属碳化物、至少一种金属硼化物和/或至少一种金属硅氮化物尤其是TiSiN、TaSiN和/或WSiN构成。优选地,金属氮化物、金属硅氮化物、金属碳化物和/或金属硼化物的金属是钛、钼、钽或钨。这种金属氮化物在本发明意义上优选作为阻挡材料,例如TiN,在其中该金属关于氮化学计量或过化学计量地、也即用过量的氮被淀积。
作为双向作用的阻挡层,导电的阻挡层是针对从背电极层迁移、尤其是扩散或可扩散的成分(尤其是掺杂剂)和/或经过背电极层迁移、尤其是扩散或可扩散的成分(尤其是掺杂剂)的阻挡,并且是针对从接触层(尤其是由半导体吸收层构成)迁移、尤其是扩散或可扩散的成分(尤其是掺杂剂)和/或经过接触层(尤其是由半导体吸收层构成)迁移、尤其是扩散或可扩散的成分(尤其是掺杂剂)的阻挡。由存在阻挡层的情况决定地,例如可能的是:显著降低块背电极材料的纯度。例如块背电极层可能被至少一种选自由以下元素构成的组的元素:Fe、Ni、Ti、Zr、Hf、V、Nb、Ta、Al、W和/或Na和/或上述元素的化合物所污染,而不会不利地影响具有本发明背电极的薄层太阳能电池或模块的效率。
在使用于薄层太阳能电池和模块中的情况下,使用带有本发明的多层背电极的阻挡层的另外的优点表现在:可以相对于传统系统明显减少半导体吸收层、例如黄铜矿层或硫铜锡锌矿层的厚度。因为通过阻挡层(尤其是在以金属氮化物例如氮化钛形式、或者包含这种金属氮化物或氮化钛的形式存在的情况下),经过半导体吸收层的太阳光被非常有效地反射,使得在双重穿透半导体吸收层的路径上可以实现非常好的量子吞吐量。由于在本发明的背电极中或包含所述背电极的薄层太阳能电池或模块中存在所述的阻挡层,可以将半导体吸收层的平均厚度减小到例如在0.4μm至1.5μm范围中的值,例如减小到0.5μm至1.2μm范围中的值。
在一种特别合乎目的的扩展方案中,本发明的背电极的阻挡层拥有针对掺杂剂尤其是针对用于半导体吸收层和/或来自半导体吸收层的掺杂剂、针对硫族元素如硒和/或硫以及硫族元素化合物、针对半导体吸收层的金属组成部分如Cu、In、Ga、Sn和/或Zn、针对来自块背电极层的污染物如铁和/或镍、和/或针对来自衬底的成分和/或污染物的阻挡特性,尤其是双向阻挡特性。针对来自衬底的掺杂剂的双向阻挡特性一方面应当防止在背电极或接触层与半导体吸收层的界面上积聚碱离子,例如从玻璃衬底扩散出来的碱离子。这种积聚作为进行半导体层溶解的原因而已知。导电的阻挡层因此应当有助于避免粘附问题。另一方面,阻挡特性应当针对能够从半导体吸收体扩散或者从半导体吸收体扩散出来的掺杂剂防止:掺杂剂通过这种方式朝着块背电极失去并且由此使得半导体吸收体的掺杂剂减少,这会明显减少太阳能电池或太阳能模块的效率。因为例如已知的是,钼背电极可以吸收大量的钠掺杂剂。双向的导电阻挡层因此应当实现针对掺杂剂在半导体吸收层中有目的的掺杂的前提条件,以便能够可再生地实现太阳能电池和太阳能模块的高效率。
针对硫族元素的阻挡特性应当防止:硫族元素到达背电极并且在那里形成金属硫族化物化合物。已知地,这些硫族化物化合物(例如MoSe)导致背电极的表面附近层的明显的体积增大,这又带来层结构的不平坦性以及变差的粘附性。块背电极材料的污染物如Fe和Ni是黄铜矿半导体的所谓的深杂质(半导体毒物)并且因此要经由阻挡层保持其远离半导体吸收层。
此外,在一种实施方式中可以规定,接触层的或接触层的第二覆层的金属硫族化物的金属选自钼、钨、钽、锆、钴和/或铌并且金属硫族化物的硫族元素选自硒和/或硫,其中金属硫族化物尤其是MSe2、MS2和/或M(Se1-x,Sx2,M=Mo、W、Ta、Zr、Co或Nb,其中x取0至1的任意值。优选地,金属硫族化物选自MoSe2、WSe2、TaSe2、NbSe2、Mo(Se1-x,Sx2、W(Se1-x,Sx2、Ta(Se1-x,Sx2和/或Nb(Se1-x,Sx2构成的组,其中x取0至1的任意值。
还优选的是,接触层的第一覆层的金属和第二覆层的金属一致和/或接触层的第一覆层的金属和/或第二覆层的金属与块背电极的金属一致。
特别有利的还有如下这种按照本发明的背电极,其中接触层、接触层的第一和/或第二覆层具有至少一种用于薄层太阳能电池的半导体吸收层的掺杂剂,尤其是具有至少一种选自如下组的元素:钠、钾和锂和/或这些元素的至少一种化合物,优选带有氧、硒、硫、硼和/或卤素例如碘或氟,和/或具有至少一种碱金属青铜、尤其是青铜钠和/或青铜钾,优选带有选自钼、钨、钽和/或铌的金属。合适的青铜包括混合氧化物或由混合氧化物和氧化物构成的混合物,例如Na2MoO2+WO。掺杂的接触层例如可以通过施加掺有在金属硫族化物源中的掺杂剂的金属硫族化物来获得。
在本发明意义上优选规定:块背电极层的平均厚度处于50nm至500nm的范围中、尤其是在80nm至250nm的范围中,和/或阻挡层的平均厚度处于10nm至250nm的范围中、尤其是在20nm至150nm的范围中,和/或接触层的平均厚度处于2nm至200nm的范围中、尤其是在5nm至100nm的范围中。从而在此优选应将多层背电极的总厚度设定为使得本发明背电极的总电阻率不超过50微欧姆*cm,优选不超过10微欧姆*cm。在这些规定下,又一次地减小了在串联模块中的欧姆损耗。
在特别合乎目的的扩展方案中规定:块背电极层包含钼和/或钨、尤其是钼,或者基本上由钼和/或钨、尤其是钼构成,导电的阻挡层包含TiN或者基本上由TiN构成,并且尤其是包含(一种或多种)掺杂剂的接触层包含MoSe2或者基本上由MoSe2构成。
被证明为合乎目的的是,在具有背电极的薄层太阳能电池或模块的半导体吸收层中和/或接触层中的掺杂剂(尤其是钠离子)在剂量上处于1013至1017原子/cm2的范围中、优选在剂量上处于1014至1016原子/cm2的范围中。
针对用用于薄层太阳能电池的半导体吸收层的掺杂剂对接触层掺杂的情况,本发明的多层背电极背被证实是可行的。在制造半导体吸收层时,经常使用高于300℃或者高于350℃的温度。通常,这些温度也处于500℃至600℃的范围中。在这种温度情况下,掺杂剂(尤其是例如钠离子或钠化合物)从掺杂的接触层迁移、尤其是扩散到半导体吸收层中。由于阻挡层,不发生到背电极层中的迁移或扩散。
由于在处理半导体时所述的相对较高的温度,有利的是:多层背电极的选择出的层、尤其是块背电极和/或导电的阻挡层被结合在一起,使得其线性热膨胀系数适配于半导体吸收体和/或衬底的线性热膨胀系数。因此,尤其是本发明薄层太阳能电池和薄层太阳能模块的块背电极和/或阻挡层优选被结合在一起,使得线性热膨胀系数不超过14*10-6-K,优选不超过9*10-6-K。
本发明所基于的任务同样通过包含本发明多层背电极的光伏薄层太阳能电池和模块来解决。
在一种优选的扩展方案中,本发明的薄层太阳能电池按顺序地拥有至少一个衬底层、至少一个本发明的背电极层、至少一个导电的阻挡层、至少一个尤其是直接靠置在接触层上的半导体吸收层、尤其是黄铜矿半导体吸收层或硫铜锡锌矿半导体吸收层、以及至少一个前电极。
在此情况下,这种薄层太阳能电池或模块是有利的,在其中在半导体吸收层和前电极之间有至少一个缓冲层(也称第一缓冲层)、尤其是至少一个包含CdS或者基本上由CdS构成的层或者无CdS的层、尤其是包含Zn(S,OH)或In2S3或者基本上由Zn(S,OH)或In2S3构成,和/或至少一个层(也称第二缓冲层),其包含固有的氧化锌和/或高欧姆的氧化锌或者基本上由固有的氧化锌和/或高欧姆的氧化锌构成。
如下这种本发明的薄层太阳能电池也被证实为特别合乎目的:在其中半导体吸收层是或包括四元的IB-IIIA-VIA-黄铜矿层尤其是Cu(In,Ga)Se2层、五元的IB-IIIA-VIA-黄铜矿层尤其是Cu(In,Ga)(Se1-x,Sx)2层或者硫铜锡锌矿层尤其是Cu2ZnSn(Sex,S1-x)4层,其中x取0至1的任意值。硫铜锡锌矿层通常基于IB-IIA-IVA-VIA结构。示例性地有Cu2ZnSnSe4和Cu2ZnSnS4
半导体吸收层的平均厚度通常处于400nm至2500nm的范围中,尤其是处于500nm至1500nm的范围中并且优选处于800nm至1200nm的范围中。
按照本发明的光伏薄层太阳能模块包括至少两个、尤其是大量尤其是单片集成的串联连接的本发明的薄层太阳能电池。例如,在本发明的薄层太阳能模块中有20至150或50至100个串联连接的本发明的薄层太阳能电池。
在一种合适的扩展方案中,本发明的多层背电极的总电阻率应该不超过50微欧姆*cm,优选不超过10微欧姆*cm。通过这种方式应该能够保证尽可能低损耗的、单片集成的串联连接。
本发明所基于的任务此外通过用于制造本发明的光伏薄层太阳能电池或者本发明的光伏薄层太阳能模块的方法解决,包括步骤:
借助物理薄层淀积方法或者借助化学气相淀积来施加块背电极层、阻挡层、接触层、半导体吸收层的金属和/或一种或多种掺杂剂,所述物理薄层淀积方法尤其是包括物理气相沉积(PVD)涂层、借助电子束蒸发器的蒸镀、借助电阻蒸发器、电感蒸发、ARC蒸发和/或阴极喷雾(溅射涂层)尤其是DC或RF磁控管溅射的蒸镀,这些蒸镀优选分别在高真空中进行,所述化学气相淀积尤其是包括化学气相沉积(CVD)、低压(low pressure)CVD和/或大气压(atmospheric pressure)CVD。
在此情况下,这种实施方式是有利的,其中块背电极层、阻挡层、接触层、半导体吸收层的金属和/或一种或多种掺杂剂借助阴极喷雾(溅射涂层)尤其是DC磁控管溅射来施加。
这里还可以规定,一种或多种掺杂剂连同接触层和/或吸收层的至少一种成分一起尤其是从共同的混合或烧结靶施加。最后,也被证实合乎目的的是,混合或烧结靶包含至少一种掺杂剂,其选自钠化合物、钠钼青铜、和钠钨青铜,尤其是在选自MoSe2、WSe2、Mo、W、铜和/或镓的基质成分中。例如,硒化钼靶可以掺有作为掺杂剂的亚硫酸钠或硫化钠。
利用本发明带来令人惊叹的发现:能够利用本发明的多层背电极的结构实现在薄层太阳能电池或模块中的相对薄的半导体吸收层层厚,而不必以效率损失为代价。利用本发明的系统,通常甚至出现更高的效率。就此而言发现:反射太阳光的阻挡层有助于进一步的电流产生。太阳光这里两次经过半导体吸收层。还令人惊叹地发现:通过以下方式也带来改善的效率,即半导体吸收层(例如基于黄铜矿或硫铜锡锌矿系统)直接淀积在钼接触层上。在此情况下,该半导体吸收层可以在接着的半导体形成过程中在界面上反应生成硒化钼或硫硒化钼。此外,还令人惊叹地发现:用于半导体吸收层的掺杂剂(例如基于钠)按剂量地妥善地通过接触层(也即原始存在于接触层中)进入到所述半导体吸收层中。为此,在形成半导体吸收层时的温度已经足够,其中阻挡层辅助地连带影响掺杂剂向半导体吸收层方向的迁移方向。只要在半导体吸收层中存在,所述掺杂剂通常有助于提高薄层太阳能电池或模块的效率。在此情况下被证实为有利的是,通过经过接触层的进入可以非常精确地设定最后在制成的产品中存在于半导体吸收层中的掺杂剂的量。通过这种方式才实现与玻璃和/或块背电极的组分无关的可再生的效率提高。利用本发明系统,还可以令人惊叹地避免在形成带有块背电极的半导体吸收层期间由于硫族元素、尤其是硒的不受控的反应而导致的效率损失。通过在块背电极的表面上不再形成金属硫族化物如硒化钼,也避免块背电极的导电性损失以及避免横向不均匀的硫族化物形成并且由此防止微裂纹的形成。因为随着硫族化物的形成通常会出现不利的体积膨胀。利用本发明的系统,例如能够比在传统的薄层系统情况下更精确和更可靠地设定各个层的厚度以及总系统的厚度。同时本发明的多层背电极允许使用被污染的块背电极材料,而薄层太阳能电池的效率不会受到不利影响。因此,薄层太阳能模块的总成本可以明显降低。此外,利用本发明的多层背电极进行半导体吸收层的明显更为受控的构造。半导体的组成部分如Cu、In和/或Ga不再迁移到背电极中,由此可以有目的地设定形成半导体吸收层的成分的所希望的质量比并且也可以保持该质量比。
附图说明
本发明的其他特征和优点从后面的描述中得到,在其中示例性地借助示意图阐述了本发明的优选的实施方式。在此:
图1示出薄层太阳能电池的包含本发明多层背电极的第一实施方式的部分系统的示意性横截面视图;
图2 示出薄层太阳能电池的包含本发明多层背电极的第二实施方式的部分系统的示意性横截面视图;以及
图3示出了薄层太阳能电池的包含本发明多层背电极的第三实施方式的部分系统的示意性横截面视图。
具体实施方式
在图1中示出的本发明多层背电极1的实施方式中,在衬底层2例如玻璃衬底上有由钼构成的块背电极层4。在该块背电极层4上有双向作用的导电的阻挡层6,阻挡层6例如由氮化钨或氮化钛构成,以及有与该层邻接的、由金属硫族化物如硒化钼构成的欧姆接触层8a。在此该接触层8a可以在一种优选的实施方式中也被掺有至少一种掺杂剂,所述掺杂剂例如为钠离子或钠化合物、尤其是亚硫酸钠或硫化钠。
在图2中再现的本发明多层电极1的第二实施方式中,与按照图1的实施方式不同,接触层8b是金属层,例如钼层或钨层。该接触层8b也可以在优选的扩展方案中被掺有至少一种掺杂剂,例如掺有钠离子或钠化合物、尤其是亚硫酸钠或硫化钠。
在图3中再现的本发明多层电极1的第三实施方式中,接触层8c是通过由金属例如钼或钨构成的第一覆层10和由金属硫族化物例如硒化钼和/或硒化钨构成的第二覆层12构成的两层系统,其中第一覆层与阻挡层6邻接或者与阻挡层6相邻,而金属硫族化物与第一覆层10邻接并且由此不与阻挡层6相邻。在该实施方式中,在接触层8c中优选也有至少一种掺杂剂,例如钠离子或钠化合物、尤其是亚硫酸钠或硫化钠。在此情况下,可以在第一和/或第二覆层中添加该掺杂剂。
在上述描述中、权利要求中以及在附图中公开的本发明特征可以在其各种实施方式中单独地以及以任意组合用于本发明的实现。

Claims (22)

1.用于光伏薄层太阳能电池的多层背电极,按顺序地包括:
至少一个块背电极层,包含V、Mn、Cr、Mo、Co、Zr、Ta、Nb和/或W或者基本上由V、Mn、Cr、Mo、Co、Zr、Ta、Nb和/或W构成,和/或包含含有V、Mn、Cr、Mo、Co、Zr、Fe、Ni、Al、Ta、Nb和/或W的合金和/或基本上由含有V、Mn、Cr、Mo、Co、Zr、Fe、Ni、Al、Ta、Nb和/或W的合金构成;
至少一个导电阻挡层;
至少一个尤其是欧姆的接触层,
包含Mo、W、Ta、Nb,Zr和/或Co或者基本上由Mo、W、Ta、Nb,Zr和/或Co构成,尤其是包含Mo和/或W或者基本上由Mo和/或W构成,
和/或
包含至少一种金属硫族化物或基本上由至少一种金属硫族化物构成,
和/或
包含至少一个与阻挡层相邻的第一覆层,包含Mo、W、Ta、Nb,Zr和/或Co或者基本上由Mo、W、Ta、Nb,Zr和/或Co构成,尤其是包含Mo和/或W或者基本上由Mo和/或W构成,以及至少一个不与阻挡层相邻的第二覆层,包含至少一种金属硫族化物或基本上由至少一种金属硫族化物构成。
2.根据权利要求1所述的背电极,其特征在于,块背电极和接触层包含钼或钨或钼合金或钨合金、尤其是钼或钼合金,或者基本上由钼或钨或钼合金或钨合金构成,尤其是基本上由钼或钼合金构成。
3.根据权利要求1或2所述的背电极,其特征在于,阻挡层是针对从块背电极层迁移、尤其是扩散或可扩散的成分和/或经过块背电极层迁移、尤其是扩散或可扩散的成分的阻挡,和/或是针对从接触层迁移、尤其是扩散或可扩散的成分和/或经过接触层迁移、尤其是扩散或可扩散的成分的阻挡。
4.根据前述权利要求之一所述的背电极,其特征在于,阻挡层是针对碱离子、尤其是钠离子、硒或硒化合物、硫或硫化合物、金属尤其是Cu、In、Ga、Fe、Ni、Ti、Zr、Hf、V、Nb、Ta、Al和/或W、和/或含碱离子的化合物的阻挡。
5.根据前述权利要求之一所述的背电极,其特征在于,阻挡层包含至少一种金属氮化物尤其是TiN、MoN、TaN、ZrN和/或WN、至少一种金属碳化物、至少一种金属硼化物和/或至少一种金属硅氮化物尤其是TiSiN、TaSiN和/或WSiN,或者基本上由至少一种金属氮化物尤其是TiN、MoN、TaN、ZrN和/或WN、至少一种金属碳化物、至少一种金属硼化物和/或至少一种金属硅氮化物尤其是TiSiN、TaSiN和/或WSiN构成。
6.根据前述权利要求之一所述的背电极,其特征在于,块背电极层被至少一种选自由以下元素构成的组的元素:Fe、Ni、Ti、Zr、Hf、V、Nb、Ta、W、Al和/或Na和/或上述元素的化合物所污染。
7.根据前述权利要求之一所述的背电极,其特征在于,接触层的或接触层的第二覆层的金属硫族化物的金属选自钼、钨、钽、锆、钴和/或铌并且该金属硫族化物的硫族元素选自硒和/或硫,其中金属硫族化物尤其是MSe2、MS2和/或M(Se1-x,Sx2,M=Mo、W、Ta、Zr、Co或Nb,其中x取0至1的值。
8.根据前述权利要求之一所述的背电极,其特征在于,
接触层的第一覆层的金属和第二覆层的金属一致,和/或接触层的第一覆层的金属和/或第二覆层的金属与块背电极的金属一致。
9.根据前述权利要求之一所述的背电极,其特征在于,
接触层、接触层的第一和/或第二覆层具有至少一种用于薄层太阳能电池的半导体吸收层的掺杂剂,尤其是具有至少一种选自如下组的元素:钠、钾和锂和/或这些元素的至少一种化合物,优选带有氧、硒、硫、硼和/或卤素例如碘或氟,和/或具有至少一种碱金属青铜、尤其是青铜钠和/或青铜钾,优选带有选自钼、钨、钽和/或铌的金属。
10.根据前述权利要求之一所述的背电极,其特征在于,
块背电极层的平均厚度处于50nm至500nm的范围中、尤其是在80nm至250nm的范围中,和/或阻挡层的平均厚度处于10nm至250nm的范围中、尤其是在20nm至150nm的范围中,和/或接触层的平均厚度处于2nm至200nm的范围中、尤其是在5nm至100nm的范围中。
11.根据前述权利要求之一所述的背电极,其特征在于,
块背电极层包含钼和/或钨尤其是钼,或者基本上由钼和/或钨尤其是钼构成,
导电的阻挡层包含TiN或者基本上由TiN构成,并且
尤其是包含一种或多种掺杂剂的接触层包含MoSe2或者基本上由MoSe2构成。
12.根据权利要求9至11之一所述的背电极,其特征在于,在接触层中的掺杂剂、尤其是钠离子在剂量上处于1013至1017原子/cm2的范围中、尤其是处于1014至1016原子/cm2的范围中。
13.光伏薄层太阳能电池,包括至少一个根据前述权利要求之一所述的多层背电极。
14.根据权利要求13所述的薄层太阳能电池,按顺序地包括至少一个衬底层、至少一个根据本发明权利要求1至12之一所述的背电极层、至少一个导电的阻挡层、至少一个尤其是直接靠置在接触层上的半导体吸收层、尤其是黄铜矿半导体吸收层或硫铜锡锌矿半导体吸收层、以及至少一个前电极。
15.根据权利要求14所述的薄层太阳能电池,其特征在于,在半导体吸收层和前电极之间有至少一个缓冲层、尤其是至少一个包含CdS或者基本上由CdS构成的层或者无CdS的层、尤其是包含Zn(S,OH)或In2S3或者基本上由Zn(S,OH)或In2S3构成,和/或至少一个包含固有的氧化锌和/或高欧姆的氧化锌或者基本上由固有的氧化锌和/或高欧姆的氧化锌构成的层。
16.根据权利要求13至15之一所述的薄层太阳能电池,其特征在于,
半导体吸收层是或包括四元的IB-IIIA-VIA-黄铜矿层尤其是Cu(In,Ga)Se2层、五元的IB-IIIA-VIA-黄铜矿层尤其是Cu(In,Ga)(Se1-x,Sx)2层或者硫铜锡锌矿层尤其是Cu2ZnSn(Sex,S1-x)4层,其中x取0至1的值,和/或半导体吸收层的平均厚度处于400nm至2500nm的范围中,尤其是处于500nm至1500nm的范围中并且优选处于800nm至1200nm的范围中。
17.光伏薄层太阳能模块,包括至少两个、尤其是大量尤其是单片集成的串联连接的根据权利要求13至16之一所述的薄层太阳能电池。
18.根据权利要求13至16之一所述的薄层太阳能电池用于制造光伏薄层太阳能模块的应用。
19.根据权利要求1至12之一所述的多层背电极用于制造薄层太阳能电池或者薄层太阳能模块的应用。
20.根据权利要求9至12之一所述的多层背电极用于在制造尤其是根据权利要求13至16之一所述的光伏薄层太阳能电池、或者尤其是根据权利要求17所述的光伏薄层太阳能模块期间对半导体吸收层掺杂的应用。
21.用于制造根据权利要求13至16之一所述的光伏薄层太阳能电池或者根据权利要求17所述的光伏薄层太阳能模块的方法,包括步骤:
借助物理薄层淀积方法或者借助化学气相淀积来施加块背电极层、阻挡层、接触层、半导体吸收层的金属和/或一种或多种掺杂剂,所述物理薄层淀积方法尤其是包括物理气相沉积(PVD)涂层、借助电子束蒸发器的蒸镀、借助电阻蒸发器、电感蒸发、ARC蒸发和/或阴极喷雾(溅射涂层)尤其是DC或RF磁控管溅射的蒸镀,这些蒸镀优选分别在高真空中进行,所述化学气相淀积尤其是包括化学气相沉积(CVD)、低压(low pressure)CVD和/或大气压(atmospheric pressure)CVD。
22.根据权利要求20或21所述的方法,其特征在于,一种或多种尤其是选自钠化合物、钠离子、钠钼青铜、和/或钠钨青铜的掺杂剂连同接触层和/或吸收层的至少一种成分一起被施加,尤其是从共同的混合或烧结靶被施加。
CN202010310061.3A 2012-04-02 2013-02-19 多层背电极、光伏薄层太阳能电池和模块及制造方法 Pending CN111509059A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012205375.1 2012-04-02
DE102012205375A DE102012205375A1 (de) 2012-04-02 2012-04-02 Mehrschicht-Rückelektrode für eine photovoltaische Dünnschichtsolarzelle, Verwen-dung der Mehrschicht-Rückelektrode für die Herstellung von Dünnschichtsolarzellen und -modulen, photovoltaische Dünnschichtsolarzellen und -module enthaltend die Mehrschicht-Rückelektrode sowie ein Verfahren zur Herstellung photovoltaischer Dünnschichtsolarzellen und -module
CN201380028772.XA CN104335357A (zh) 2012-04-02 2013-02-19 用于光伏薄层太阳能电池的多层背电极、用于制造薄层太阳能电池和薄层太阳能模块的多层背电极的应用、包含多层背电极的光伏薄层太阳能电池和模块及制造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201380028772.XA Division CN104335357A (zh) 2012-04-02 2013-02-19 用于光伏薄层太阳能电池的多层背电极、用于制造薄层太阳能电池和薄层太阳能模块的多层背电极的应用、包含多层背电极的光伏薄层太阳能电池和模块及制造方法

Publications (1)

Publication Number Publication Date
CN111509059A true CN111509059A (zh) 2020-08-07

Family

ID=47740949

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380028772.XA Pending CN104335357A (zh) 2012-04-02 2013-02-19 用于光伏薄层太阳能电池的多层背电极、用于制造薄层太阳能电池和薄层太阳能模块的多层背电极的应用、包含多层背电极的光伏薄层太阳能电池和模块及制造方法
CN202010310061.3A Pending CN111509059A (zh) 2012-04-02 2013-02-19 多层背电极、光伏薄层太阳能电池和模块及制造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201380028772.XA Pending CN104335357A (zh) 2012-04-02 2013-02-19 用于光伏薄层太阳能电池的多层背电极、用于制造薄层太阳能电池和薄层太阳能模块的多层背电极的应用、包含多层背电极的光伏薄层太阳能电池和模块及制造方法

Country Status (9)

Country Link
US (1) US20150068579A1 (zh)
EP (1) EP2834852B8 (zh)
JP (1) JP2015514325A (zh)
KR (1) KR20140148407A (zh)
CN (2) CN104335357A (zh)
AU (1) AU2013242990A1 (zh)
DE (1) DE102012205375A1 (zh)
IN (1) IN2014DN08077A (zh)
WO (1) WO2013149757A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2014008820A (es) * 2012-01-19 2015-07-06 Nuvosun Inc Revestimientos protectores para celdas fotovoltaicas.
US9577134B2 (en) * 2013-12-09 2017-02-21 Sunpower Corporation Solar cell emitter region fabrication using self-aligned implant and cap
KR101559539B1 (ko) * 2014-01-21 2015-10-16 영남대학교 산학협력단 태양전지, 태양전지용 배면전극 및 그 제조방법
CN104362191A (zh) * 2014-10-21 2015-02-18 苏州瑞晟纳米科技有限公司 一种制备cigs太阳能电池背电极的方法
KR101638439B1 (ko) * 2015-02-11 2016-07-11 영남대학교 산학협력단 태양전지용 배면전극, 태양전지용 배면전극의 제조방법, 이를 이용한 태양전지 및 태양전지의 제조방법
US10217877B2 (en) * 2015-07-27 2019-02-26 Lg Electronics Inc. Solar cell
CN106298989B (zh) * 2016-10-15 2018-05-22 凯盛光伏材料有限公司 一种提高薄膜太阳能电池背电极和吸收层附着力的方法
CN109119494A (zh) * 2018-08-16 2019-01-01 蚌埠兴科玻璃有限公司 铜铟镓硒薄膜太阳能电池铜钼合金背电极及其制备方法
CN109713052A (zh) * 2018-12-27 2019-05-03 中建材蚌埠玻璃工业设计研究院有限公司 一种柔性薄膜太阳能电池用背电极的制备方法
CN110586162A (zh) * 2019-09-24 2019-12-20 华东师范大学 掺杂二硒化钼的层状氮化二钛纳米复合材料及制备方法和应用
KR102077768B1 (ko) * 2019-12-16 2020-02-17 한국과학기술연구원 박막 태양전지 모듈 구조 및 이의 제조 방법
CN112490332B (zh) * 2020-12-17 2022-07-22 福州大学 柔性双阳离子掺杂的CZTSSe太阳电池界面钝化方法
CN115881835B (zh) * 2023-02-08 2024-05-14 浙江晶科能源有限公司 太阳能电池及其制备方法、光伏组件
WO2024203785A1 (ja) * 2023-03-31 2024-10-03 出光興産株式会社 光電変換素子、光発電モジュール、飛翔体及び光電変換素子の製造方法
CN116600580B (zh) * 2023-07-13 2023-11-24 北京曜能科技有限公司 太阳能电池及其制备方法、太阳能电池组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080251120A1 (en) * 2004-03-11 2008-10-16 Solibro Ab Thin Film Solar Cell and Manufacturing Method
US20100243043A1 (en) * 2009-03-25 2010-09-30 Chuan-Lung Chuang Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same
CN101918604A (zh) * 2007-12-18 2010-12-15 普兰西金属有限公司 带有含钼反电极层的薄层太阳能电池
US20120055543A1 (en) * 2010-09-03 2012-03-08 Solopower, Inc. Back contact diffusion barrier layers for group ibiiiavia photovoltaic cells

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4442824C1 (de) 1994-12-01 1996-01-25 Siemens Ag Solarzelle mit Chalkopyrit-Absorberschicht
FR2820241B1 (fr) * 2001-01-31 2003-09-19 Saint Gobain Substrat transparent muni d'une electrode
US6681592B1 (en) 2001-02-16 2004-01-27 Hamilton Sundstrand Corporation Electrically driven aircraft cabin ventilation and environmental control system
US7053294B2 (en) * 2001-07-13 2006-05-30 Midwest Research Institute Thin-film solar cell fabricated on a flexible metallic substrate
JP2006165386A (ja) * 2004-12-09 2006-06-22 Showa Shell Sekiyu Kk Cis系薄膜太陽電池及びその作製方法
WO2008153690A1 (en) * 2007-05-22 2008-12-18 Miasole High rate sputtering apparatus and method
FR2922364B1 (fr) * 2007-10-12 2014-08-22 Saint Gobain Procede de fabrication d'une electrode en oxyde de molybdene
KR101154763B1 (ko) * 2009-09-30 2012-06-18 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US20110240118A1 (en) * 2010-04-02 2011-10-06 Paul Hanlon James Beatty Method and device for scribing a thin film photovoltaic cell
US20110259395A1 (en) * 2010-04-21 2011-10-27 Stion Corporation Single Junction CIGS/CIS Solar Module
JPWO2011149008A1 (ja) * 2010-05-27 2013-07-25 京セラ株式会社 光電変換装置および光電変換装置の製造方法
WO2012024667A2 (en) * 2010-08-20 2012-02-23 First Solar, Inc. Electrical contact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080251120A1 (en) * 2004-03-11 2008-10-16 Solibro Ab Thin Film Solar Cell and Manufacturing Method
CN101918604A (zh) * 2007-12-18 2010-12-15 普兰西金属有限公司 带有含钼反电极层的薄层太阳能电池
US20100243043A1 (en) * 2009-03-25 2010-09-30 Chuan-Lung Chuang Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same
US20120055543A1 (en) * 2010-09-03 2012-03-08 Solopower, Inc. Back contact diffusion barrier layers for group ibiiiavia photovoltaic cells

Also Published As

Publication number Publication date
US20150068579A1 (en) 2015-03-12
JP2015514325A (ja) 2015-05-18
AU2013242990A1 (en) 2014-11-20
CN104335357A (zh) 2015-02-04
DE102012205375A1 (de) 2013-10-02
EP2834852B1 (de) 2019-12-25
EP2834852A1 (de) 2015-02-11
WO2013149757A1 (de) 2013-10-10
EP2834852B8 (de) 2020-03-04
IN2014DN08077A (zh) 2015-05-01
KR20140148407A (ko) 2014-12-31

Similar Documents

Publication Publication Date Title
CN111509059A (zh) 多层背电极、光伏薄层太阳能电池和模块及制造方法
US5994163A (en) Method of manufacturing thin-film solar cells
US20150068580A1 (en) Photovoltaic thin-film solar modules and method for manufacturing such thin-film solar modules
US8969719B2 (en) Chalcogenide-based photovoltaic devices and methods of manufacturing the same
US20150114446A1 (en) Multilayer back electrode for a photovoltaic thin-film solar cell and use thereof for manufacturing thin-film solar cells and modules, photovoltaic thin-film solar cells and modules containing the multilayer back electrode and method for the manufacture thereof
US20150068578A1 (en) method for manufacturing thin-film solar modules, and thin-film solar modules which are obtainable according to this method
EP2800145B1 (en) Back contact substrate for a photovoltaic cell or module
EP2800146A1 (en) Back contact substrate for a photovoltaic cell or module
EP2800144A1 (en) Back contact substrate for a photovoltaic cell or module
US9105779B2 (en) Method of fabricating a flexible photovoltaic film cell with an iron diffusion barrier layer
EP2871681A1 (en) Back contact substrate for a photovoltaic cell or module
US20140261689A1 (en) Method of manufacturing a photovoltaic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination