CN111501206B - 一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用 - Google Patents

一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN111501206B
CN111501206B CN202010339481.4A CN202010339481A CN111501206B CN 111501206 B CN111501206 B CN 111501206B CN 202010339481 A CN202010339481 A CN 202010339481A CN 111501206 B CN111501206 B CN 111501206B
Authority
CN
China
Prior art keywords
composite film
mos
carbon nanofiber
cos
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010339481.4A
Other languages
English (en)
Other versions
CN111501206A (zh
Inventor
上媛媛
常书龙
侯思宇
李允星
庞瑞
曹安源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Zhengzhou University
Original Assignee
Peking University
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, Zhengzhou University filed Critical Peking University
Priority to CN202010339481.4A priority Critical patent/CN111501206B/zh
Publication of CN111501206A publication Critical patent/CN111501206A/zh
Application granted granted Critical
Publication of CN111501206B publication Critical patent/CN111501206B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • D06C7/04Carbonising or oxidising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提出了一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用,通过静电纺丝、煅烧和水热组装了碳纳米纤维/CoS2/二硫化钼MoS2复合薄膜,复合薄膜连续交错的碳纳米纤维、嵌入到碳纳米纤维的CoS2,以及包覆在碳纳米纤维表面的片状MoS2,连续交错的碳纳米纤维构成了连续的导电网络。本发明碳纳米纤维具有良好的导电性,高的长径比,大的比表面积,CoS2和MoS2作为活性材料,其中MoS2的独特的纳米片状结构大大增加了与气体接触的位点,该复合薄膜的制作工艺简单,成本低,并且实现在室温下对NO好的灵敏度、选择性和稳定性。

Description

一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用
技术领域
本发明涉及气敏传感器技术领域,特别是指一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用。
背景技术
一氧化氮(NO)作为常见的有害气体,是大气污染主要气体之一,同时也是具有重要生理意义的分子,与人体内的一些细胞活性息息相关。因此,对NO精准、定量的测试是必要的。目前,NO的传感器主要以金属氧化物或硫化物为主,但由于其较宽的带隙,往往需要在较高的温度下才具有对NO良好的传感性能。通常,通过将金属氧化物或硫化物与导电性较好的碳材料复合,可以实现在室温下对NO做出高灵敏的响应。另一方面,NO传感器的选择性也至关重要,尤其是与NO相似的氧化性NO2气体,这关系到NO传感器检测时会不会收到其他气体的干扰。
发明内容
本发明提出一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用,通过静电纺丝、煅烧和水热组装了碳纳米纤维/二硫化钴(CoS2)/二硫化钼(MoS2)复合薄膜,在室温下对NO具有高的灵敏度和优异的选择性,复合薄膜可以实现完全回复,具有良好的稳定性。
本发明的技术方案是这样实现的:一种碳纳米纤维/CoS2/MoS2复合薄膜,包括连续交错的碳纳米纤维、嵌入到碳纳米纤维的CoS2,以及包覆在碳纳米纤维表面的片状MoS2,连续交错的碳纳米纤维构成了连续的导电网络。
一种碳纳米纤维/CoS2/MoS2复合薄膜的制备方法,包括以下步骤:
(1)将六水合硝酸钴加入到甲醇中,得到溶液A,将二甲基咪唑加入到甲醇中,得到溶液B,将溶液A和溶液B混合后搅拌使其生成沉淀,洗涤离心干燥得到二甲基咪唑钴(ZIF-67)纳米颗粒;
(2)将聚丙烯腈(PAN)溶于二甲基甲酰胺,再将步骤(1)得到的ZIF-67纳米颗粒分散在聚丙烯腈溶液中,获得静电纺丝前驱液;
(3)将步骤(2)搅拌后的静电纺丝前驱液进行静电纺丝,制备出PAN/ZIF-67复合薄膜;
(4)将步骤(3)中的PAN/ZIF-67复合薄膜进行碳化,在氢气和氩气的氛围中煅烧,得到碳纳米纤维/钴复合薄膜;
(5)将钼酸铵和硫脲溶于去离子水中,然后放入步骤(4)得到的碳纳米纤维/钴复合薄膜,经过水热反应,得到碳纳米纤维/CoS2/MoS2复合薄膜。
进一步地,步骤(1)中,六水合硝酸钴和二甲基咪唑的摩尔比为1:8。
进一步地,步骤(2)中,静电纺丝前驱液中,聚丙烯腈的质量分数为10%,ZIF-67的浓度为0.01-0.1g/ml。
进一步地,步骤(3)中,将步骤(2)搅拌后的静电纺丝前驱液放入的注射器中,流量为6μL/min,在18kV的电压下,制备出PAN/ZIF-67复合薄膜。
进一步地,步骤(4)中,在氢气和氩气为10:1的氛围中,700℃煅烧2h。
进一步地,步骤(5)中,将0.2mmol-1.0mmol钼酸铵溶于70ml的去离子水中,水热反应的条件为200℃水热反应16h。
一种碳纳米纤维/CoS2/MoS2复合薄膜作为室温NO气体传感器的应用。
本发明的有益效果:
本发明通过静电纺丝与碳化相结合制备碳纳米纤维,碳纳米纤维具有良好的导电性,高的长径比,大的比表面积,其具有的导电性和比表面积,是良好的气体传感器基底;钴源和二甲基咪唑形成具有立方结构的有机金属骨架ZIF-67,有机金属骨架ZIF-67均匀的分布在聚丙烯腈纤维中,在煅烧过程中,聚丙烯腈纤维碳化成碳纳米纤维,有机金属骨架ZIF-67还原成钴,在前驱液加入有机金属骨架ZIF-67可以使钴源嵌入在碳纳米纤维中。
以钼酸铵为钼源,硫脲作为硫源,经过水热处理,将碳纳米纤维中的钴硫化成二硫化钴,碳纳米纤维表面包覆大量的片状二硫化钼,大量的片状二硫化钼在碳纳米纤维表面形成了纳米外壳,二硫化钼的独特的纳米片状结构大大增加了与气体接触的位点,二硫化钼和二硫化钴作为活性材料,同时具有协同作用,双金属的协同作用增强了对NO的选择性和灵敏度。该复合薄膜的制作工艺简单,成本低,并且实现在室温下对NO好的灵敏度、选择性和稳定性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的制备过程示意图;
图2本发明制备的PAN/ZIF-67复合薄膜的扫描电子显微镜图;
图3为本发明制备的碳纳米纤维/CoS2/MoS2复合薄膜的扫描电子显微镜图;
图4为碳纳米纤维/CoS2和碳纳米纤维/CoS2/MoS2对50ppm NO的响应;
图5为碳纳米纤维/CoS2/MoS2复合薄膜对50ppm NO的循环稳定响应。
1二甲基咪唑,2硝酸钴,3磁力搅拌器,4二甲基咪唑钴(ZIF-67),5针管,6聚丙烯腈,7电压,8接收板,9反应釜,10碳纳米纤维/钴复合薄膜,11钼酸铵,12硫脲。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,一种碳纳米纤维/CoS2/MoS2复合薄膜的制备方法,包括以下步骤:
(1)将六水合硝酸钴加入到甲醇中,得到溶液A,将二甲基咪唑加入到甲醇中,得到溶液B,将溶液A和溶液B混合后搅拌使其生成沉淀,洗涤离心干燥得到二甲基咪唑钴(ZIF-67)纳米颗粒,六水合硝酸钴和二甲基咪唑的摩尔比为1:8;
(2)将聚丙烯腈(PAN)溶于二甲基甲酰胺(DMF),再将步骤(1)得到的ZIF-67纳米颗粒分散在聚丙烯腈溶液中,获得静电纺丝前驱液,静电纺丝前驱液中,聚丙烯腈的质量分数为10%,ZIF-67的浓度为0.01-0.1g/ml;
(3)将步骤(2)搅拌后的静电纺丝前驱液放入的注射器中,流量为6μL/min,在18kV的电压下,制备出PAN/ZIF-67复合薄膜;
(4)将步骤(3)中的PAN/ZIF-67复合薄膜进行碳化,在氢气和氩气为10:1的氛围中,700℃煅烧2h,得到碳纳米纤维/钴复合薄膜;
(5)将0.2mmol-1.0mmol钼酸铵溶于70ml的去离子水中,然后放入步骤(4)得到的碳纳米纤维/钴复合薄膜,水热反应的条件为200℃水热反应16h,得到碳纳米纤维/CoS2/MoS2复合薄膜。
下面结合具体实施例进行说明。
实施例1
一种碳纳米纤维/CoS2/MoS2复合薄膜的制备方法,包括以下步骤:
(1)将0.005mol六水合硝酸钴放入100mL甲醇中,得到溶液A,将0.04mol二甲基咪唑放入到50mL甲醇中,得到溶液B,混合后搅拌6h使其生成沉淀,洗涤离心干燥得到ZIF-67纳米颗粒;
(2)将0.333g的聚丙烯腈溶于3ml二甲基甲酰胺溶液,再加入0.1g步骤(1)得到的ZIF-67纳米颗粒,充分搅拌12h,得到静电纺丝前驱液;
(3)将步骤(2)搅拌后的静电纺丝前驱液放入20mL的注射器中,针头内径为0.5mm,流量为6μL/min,与接收器距离为15cm,在18kV的电压下,制备出PAN/ZIF-67复合薄膜;
(4)将步骤(3)中的复合薄膜放入管式炉中碳化,在氢气和氩气(10:1)的氛围中,700℃煅烧2h,得到碳纳米纤维/钴复合薄膜;
(5)本实施例钼酸铵用量为0.4mmol,即将0.0784g(0.4mmol)钼酸铵和0.0784g的硫脲溶于70mL去离子水中,将上述溶液和步骤(4)得到的复合薄膜放入100mL反应釜中,200℃水热反应16h,得到碳纳米纤维/CoS2/MoS2复合薄膜。
PAN/ZIF-67复合薄膜复合薄膜的扫描电子显微镜照片如图2所示,PAN纤维成交错的网络结构,碳化后可形成连续的导电网络,ZIF-67成立方结构,分布在PAN纤维中。
碳纳米纤维/CoS2/MoS2复合薄膜的扫面电子显微镜图片如图3所示,在碳纳米纤维表面形成了大量的片状二硫化钼。碳纳米纤维/CoS2/MoS2复合薄膜包括连续交错的碳纳米纤维、嵌入到碳纳米纤维的CoS2,以及包覆在碳纳米纤维表面的片状MoS2,连续交错的碳纳米纤维构成了连续的导电网络。
将所述的碳纳米纤维/CoS2/MoS2复合薄膜作为室温NO气体传感器的应用:将步骤(5)制备的碳纳米纤维/CoS2/MoS2复合薄膜放置于柔性衬底上,然后将两根银丝作为导线放置于碳纳米纤维/CoS2/MoS2复合薄膜复合薄膜上,完成NO气体传感器的组装。碳纳米纤维/CoS2/MoS2复合薄膜为柔性薄膜,制备的NO气体传感器可应用于柔性可穿戴传感器中。
实施例二
本实施例与实施例一基本相同,不同之处在于:步骤(1)中,将0.003mol六水合硝酸钴放入100mL的甲醇中,得到溶液A;将0.024mol二甲基咪唑放入50mL甲醇中,得到溶液B;步骤(2)中,将0.03g的ZIF-67纳米颗粒分散到3mL的聚丙烯腈溶液中,搅拌12h作为静电纺丝前驱液。
实施例三
本实施例与实施例二基本相同,不同之处在于:将0.008mol六水合硝酸钴放入100mL的甲醇中,得到溶液A;将0.064mol二甲基咪唑放入50mL甲醇中,得到溶液B;步骤(2)中,将0.3g的ZIF-67纳米颗粒分散到3mL的聚丙烯腈溶液中搅拌12h作为静电纺丝前驱液。
实施例四
本实施例与实施例一基本相同,不同之处在于:(5)将0.0392g(0.2mmol)钼酸铵和0.0392g的硫脲溶于70mL去离子水中,将上述溶液和步骤(4)得到的复合薄膜放入100mL反应釜中,200℃水热反应16h,得到碳纳米纤维/CoS2/MoS2复合薄膜复合薄膜。
实施例五
本实施例与实施例一基本相同,不同之处在于:(5)将0.1176g(0.6mmol)钼酸铵和0.1176g的硫脲溶于70mL去离子水中,将上述溶液和步骤(4)得到的复合薄膜放入100mL反应釜中,200℃水热反应16h,得到碳纳米纤维/CoS2/MoS2复合薄膜复合薄膜。
实施例六
本实施例与实施例一基本相同,不同之处在于:(5)将0.196g(1.0mmol)钼酸铵和0.196g的硫脲溶于70mL去离子水中,将上述溶液和步骤(4)得到的复合薄膜放入100mL反应釜中,200℃水热反应16h,得到碳纳米纤维/CoS2/MoS2复合薄膜复合薄膜。
当选用0.2mmol、0.4mmol、0.6mmol和1mmol的钼酸铵时,随着钼酸铵含量的增加,纤维表面负载的二硫化钼数量增多,当钼酸铵过量时,二硫化钼会发生团聚形成小球。同时,纤维的直径液随钼酸铵含量的增加而增加,这影响了复合薄膜的孔径和比表面积,0.4mmol的钼酸铵,得到碳纳米纤维/CoS2/MoS2复合薄膜复合薄膜得到的比表面积较大。
对比例一
本对比例与实施例一基本相同,不用之处在于:去掉步骤(1),
(2)将0.3422g聚丙烯腈缓慢加入3mL二甲基甲酰胺中,搅拌12h作为静电纺丝前驱液;
(3)将步骤(2)搅拌后的静电纺丝前驱液放入20mL的注射器中,针头内径为0.5mm,流量为6μL/min与接收器距离为15cm,在18kV的电压下,制备出PAN薄膜;
(4)将步骤(3)中的PAN薄膜放入管式炉中碳化,在氢气和氩气(10:1)的氛围中,700℃煅烧2h,得到碳纳米纤维薄膜;
(5)将0.0784g(0.4mmol)钼酸铵和等质量0.0784g的硫脲溶于70mL去离子水中,将上述溶液和步骤(4)得到的复合薄膜放入100mL反应釜中,200℃水热反应16h,得到碳纳米纤维/MoS2复合薄膜复合薄膜。
将实施例一制备的碳纳米纤维/CoS2/MoS2复合薄膜组装成NO气体传感器,放入CGS-1TP装置中测试,在电阻稳定后,打入检测气体保持20min,之后暴露在空气中,待其电阻恢复。检测气体分别为50ppm NO、NO2、H2S、NH3、CH4
上述检测气体的响应强度如下表所示:
序号 检测气体 响应强度(%)
1 NO -31.1%
4 NO<sub>2</sub> -0.7%
5 H<sub>2</sub>S 3.1%
6 NH<sub>3</sub> 2.1%
7 CH<sub>4</sub> 0.4%
从上表中可以看出,相对于H2S、NH3、CH4和NO2,碳纳米纤维/CoS2/MoS2复合薄膜对NO具有优异的选择性响应。
将对比例一制备的碳纳米纤维/MoS2复合薄膜组装成NO气体传感器,放入CGS-1TP装置中测试,在电阻稳定后,打入50ppm NO气体保持20min,之后暴露在空气中,待其电阻恢复。从图4可以看出,在碳纳米纤维上负载单独的MoS2,得到的复合薄膜对NO的响应较低,进一步说明了CoS2和MoS2的协同作用。
将实施例一制备的碳纳米纤维/CoS2/MoS2复合薄膜复合薄膜组装成NO气体传感器,放入CGS-1TP装置中测试,在电阻稳定后,打入50ppm NO气体保持20min,之后暴露在空气中,待其电阻恢复,循环4次。从图5可以看出,碳纳米纤维/CoS2/MoS2复合薄膜对NO的响应可以做到完全回复,且有较好的稳定性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种碳纳米纤维/CoS2/MoS2复合薄膜,其特征在于:包括连续交错的碳纳米纤维、嵌入到碳纳米纤维的CoS2,以及包覆在碳纳米纤维表面的片状MoS2,连续交错的碳纳米纤维构成了连续的导电网络;所述碳纳米纤维/CoS2/MoS2复合薄膜作为室温NO气体传感器应用,相对于H2S、NH3、CH4和NO2,碳纳米纤维/CoS2/MoS2复合薄膜对NO具有优异的选择性响应;
所述的碳纳米纤维/CoS2/MoS2复合薄膜的制备方法,包括以下步骤:
(1)将六水合硝酸钴加入到甲醇中,得到溶液A,将二甲基咪唑加入到甲醇中,得到溶液B,将溶液A和溶液B混合后搅拌生成沉淀,洗涤离心干燥得到ZIF-67纳米颗粒;
(2)将聚丙烯腈溶于二甲基甲酰胺,再将步骤(1)得到的ZIF-67纳米颗粒分散在聚丙烯腈溶液中,获得静电纺丝前驱液;
(3)将步骤(2)的静电纺丝前驱液进行静电纺丝,制备出PAN/ZIF-67复合薄膜;
(4)将步骤(3)中的PAN/ZIF-67复合薄膜进行碳化,在氢气和氩气的氛围中煅烧,得到碳纳米纤维/钴复合薄膜;
(5)将钼酸铵和硫脲溶于去离子水中,然后放入步骤(4)得到的碳纳米纤维/钴复合薄膜,经过水热反应,得到碳纳米纤维/CoS2/MoS2复合薄膜;
步骤(1)中,六水合硝酸钴和二甲基咪唑的摩尔比为1:8;
步骤(2)中,静电纺丝前驱液中,聚丙烯腈的质量分数为10%,ZIF-67的浓度为0.01-0.1g/ml;
步骤(3)中,将步骤(2)搅拌后的静电纺丝前驱液放入注射器中,流量为6 μL/min,在18kV的电压下,制备出PAN/ZIF-67复合薄膜;
步骤(4)中,在氢气和氩气为10:1的氛围中,700℃煅烧2 h;
步骤(5)中,将0.2 mmol-1.0 mmol钼酸铵溶于70ml的去离子水中,水热反应的条件为200℃水热反应16 h。
CN202010339481.4A 2020-04-26 2020-04-26 一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用 Active CN111501206B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010339481.4A CN111501206B (zh) 2020-04-26 2020-04-26 一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010339481.4A CN111501206B (zh) 2020-04-26 2020-04-26 一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111501206A CN111501206A (zh) 2020-08-07
CN111501206B true CN111501206B (zh) 2022-07-22

Family

ID=71874799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010339481.4A Active CN111501206B (zh) 2020-04-26 2020-04-26 一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111501206B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421065B (zh) * 2020-12-04 2021-09-21 合肥工业大学 一种碳/二硫化钼-硫钼钴复合电化学催化剂材料及其制备与应用
CN115537973B (zh) * 2022-09-27 2024-04-30 河北师范大学 一种硫化钼/多孔碳纳米纤维复合电极材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312623A (en) * 1993-06-18 1994-05-17 The United States Of America As Represented By The Secretary Of The Army High temperature, rechargeable, solid electrolyte electrochemical cell
CN104971744A (zh) * 2015-06-02 2015-10-14 浙江理工大学 一种硫化钴与二硫化钼纳米核壳结构的电解水催化材料
CN107681142A (zh) * 2017-09-29 2018-02-09 合肥工业大学 一种用作锂离子电池负极材料的二硫化钼包覆碳纳米纤维及其制备方法
CN109078650A (zh) * 2018-08-20 2018-12-25 合肥工业大学 一种在mof衍生碳纤维表面包覆二硫化钼的制备方法
CN110530935A (zh) * 2019-08-31 2019-12-03 中国石油大学(华东) 二硫化钼基气敏传感阵列的构建方法及其在sf6气体分解组分检测中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5312623A (en) * 1993-06-18 1994-05-17 The United States Of America As Represented By The Secretary Of The Army High temperature, rechargeable, solid electrolyte electrochemical cell
CN104971744A (zh) * 2015-06-02 2015-10-14 浙江理工大学 一种硫化钴与二硫化钼纳米核壳结构的电解水催化材料
CN107681142A (zh) * 2017-09-29 2018-02-09 合肥工业大学 一种用作锂离子电池负极材料的二硫化钼包覆碳纳米纤维及其制备方法
CN109078650A (zh) * 2018-08-20 2018-12-25 合肥工业大学 一种在mof衍生碳纤维表面包覆二硫化钼的制备方法
CN110530935A (zh) * 2019-08-31 2019-12-03 中国石油大学(华东) 二硫化钼基气敏传感阵列的构建方法及其在sf6气体分解组分检测中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
静电纺丝法组装ZIFs纳米颗粒及其衍生材料的电化学性能研究;卢兵荣;《中国优秀硕士学位论文全文数据库》;20190115;第1-2页 *

Also Published As

Publication number Publication date
CN111501206A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
Huang et al. Enhanced gas sensing performance based on p-NiS/n-In2O3 heterojunction nanocomposites
Xiao et al. n-Type field-effect transistors made of an individual nitrogen-doped multiwalled carbon nanotube
Ding et al. General approach to MOF-derived core-shell bimetallic oxide nanowires for fast response to glucose oxidation
Wang et al. Enhanced sensitivity and stability of room-temperature NH3 sensors using core–shell CeO2 nanoparticles@ cross-linked PANI with p–n heterojunctions
Fan et al. Synthesis, characterization and mechanism of electrospun carbon nanofibers decorated with ZnO nanoparticles for flexible ammonia gas sensors at room temperature
Han et al. A novel nonenzymatic hydrogen peroxide sensor based on Ag–MnO2–MWCNTs nanocomposites
CN111501206B (zh) 一种碳纳米纤维/CoS2/MoS2复合薄膜及其制备方法和应用
US20090101501A1 (en) Room temperature gas sensors
CN102866181A (zh) 聚苯胺/二氧化钛纳米复合阻抗型薄膜气体传感器及其制备方法
Pang et al. Effect of In 2 O 3 nanofiber structure on the ammonia sensing performances of In 2 O 3/PANI composite nanofibers
CN109092319B (zh) 一种WO3/BiVO4/FeOOH三元体系复合材料及其制备方法和应用
Wang et al. Catalyst-free fabrication of one-dimensional N-doped carbon coated TiO2 nanotube arrays by template carbonization of polydopamine for high performance electrochemical sensors
Lee et al. Highly conductive and flexible dopamine–graphene hybrid electronic textile yarn for sensitive and selective NO2 detection
Nag et al. Recent progress in the fabrication of graphene fibers and their composites for applications of monitoring human activities
CN109950560A (zh) 一种基于生物质的碳纤维负载氮掺杂碳纳米复合材料的制备方法及其应用
Zhu et al. Probing the unexpected behavior of AuNPs migrating through nanofibers: a new strategy for the fabrication of carbon nanofiber–noble metal nanocrystal hybrid nanostructures
Xu et al. Highly sensitive enzyme-free glucose sensor based on CuO–NiO nanocomposites by electrospinning
CN113265873B (zh) 一种担载金属氧化物、导电高分子和二维纳米材料的柔性传感织物、制备方法及其应用
Yan et al. Micropored Sn-SnO2/carbon heterostructure nanofibers and their highly sensitive and selective C2H5OH gas sensing performance
Elrouby Electrochemical applications of carbon nanotube
Amarnath et al. Size controlled V2O5-WO3 nano-islands coated polypyrrole matrix: A unique nanocomposite for effective room temperature ammonia detection
Litkohi et al. Synthesis of Pt-Ni-Fe/CNT/CP nanocomposite as an electrocatalytic electrode for PEM fuel cell cathode
CN109369185A (zh) 一种氮掺杂石墨烯复合碳材料的制备方法
KR100726237B1 (ko) 탄소나노튜브를 지지체로 하고 전기화학적 방법을 사용한백금나노촉매의 제조방법
Safe et al. Hollow polyaniline nanofibers for highly sensitive ammonia detection applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant